Top Banner

of 67

01 Fourier

Jun 03, 2018

Download

Documents

Raja Ram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/12/2019 01 Fourier

    1/67

    Fourier Series and Sturm-Liouville

    Eigenvalue Problems

    Y. K. Goh

    2009

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    2/67

    Outline

    Functions

    Fourier Series Representation

    Half-range Expansion

    Convergence of Fourier Series Parsevals Theorem and Mean Square Error

    Complex Form of Fourier Series

    Inner Products

    Orthogonal Functions

    Self-adjoint Operators

    Sturm-Liouville Eigenvalue Probelms

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    3/67

    Periodic Functions

    Definition (Periodic Function)A 2L-periodicfunction f : R R {} is a function

    such that there exists a constant L >0 such that

    f(x) =f(x+ 2L), x R. (1)

    Here 2L is called the fundamental period or just period.

    For example,f(x) = sin(x) is a 2-periodic funtion withperiod2, since sin(x+ 2) = sin(x).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    4/67

    Even and Odd Functions

    Definition (Even and Odd Functions)

    A function f is even if and only iff(x) =f(x), x.

    A function f is odd if and only iff(x) =f(x), x.

    For example

    sin x is an odd function since sin(x) = sin x.

    cos x is an even function since cos(x) = cos x.Note that even function is symmetric about the y-axis. On theother hand, odd function is symmetric about the origin.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    5/67

    Examples of Even and Odd Functions

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/http://goback/
  • 8/12/2019 01 Fourier

    6/67

    Piecewise Continuous Functions

    Definition (Piecewise Continuous Functions)A function fis said to be piecewise continuous on the interval

    [a, b] if

    1. f(a+) andf(b) exist, and

    2. f is defined and continous on (a, b) except at a finitenumber of points in (a, b) where the left and right limits

    exits

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/http://goback/
  • 8/12/2019 01 Fourier

    7/67

    Piecewise Smooth Functions

    Definition (Piecewise Smooth Functions)A function f, defined on the interval[a, b], is said to bepiecewise smooth iff andf are piecewise continous on [a, b].Thus fis piecewise smooth if

    1. f is piecewise continous on [a, b],

    2. f exists and is continous in (a, b) except possibly atfinitely many points cwhere the one-sided limitslimxcf(x) and limxc+f(x) exist. Furthermore,limxa+f

    (x) andlimxbf(x) exist.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    8/67

    Examples of Piecewise Functions

    Figure: A piecewise smoothfunction.

    Figure: Another piecewisesmooth function.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    9/67

    Some useful integrations

    Iff is even. Then, for any a R aa

    f(x) dx= 2

    a0

    f(x) dx.

    Iff is odd. Then, for any a R aa

    f(x) dx= 0.

    Iff is piecewise continuous and 2L-periodic. Then, for

    anya R 2L

    0

    f(x) dx=

    a+2La

    f(x) dx.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/http://goback/
  • 8/12/2019 01 Fourier

    10/67

    Orthogonal Functions

    Definition (Orthogonal Functions)Two functions f andg are said to be orthogonal in theinterval[a, b] if b

    a

    f(x)g(x) dx= 0. (2)

    We will come back to orthogonal functions again later.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    11/67

    Orthogonal Properties of Trigonometric Functions

    The orthogonal properties of sine and cosine functions aresummarised as follow:

    cos mx sin nxdx = 0, (3)

    cos mx cos nxdx = mn, (4)

    sin mx sin nxdx = mn (5)

    where mn is the Kroneckers delta.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    12/67

    Kroneckers Delta

    Definition (Kroneckers Delta)

    mn=

    1, m= n0, m=n.

    (6)

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    13/67

    Fourier Series

    Theorem (Fourier Series Representation)Supposef is a 2L-periodic piecewise smooth function, thenFourier series off is given by

    f(x) = a0

    2 +

    n=1

    (ancos nx+ bnsin nx) (7)

    and the Fourier series converges tof(x) iff is continuous at

    x and to 1

    2 [f(x+) + f(x)] otherwise.

    Here = 22L

    is called the fundamental frequency, while theamplitudesa0, an, andbn are called Fourier coefficients offand they are given by the Euler formula.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    14/67

    Euler Formula

    Definition (Euler Formula)The Fourier coefficients for a 2L-periodic function fare givenby

    a0 = 1L

    LL

    f(x) dx,

    an = 1

    L

    LL

    f(x)cos nxdx= 1

    L

    LL

    f(x)cosnