Top Banner
1 © Nokia Siemens Networks <LE number and name> Radio Access System Overview RU10 Release
27
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 01- RAS Overview (RU10)

1 © Nokia Siemens Networks <LE number and name>

Radio Access System OverviewRU10 Release

Page 2: 01- RAS Overview (RU10)

2 © Nokia Siemens Networks <LE number and name>

Nokia Siemens Networks Academy

Legal notice

Intellectual Property RightsAll copyrights and intellectual property rights for Nokia Siemens Networks training documentation, product documentation and slide presentation material, all of which are forthwith known as Nokia Siemens Networks training material, are the exclusive property of Nokia Siemens Networks. Nokia Siemens Networks owns the rights to copying, modification, translation, adaptation or derivatives including any improvements or developments. Nokia Siemens Networks has the sole right to copy, distribute, amend, modify, develop, license, sublicense, sell, transfer and assign the Nokia Siemens Networks training material. Individuals can use the Nokia Siemens Networks training material for their own personal self-development only, those same individuals cannot subsequently pass on that same Intellectual Property to others without the prior written agreement of Nokia Siemens Networks. The Nokia Siemens Networks training material cannot be used outside of an agreed Nokia Siemens Networks training session for development of groups without the prior written agreement of Nokia Siemens Networks.

Page 3: 01- RAS Overview (RU10)

3 © Nokia Siemens Networks <LE number and name>

Document change history

Draft – Updated to RU10Suriansyah1.014.04.2009

Change commentNameVersionDate

Page 4: 01- RAS Overview (RU10)

4 © Nokia Siemens Networks <LE number and name>

Content

• RAN Architecture and Interfaces• RAN Functionalities• NSN RAN Roadmaps• NSN RAN Solution• RAN Operation and Management

Page 5: 01- RAS Overview (RU10)

5 © Nokia Siemens Networks <LE number and name>

UMTS Generic ArchitectureCN

BSS

UE

UTRAN

PS-Domain

CS-Domain

RNS

EIR HSS

VLR

PDN/Internet

PDN/Internet

VLR

PSTNPSTN

Um

Uu

Abis

A

A

IuCS

Gb Gs

F D C

PSTN

Gf Gc

Gn

Gp

Nc

Mc Mc

Nb

PSTNNc E G

IuPS

Iur

USIM

IuCS

Gr

Gi

PSTN

PSTN

SIM

Cu

GERAN

BSCBTS

Node B

RNC SGSN

GGSN

MGW

MSS

MSS

MGW

GMSS

Iub

IMSIMSGo

Other PLMN

Other PLMN

BG

The general idea in UMTS is to harmonise the CN with GSM/GPRS as much as possible. This can be done since there is no major difference in how subscribers or charging are handled in both systems. Therefore, CN is constituted of a Circuit Switched (CS) domain and a Packet Switched (PS) domain which have the same main elements as is GSM/GPRS beside the CN common elements.The biggest change is in the UMTS Radio Access Network that introduces several new functions and a totally new air interface. The Radio Access Network is controlled by a Radio Network Controller (RNC), unlike the Base Station Controller (BSC) in a GSM network. In the 3GPP specification, the WCDMA BTS is referred to as Node B.

Page 6: 01- RAS Overview (RU10)

6 © Nokia Siemens Networks <LE number and name>

RAN Architecture and Interfaces

Iub

IurIu-BC

Iu-CS Iu-PS ADIF*

Iu-PC

O&M

MSS/MGW SGSNA-GPS Server

SASRNCRNCCBC

Node B

UE

Uu

RNS

* Proprietary interface

NetAct

WCDMA Radio Access Network (WCDMA RAN)WCDMA RAN consists of one or more Radio Network Subsystem (RNS) where each RNS is constructed by a Radio Network Controller (RNC) and its controlled Node Bs. The main function of WCDMA RAN is handling all radio-related functionalities and managing radio resources in a 3G network. In addition, WCDMA RAN also handles telecommunication management for Circuit-switched and Packet-Switched traffic in a 3G network.The standardised interface between RNCs is called Iur, and interface RNC – Node Bs is called Iub.

Core NetworkCore Network (CN) is responsible for routing calls, data connections or other defined services to external network as well as handling user mobility.RAN interface toward Switching Core Network (SCN) is called Iu-CS, and it is implemented by connecting RNC to MSC Server (MSS) for control plane and to Multimedia Gateway (MGW) for user plane.RAN interface toward Packet Core Network (PCN) is called Iu-PS, and it is implemented by connecting RNC to Serving GPRS Support Node (SGSN).RAN interface toward Cell Broadcast Center (CBC), for Cell Broadcast Service (CBS), is called Iu-BC.RAN interface toward Positioning Center (PC), for Location Service (LCS), is called Iu-PC. It is implemented by connecting RNC to Standalone SMLC (SAS).NSN also provides alternative solution for LCS, which is implemented by connecting RNC directly to A-GPS server. For this solution, the position calculation is done by RNC. The proprietary interface toward A-GPS server is called A-GPS Data Interface (ADIF)

Page 7: 01- RAS Overview (RU10)

7 © Nokia Siemens Networks <LE number and name>

RAN Architecture and Interfaces

Iub

IurIu-BC

Iu-CS Iu-PS ADIF*

Iu-PC

O&M

NetAct MSS/MGW SGSNA-GPS Server

SASRNCRNCCBC

Node B

UE

Uu

RNS

* Proprietary interface

Operation Support SystemOperations Support System (OSS) is common for both 2G and 3G networks. The same management system is used for managing both the network and the services provided. In the NSN 3G solution, NetAct Framework is used for this task. The O&M interface toward OSS, called Network Interface for 3rd Generation Network (NWI3), is a CORBA based interface.

Page 8: 01- RAS Overview (RU10)

8 © Nokia Siemens Networks <LE number and name>

RAN Functionalities

• Transfer user data• Functions related to overall system access control• Radio channel ciphering and deciphering• Functions related to mobility • Functions related to radio resource management and control• Synchronisation• Functions related to broadcast/multicast services• Tracing• Volume reporting• RAN information Management• Functions related to MBMS

3GPP TS 25.401

The following are RAN functionalities defined in 3GPP specification number TS 25.401. RAN may have more functions in newer release.

1. Transfer user data. This function provides user data transfer capability across the UTRAN between the Iu and Uu reference points.

2. Functions related to overall system access control (e.g. admission control, congestion control, system information broadcasting, etc.)

3. Radio channel ciphering and deciphering. This function is a pure computation function whereby the radio transmitted data can be protected against a non-authorised third-party.

4. Functions related to mobility (e.g. handover, SRNC relocation, positioning, NAS node selection function, shared network access control, etc.)

5. Functions related to radio resource management and control6. Synchronisation7. Functions related to broadcast/multicast services8. Tracing. This function allows tracing of various events related to the UE and its

activities.9. Volume reporting. This function is used to report the volume of unacknowledged data

to the CN for accounting purpose.10. RAN information Management. This function is a generic mechanism that allows the

request and transfer of information between two RAN nodes.11. Functions related to MBMS

Page 9: 01- RAS Overview (RU10)

9 © Nokia Siemens Networks <LE number and name>

Rel.7 Packet Switched Network

2G RAN

3G RAN

BSC

RNCSGSN

(combi)

CG

GGSN

LIG

BG

DNS

Inter-PLMN Network

Data Network (internet)

Customer Billing Network

Corporate customer network

Common Packet Core

Infrastructure

Common Service Platforms

Common Network Management

Firewall

IP backbone

Mobile ISP

Radio Access Network access the PS Core network through SGSN. With the introduction of Combi SGSN, both 2G and 3G RAN are connected to the same network element in the PS Core Network. The implementation of Iu-PS over IP in RU10 allows the RNC to be directly connected to IP backbone.

Page 10: 01- RAS Overview (RU10)

10 © Nokia Siemens Networks <LE number and name>

Functionalities Split Between Network Elements

XXReal-time MultimediaXXIP TelephonyXXHigh Capacity Routing

X**XMobility ManagementXX*CompressionXX*CipheringXX*Radio Protocol to IP conversionXXGTP Tunnelling

XXXInterface toward OSSXCharging and StatisticsXInteraction with HLR, MSC/VLRXAuthentication

BSCRNCSGSNFunctionality

* in case of 2G RAN** URA concept

Some functionalities in handling packet data traffic are shifted from SGSN to RNC, e.g. Radio Protocol to IP conversion, Ciphering and Compression. Another packet data handling function, i.e. GTP tunnelling is implemented between RNC – SGSN, besides SGSN –GGSN.The ciphering is done in RLC layer of radio interface protocol, while IP packet compression is handled by PDCP layer. The RAN also has mobility concept which is implemented by UTRAN Registration Area (URA) to support packet data operation.

Page 11: 01- RAS Overview (RU10)

11 © Nokia Siemens Networks <LE number and name>

Radio Resource Management

DRNCNode B

UE

SRNCNode B

CRNC functionsAdmission ControlLoad ControlResource Manager

SRNC functionsPacket Scheduler Power ControlHandover Control

Iub

Iur

Iub

Power Control, packet scheduler

Power Control, packet scheduler

Cell Capacity

Cell Coverage Service Quality

Optimizationand Tailoring

The goal of Radio Resource Management (RRM) is to ensure that the radio network capacity is used as efficiently as possible, i.e. radio access network offers high capacity, maintains the planned coverage area and the required quality of service. In WCDMA, the radio resources are defined in terms of transmission power, received wideband power, logical codes, BTS HW, Iub/Iur transport, and RNC HW.To achieve the goal, RRM algorithms are implemented on the RAN Network Elements. They are:

• Cell-based algorithms, i.e. Admission Control (AC), Packet Scheduler (PS), Load Control (LC) and Resource Manager (RM).

• Connection-based algorithms, i.e. Power Control (PC) and Handover Control (HC)In case of HSPA connection, the packet scheduler is shifted to Node B

Page 12: 01- RAS Overview (RU10)

12 © Nokia Siemens Networks <LE number and name>

NSN RAN 3G Roadmap

HSPA+ Release

HSDPA 28 MbpsHSUPA 11.5 Mbps CS-voice over HSPAAdv. FDE ReceiverFlexi Multiradio BTS3.5 Gbps RNC

HSPA+ Release

HSDPA 84 MbpsHSUPA 23 Mbps <100ms call set-upLTE InterworkingGigabit Flexi BTS 35 Gbps RNC Evolution

HSPA Streaming QoSHSPA Multi NRT RABsCommon Iub

I-HSPA Rel.1 – Rel.2CS Enabling HandoverBTS Sharing

3G Femto Rel.1

HSDPA 42 Mbps (Dual-Cell HSDPA / 64QAM + MIMO)

High Speed Cell_FACH (UL)Flexible RLC in UL

I-HSPA Rel.43G Femto Rel.3

Fast Inter-System HandoverMulti-Band HSDPA AggregationSelf Optimising Backhaul

I-HSPA Rel.53G Femto Rel.4

HSDPA 14 MbpsAll-IP ConnectivityFlat ArchitectureQuality of ServiceLTE- ready Flexi BTS2.8 Gbps RNC

HSDPA 21 Mbps (64QAM) HSUPA 5.8 MbpsFlexible RLC in DLContinuous Packet ConnectivityMBMS BroadcastHigh Speed Cell_FACH (DL)HSPA Conversational QoSSynchronous EthernetConcurrent Mode Multiradio BTS

I-HSPA Rel.33G Femto Rel.2

2008 2009 20102007 Q1/2010 Q1/2011 Q1/201204/2009

RU10Ready for Contract

RU20Under Planning

RU30Study Items

RU40Research Items

HSPA+ Release

Higher Bit RatesMulti-carrier HSPAActive Antenna System2ms TTI UL Range

Extension Local Break-Out

The key drivers of NSN WCDMA/HSPA evolution are:• Best user experience with the leading HSPA capability and evolution e.g. 40% lower

latency, real service differentiation (QoS) and extended terminal battery use time• Lowest Total Cost of Ownership (TCO). Typically 20-30% less sites and less site cost

with Flexi BTS. Flexi BTS SW upgradeable radio, baseband, and transport reduces site visits 50-90%. Most cost efficient RNC and unique Flat Architecture option with I-HSPA data network. Leading WCDMA 900MHz refarming solution with unique 4.2MHz carrier bandwidth and with faster and more accurate planning with NetAct Optimizer.

• Greenest 3G network with lowest power consumption and typically 70% lower CO2 emissions

• Shortest time to revenue with Flexi BTS true SW upgradeability.

Page 13: 01- RAS Overview (RU10)

13 © Nokia Siemens Networks <LE number and name>

All-IP Connectivity Solution in RU10

• Provides 3GPP compliant IPv4 transport option for all RNC interfaces

• Allows to use IP and/or Ethernet connectivity from RNC towards to

– core networks (Iu-CS and Iu-PCS), – other RNCs (Iur) and – base stations (Iub)

• New features available are:– Gigabit Ethernet Interfaces (optical

and electrical)– IP based Iu-PS, IP based Iu-CS– IP based Iur– IP based Iub

Iub/IP Iu-PS/IP

Iur/IPIu-CS/IP

3G BTS

3G BTS

RNC

RNC

MGW

SGSN

Ethernet

Iu-CS/IP

IPSCTPM3UASCCP

RANAP

UDP

RTP

Iu User PlaneIu-CS Control Plane Iu-CS User Plane

RTCP

Ethernet

Iu-PS/IP

IPSCTPM3UASCCP

RANAP

UDP

GTP-U

Iu User PlaneIu-PS Control Plane Iu-PS User Plane

Ethernet

Iur/IP

IPSCTPM3UASCCP

RNSAP

UDP

RTP

FP LayerIur Control Plane Iur User Plane

RTCP

Ethernet

Iub/IP

IPSCTP

NBAP

UDP

FP LayerIub Control Plane Iub User Plane

Page 14: 01- RAS Overview (RU10)

14 © Nokia Siemens Networks <LE number and name>

C-Iub: S-NB Operability in N-RNC

• This feature defines the basic O&M functions in the common NBAP interface

– BTS initialization– BTS logical resource management– BTS and RNC recovery Iub

NB/RSxxx RNC

Page 15: 01- RAS Overview (RU10)

15 © Nokia Siemens Networks <LE number and name>

PS RAB Reconfiguration

• PS RAB parameters can be reconfigured.

• It allows the deployment of single APN and UEs.

• The usage of network resources is optimized when the QoSparameters in the network are aligned with the QoSrequirements of the service.

UE BTS

RNC

Core network

RAB Assignment Request

RAB Assignment Response

Interactive to background or vice versa

RAB parameters– Traffic class

– Maximum bit rate

– THP

– ARP

Upgraded or downgraded

SGSN or UE can request the RAB reconfiguration procedure if there is a need to modify the characteristics of a RAB service. To the RAN the reconfiguration is triggered by the CN with a RAB Setup message requesting reconfiguration of the existing RAB. The following RAB parameters can be changed for the interactive and background traffic class RABs:

• Traffic class interactive <-> background • Maximum bit rate (UL/DL) • Change of Traffic Handling Priority (THP) of an interactive RAB • Change of Allocation and Retention Priority (ARP)

RNC reconfigures the RNC and BTS with the new RAB/SPI parameters after receiving the RAB reconfiguration request from CN.

Page 16: 01- RAS Overview (RU10)

16 © Nokia Siemens Networks <LE number and name>

HSPA Solution

HSDPA 64 users / cell HSUPA 60 users / bts

64 users

64 users64 users

64 users

60 users

Page 17: 01- RAS Overview (RU10)

17 © Nokia Siemens Networks <LE number and name>

I-HSPA Architecture and Interface

Iur C

Direct TunnelSGSN

GGSN

Gn U

Gn C

Iu-ps C

Uu

Iu-ps C Gn U

C-plane

U-plane

3GPP Rel5 or laterHSPA terminal

3GPP open air interface

3GPP open network interface

• I-HSPA is a simplified flat architecture network• Standard 3GPP packet core• RNC HSPA functionality integrated to Node B• Standard 3GPP HSPA terminal

I-HSPA is part of 3GPP R7 HSPA Evolution Work Item. It specifies• Flat PaCo: Direct Tunnel defined in SA WG2, for removing SGSN from the U-plane• Flat RAN: HSPA Evolution TR25.999 defines BTS collapsed RNC• RNC ID extension from 4096 to a higher value to allow large I-HSPA network

Page 18: 01- RAS Overview (RU10)

18 © Nokia Siemens Networks <LE number and name>

NSN Radio Access Solution

NSN provides Radio Access solution:• Radio Network Controller (RNC)• Base Station• Transmission and Transport Solution• RAN Operation and Management

Page 19: 01- RAS Overview (RU10)

19 © Nokia Siemens Networks <LE number and name>

NSN Radio Network Controller

RNAC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1

RNBC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1

TSS

3

MXU

0

MXU

1

SFU

0

NPS

1(P)

/ NPG

E(P)

0

RSM

U 0

DM

CU

0D

MC

U 1

ICSU

0

DM

CU

2D

MC

U 3

SWU

0O

MS

PD30

A: W

DU

0 (O

MU

)B:

HD

D 0

(OM

S)O

MU

0

MXU

2

MXU

3

SFU

1

NPS

1(P)

/ NP

GE(

P) 1

A: W

DU

1 (O

MU

)B:

HD

D 1

(OM

S)

RSM

U 1

ICSU

2

ICSU

1

DM

CU

6D

MC

U 7

DM

CU

4D

MC

U 5

SWU

1

PD30

OM

U 1

MXU

4

MXU

5

NPS

1(P)

/ NPG

E(P)

4

NPS

1(P)

/ NPG

E(P)

2

EHU

ICSU

3

DM

CU

11

ICSU

4

ICSU

7

ICSU

5IC

SU 6

DM

CU

8D

MC

U 9

DM

CU

10

DM

CU

12

PD30

NPS

1(P)

/ NPG

E(P)

5

MXU

6

MXU

7

NPS

1(P)

/ NPG

E(P)

3IC

SU 1

3

ICSU

8

DM

CU

16

ICSU

9IC

SU 1

0IC

SU 1

1IC

SU 1

2

DM

CU

17

DM

CU

13

DM

CU

14

DM

CU

15

PD30

NPS

1(P)

/ NPG

E(P)

13

MXU

14

MXU

15

NPS

1(P)

/ NPG

E(P)

11

ICSU

33

ICSU

32

ICSU

37

DM

CU

36

ICSU

35

ICSU

34

ICSU

36

DM

CU

33

DM

CU

34

DM

CU

35

DM

CU

37

PD30

MXU

12

MXU

13

NPS

1(P)

/ NPG

E(P)

12

NPS

1(P)

/ NPG

E(P)

10

ICSU

27

ICSU

26

ICSU

31

DM

CU

31

ICSU

29

ICSU

28

ICSU

30

DM

CU

28

DM

CU

29

DM

CU

30

DM

CU

32

PD30

NPS

1(P)

/ NPG

E(P)

9

MXU

10

MXU

11

NPS

1(P)

/ NP

GE(

P) 7

ICSU

21

ICSU

20

ICSU

25

DM

CU

23

DM

CU

26

ICSU

23

ICSU

22

ICSU

24

DM

CU

24

DM

CU

25

DM

CU

27

PD30

MXU

8

MXU

9

NPS

1(P)

/ NPG

E(P)

8

NPS

1(P)

/ NPG

E(P)

6

ICSU

15

ICSU

14

ICSU

19

DM

CU

21

ICSU

17

ICSU

16

ICSU

18

DM

CU

18

DM

CU

19

DM

CU

20

PD30

DM

CU

22

TBU

FTS

S3TS

S3TB

UF

TBU

FTB

UF

TBU

FTB

UF

TBU

FTB

UF

TBU

FTB

UF

TBU

FTB

UF

TBU

FTB

UF

CPD80-B 0 CPD80-B 1 CPD80-B 0 CPD80-B 1

DM

CU

MXU

7

MXU

6

DM

CU

DM

CU

DM

CU

ICS

U

DM

CU

DM

CU

A2S

U

PD20

TBU

FT

BUF

1

NIP

1 4

NIP

1 5

ICSU

GT

PU

ICSU

DM

CU

DM

CU

DM

CU

MX

U 9

MX

U 8

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

PD2

0

TBU

FTB

UF

2

NIP

1 6

NIP

1 7

ICS

U

GTP

U

ICS

U

DM

CU

DM

CU

DM

CU

MXU

11

MXU

10

DM

CU

DM

CU

DM

CU

ICS

U

DM

CU

DM

CU

A2S

U

PD20

TBU

FT

BUF

3

NIP

1 8

NIP

1 9

ICSU

GT

PU

ICSU

DM

CU

DM

CU

DM

CU

MX

U 1

3

MX

U 1

2

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

NIP

1 1

0

NIP

1 1

1

ICS

U

GTP

U

ICS

U

DM

CU

DM

CU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

Opt

iona

l ES

A24

ESA

12 /

ESA

24

NIS

1P 4

NIS

1P 5

MXU

0

RSM

U 0

SFU

0

NE

MU

OM

U 0

WD

U 0

(O

MU

)

PD

20

ESA

24

TBU

FTS

S3

1

FDU

(OM

U)

PD20

TBU

F

2

DM

CU

MXU

3

MXU

2

DM

CU

DM

CU

DM

CU

ICS

U

DM

CU

DM

CU

A2S

U

EHU

PD20

TBU

FT

BUF

3

NIP

1 0

NIP

1 1

A2SU

ICSU

ICSU

MX

U 1

RS

MU

1

SFU

1

OM

U 1

WD

U 1

(O

MU

)

DM

CU

MX

U 5

MX

U 4

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

NIP

1 2

NIP

1 3

ICS

U

ICS

U

GT

PUG

TPU

NIS

x 2

NIS

x 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

HD

D 0

(NE

MU

) H

DD

1

(NEM

U)

TSS3

-IC

SU

TSS3

RR

MU

0R

RM

U 1

NIS

1P 6

NIS

1P 7

NIS

x 0

NIS

x 1

RRMU removed. Release plug-in unit configured as ICSU.

RR

MU

0R

RM

U 1

ICS

UIC

SU

RNC196 CS1-5

Opt

iona

l ESA

24

ESA

12 /

ESA

24

NIS

x 4

NIS

x 5

MX

U 0

RS

MU

0

SFU

0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

1

FDU

(OM

U)

PD20

TBU

F

2

EHU

A2S

U

MXU

1

RSM

U 1

SFU

1

OM

U 1

WD

U 1

(O

MU

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

HD

D 0

(NE

MU)

H

DD

1 (N

EM

U)

TSS

3TS

S3

NIS

x 6

NIS

x 7

NIS

x 0

NIS

x 1

RR

MU

0R

RMU

1IC

SU

ICSU

RNC196 CS1-5

Opt

iona

l ESA

24

NIS

1P 6

NIS

1P 4

NIS

1P 5

NIS

1P 7

SFU

0

A2S

U

NIS

x 0

SFU

1

NIS

x 1

NPG

EP

2

NPG

EP

0N

PGEP

1

NPG

EP 3

NPS

1P 2

NP

S1P

3

RR

MU

0R

RMU

1-

-

GTP

UG

TPU

NIS

x 2

NIS

x 3

NP

GEP

4N

PGEP

5

ICSU

ICSU

GTP

UG

TPU

GTP

UG

TPU

ICSU

ICS

UIC

SUIC

SU

CPD80-B 0 CPD80-B 1 CPD80-B 0 CPD80-B 1

DM

CU

MXU

7

MXU

6

DMC

U

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2S

U

PD20

TBU

FTB

UF

1

ICSU

GTP

U

ICSU

DM

CU

MXU

9

MXU

8

DM

CU

DM

CU

DM

CU

ICS

U

DM

CU

A2S

U

PD20

TBU

FTB

UF

2

ICSU

GTP

U

ICSU

DM

CU

MX

U 1

1

MX

U 1

0

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

PD

20

TBUF

TBUF

3

ICSU

GTP

U

ICSU

DM

CU

MXU

13

MXU

12

DM

CU

DM

CU

DM

CU

ICSU

DMC

U

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

ICS

U

GTP

U

ICS

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

MX

U 0

RS

MU

0

RR

MU

0

SFU

0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

1

PD20

TBU

F

2

DM

CU

MX

U 3

MX

U 2

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

EHU

PD

20

TBUF

TBUF

3

A2S

U

ICSU

ICSU

MXU

1

RSM

U 1

RRM

U 1

SFU

1

OM

U 1

WD

U 1

(O

MU

)

DM

CU

MXU

5

MXU

4

DM

CU

DM

CU

DM

CU

ICSU

DMC

U

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

ICS

U

ICS

U

GTP

UG

TPU

NIS

x 2

NIS

x 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

HD

D 0

(NE

MU)

TSS

3TS

S3

Opt

iona

l ESA

24

A2S

U 7

A2SU

8

MX

U 0

MXU

14

MXU

15

ESA

12 /

ESA

24

MX

U 1

NIS

1P 1

NIS

1P 0

ICSU

6

DM

CU 2

6

DM

CU 2

7

DM

CU

18

DM

CU

19

ICSU

19

ICS

U 2

0

ICS

U 2

1

GTP

U 6

GTP

U 7

--

- -

-

DMC

U 4

3D

MC

U 3

5D

MC

U 2

5

Opt

iona

l NIP

1 0

- DMC

U 4

2D

MC

U 3

4

--- -

NIS

1P 6

NIS

1P 4

NIS

1P 5

NIS

1P 7

NIS

1P 1

0

NIS

1P 8

NIS

1P 9

NIS

1P 1

1

EHU

B: H

DD

1

(NE

MU

)

A: W

DU

1

(OM

U)

B: H

DD

0 (N

EMU

)

A: W

DU 0

(O

MU

)

A2S

UA2

SU

DM

CU

DM

CU

DM

CU

DM

CU

MX

U 0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

PD20

TBU

F

EHU

MXU

1

OM

U 1

WD

U 1

(O

MU

)

38

HD

D 0

(NE

MU)

TSS

3TS

S3

MX

U 0

MXU

14

MXU

15

ESA

12 /

ESA

24

MX

U 1

ICSU

ICSU

ICS

U

ICS

U

GTP

U

EHU

B: H

DD

1

(NE

MU

)

A: W

DU

1

(OM

U)

B: H

DD

0 (N

EMU

)

A: W

DU 0

(O

MU

)

Opt

iona

l ESA

24A2

SU

RS

MU

0R

SMU

1

SFU

0S

FU 1

RR

MU

0R

RMU

1IC

SU

ICSU

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

RNC196 CS6-7

RRMU removed. Release plug-in unit configured as ICSU.

RNAC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1

RNBC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1

MXU

5

MXU

4

A2SU

DM

CU

PD30

ICSU

ICSU

MXU

7

MXU

6

A2SU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

PD30

ICS

U

NIS

1P /

NIS

1 0

NIS

1P /

NIS

1 1

NIS

1P /

NIS

1 2

NIS

1P /

NIS

1 3

GTP

UG

TPU

ICS

U

DMC

U

DMC

U

ICSU

DM

CU

DM

CU

DM

CU

DM

CUDM

CU

MXU

13

MXU

12

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

PD30

ICSU

GTP

U

ICSU

MXU

15

MXU

14

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

DM

CU

PD30

ICS

U

GTP

U

ICS

U

DM

CU

--

DM

CU

DM

CU

A2SU

A2SU

DM

CU

DM

CU

NIS

1P 9

NIS

1P 1

1N

IS1P

/ N

IS1

10

MXU

9

MXU

8

DM

CU

DM

CU

ICS

U

DM

CU

DM

CU

PD30

ICSU

GT

PU

ICSU

MXU

11

MXU

10

DM

CU

-ICS

U

DM

CU

DM

CU

PD30

ICSU

GTP

U

ICSU

GT

PU

NIS

1P 5

DM

CU

NIS

1P /

NIS

1 4

--

DM

CU

DM

CU

A2S

UA

2SU

DM

CU

DM

CU

NIS

1P 7

NIS

1P /

NIS

1 6

MX

U 0

SFU

0

OM

U 0

PD

30

ESA

24

PD3

0

DM

CU

DM

CU

MXU

2

SFU

1

OM

U 1

DM

CU

DM

CU

A2SU

B: H

DD 1

NE

MU

Opt

iona

l ESA

24

MXU

3

EHU

MX

U 1

RSM

U 0

RR

MU

0

RSM

U 1

RR

MU

1

A2SU

A2SU

GTP

U

A: W

DU

1 O

MU

ICSU

ICS

U

ICSU

ICS

U

NIS

1P /

NIS

1 8

NIS

1P /

NIS

1 5

NIS

1P /

NIS

1 4

/

(Opt

. NIP

1)

DM

CU

DM

CU

B: H

DD

0 N

EMU

A2S

U

A: W

DU 0

OM

U

OM

S

TBU

FTB

UF

TBU

FTB

UF

TBU

FTB

UFTB

UF

TBUF

TBUF

TSS

3TB

UFT

BUF

TBUF

TBU

FTB

UFTS

S3

TSS

3

RR

MU

0R

RM

U 1

ICSU

ICS

U

RRMU removed. Release plug-in unit configured as ICSU.

RNC196 RNC196/300

RNC450 RNC2600

Opt

iona

l ESA

24

ESA

12 /

ESA

24

NIS

x 4

NIS

x 5

MX

U 0

RS

MU

0

SFU

0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

1

FDU

(OM

U)

PD20

TBU

F

2

EHU

A2S

U

MXU

1

RSM

U 1

SFU

1

OM

U 1

WD

U 1

(O

MU

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

HD

D 0

(NE

MU)

H

DD

1 (N

EM

U)

TSS

3TS

S3

NIS

x 6

NIS

x 7

NIS

x 0

NIS

x 1

RR

MU

0R

RMU

1IC

SU

ICSU

RNC196 CS1-5

Opt

iona

l ESA

24

NIS

1P 6

NIS

1P 4

NIS

1P 5

NIS

1P 7

SFU

0

A2S

U

NIS

x 0

SFU

1

NIS

x 1

NPG

EP

2

NPG

EP

0N

PGEP

1

NPG

EP 3

NPS

1P 2

NP

S1P

3

RR

MU

0R

RMU

1-

-

GTP

UG

TPU

NIS

x 2

NIS

x 3

NP

GEP

4N

PGEP

5

ICSU

ICSU

GTP

UG

TPU

GTP

UG

TPU

ICSU

ICS

UIC

SUIC

SU

CPD80-B 0 CPD80-B 1 CPD80-B 0 CPD80-B 1

DM

CU

MXU

7

MXU

6

DMC

U

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2S

U

PD20

TBU

FTB

UF

1

ICSU

GTP

U

ICSU

DM

CU

MXU

9

MXU

8

DM

CU

DM

CU

DM

CU

ICS

U

DM

CU

A2S

U

PD20

TBU

FTB

UF

2

ICSU

GTP

U

ICSU

DM

CU

MX

U 1

1

MX

U 1

0

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

PD

20

TBUF

TBUF

3

ICSU

GTP

U

ICSU

DM

CU

MXU

13

MXU

12

DM

CU

DM

CU

DM

CU

ICSU

DMC

U

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

ICS

U

GTP

U

ICS

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

MX

U 0

RS

MU

0

RR

MU

0

SFU

0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

1

PD20

TBU

F

2

DM

CU

MX

U 3

MX

U 2

DM

CU

DM

CU

DM

CU

ICSU

DM

CU

DM

CU

A2SU

EHU

PD

20

TBUF

TBUF

3

A2S

U

ICSU

ICSU

MXU

1

RSM

U 1

RRM

U 1

SFU

1

OM

U 1

WD

U 1

(O

MU

)

DM

CU

MXU

5

MXU

4

DM

CU

DM

CU

DM

CU

ICSU

DMC

U

DM

CU

A2SU

PD2

0

TBU

FTB

UF

4

ICS

U

ICS

U

GTP

UG

TPU

NIS

x 2

NIS

x 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

HD

D 0

(NE

MU)

TSS

3TS

S3

Opt

iona

l ESA

24

A2S

U 7

A2SU

8

MX

U 0

MXU

14

MXU

15

ESA

12 /

ESA

24

MX

U 1

NIS

1P 1

NIS

1P 0

ICSU

6

DM

CU 2

6

DM

CU 2

7

DM

CU

18

DM

CU

19

ICSU

19

ICS

U 2

0

ICS

U 2

1

GTP

U 6

GTP

U 7

--

- -

-

DMC

U 4

3D

MC

U 3

5D

MC

U 2

5

Opt

iona

l NIP

1 0

- DMC

U 4

2D

MC

U 3

4

--- -

NIS

1P 6

NIS

1P 4

NIS

1P 5

NIS

1P 7

NIS

1P 1

0

NIS

1P 8

NIS

1P 9

NIS

1P 1

1

EHU

B: H

DD

1

(NE

MU

)

A: W

DU

1

(OM

U)

B: H

DD

0 (N

EMU

)

A: W

DU 0

(O

MU

)

A2S

UA2

SU

DM

CU

DM

CU

DM

CU

DM

CU

MX

U 0

NEM

U

OM

U 0

WD

U 0

(O

MU

)

PD20

ESA

24

TBU

FT

SS3

PD20

TBU

F

EHU

MXU

1

OM

U 1

WD

U 1

(O

MU

)

38

HD

D 0

(NE

MU)

TSS

3TS

S3

MX

U 0

MXU

14

MXU

15

ESA

12 /

ESA

24

MX

U 1

ICSU

ICSU

ICS

U

ICS

U

GTP

U

EHU

B: H

DD

1

(NE

MU

)

A: W

DU

1

(OM

U)

B: H

DD

0 (N

EMU

)

A: W

DU 0

(O

MU

)

Opt

iona

l ESA

24A2

SU

RS

MU

0R

SMU

1

SFU

0S

FU 1

RR

MU

0R

RMU

1IC

SU

ICSU

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

38

RNC196 CS6-7

RRMU removed. Release plug-in unit configured as ICSU.

RNC196/450

New delivery in RU10/RN4.0 release

Basic new delivery configuration steps in RN4.0 are: • RNC2600/900, configuration for capacity step 1• RNC2600/1450 ,configuration for capacity step 2• RNC2600/2000, configuration for capacity step 3

Feature upgrade configuration steps in RN4.0 are:• RNC196/196 configuration for RNC196 capacity step 1-5• RNC196/300 configuration for RNC196 capacity step 6• RNC196/450 configuration for RNC196 capacity step 7• RNC450/150 configuration for RNC450 capacity step 1• RNC450/300 configuration for RNC450 capacity step 2• RNC450/450 configuration for RNC450 capacity step 3

Page 20: 01- RAS Overview (RU10)

20 © Nokia Siemens Networks <LE number and name>

RNC2600

• With full configuration:• Total Iub throughput 2839

(DL+UL)• 2800 carriers or Node Bs

connectivity• 20000 Erl Iu capacity

• Full load sharing, regardless cabinet or subrack

• Scalability through hardware configuration and capacity licensing

• Upgrade path is available for RNC450

• Upgradeable to support RU20

Page 21: 01- RAS Overview (RU10)

21 © Nokia Siemens Networks <LE number and name>

Nokia Siemens Networks WCDMA Base Station

MetroSite

FlexiBTS

UltraSite

3G MetroSite

MetroSite50

Optima Indoor

Flexi WCDMA

BTS

Optima Compact Outdoor

Supreme Indoor

Supreme Outdoor Triple Mode

@vantage Node B

NB880 (indoor)

Page 22: 01- RAS Overview (RU10)

22 © Nokia Siemens Networks <LE number and name>

Flexi WCDMA BTS Rel.2 HW

• Flexi BTS multimode system module is also prepared for LTE evolution with a SW upgrade.

• High capacity system module– FSMC with 180 CEs– FSMD with 396 CEs

• Can be used as capacity extension for Rel.1 HW (FSMB)

• Transmission sub module FTIB to support All-IP transport and Timing over Packet (TOPA)

• FRGF, triple RF Modules, support configuration:

– 2+2+2@30W or 20W– 1+1+1@40W or 60W.

Page 23: 01- RAS Overview (RU10)

23 © Nokia Siemens Networks <LE number and name>

RAN Transmission and Transport

SDH/PDH

ATM

IP IPATM

WBTS

WBTS

RNC

OSS

Ethernet

OAM

CoCo

MGW

SGSN

WBTS

RAN supports different transport solution, i.e. ATM and IP. Both types are possible to be used independently for signalling or user plane, even used toward the same network element in RAN (called hybrid transport)

Page 24: 01- RAS Overview (RU10)

24 © Nokia Siemens Networks <LE number and name>

• Standalone AXC (S-AXC) is ATM transmission node.

• One subrack (on the figure) supports 2 x 1.2 Gbps of switching capacity.

• Various interface unit are available

Transmission and Transport Solution

• Short to long hop length• Various frequency band: 6, 7, 8, 13,

15, 18, 23, 26, 28, 32, 38 and 58 GHz• PDH radio• SDH radio (PowerHopper)• Various indoor unit type: FIU19, IFUE

or FXC-RRI• Flexbus interface

PowerHopper FlexiHopper

Standalone AXC

Page 25: 01- RAS Overview (RU10)

25 © Nokia Siemens Networks <LE number and name>

NetAct® Framework

Reporter

Network

Administrator

3rd party tools

Rating & Charging

Unified Mediationand Adaptation

Service QualityManager

Monitor

Configurator & Provisioning

Planner

Workflow Manager

2G GPRS3GEDGE1GFixed NW

4G

The new NSN OSS product architecture provides a lot of benefits to the service provider. The separation of the element management from network and service management allows for fast adaptation to new network technologies and new releases of network elements. This kind of architecture is capable of supporting any combination of network technologies. The main principle is that current and new systems and applications can co-exits smoothly in the same network.

Highlights of the NetAct Framework:1. 3rd party tools: Building blocks allow the use of 3rd party products as an integrated part

of OSS.2. Common Network Topology: Access to OSS data is available through open interfaces.

This enables the integration to other OSS/IT systems.3. The use of a CORBA (Common Object Request Broker Architecture) based message

bus allows peer-to-peer communication within the OSS.4. Common WEB-GUI (Graphical User Interface):

• user access via Web interface• application location transparent to the users• all user interface applications work on network level

5. Management applications are developed separately as system components which are based on operator processes.

Page 26: 01- RAS Overview (RU10)

26 © Nokia Siemens Networks <LE number and name>

Top Level User Interface

•Presents a graphical, hierarchical view of the network or part of the network •General alarm situation of managed objects can be viewed. •Uses pop-up menus for a variety of applications•Activates also other Nokia NetAct applications. •The users can easily create and tailor the view hierarchy as well as the contents of the views.

Page 27: 01- RAS Overview (RU10)

27 © Nokia Siemens Networks <LE number and name>

RAN Configuration Management

Radio AccessNetwork

Radio networkplanning tool

3rd partyplanning

tool

CM Plan Manager:Import & Export Plans

Plan management in NetAct

CM Editor:Edit Plans

Radionetworkplanning

CM Provisioner:Activate &Download Plans

NetAct providesa web site forRNW plans:• Storage• Edit• Download, activate and

rollback• Upload actual

configuration

RNW planin XMLformat

WBTS

MGWWBTS

WBTS

RNC

OSS Database

Nokia NetAct Planner

intranetCM Editor:Edit Plans

The NetAct solution supports the capability to plan the RAN with NetAct Planner or a 3rd

party planning tool. The plan is transferred to NetAct electronically and the planned parameters, settings and software are downloaded to the actual network equipment.Storing the plan for later use is also possible.

The main advantages of the NSN tools for RAN network development are:• Faster planning and implementation of network coverage provides for an early launch

of service.• Less manual work and site visits are required to put parameters into network

elements. This results in fewer errors and an improved effectiveness.• Optimised infrastructure investments and improved network quality can be achieved

by analysing the network behaviour, performance and usage.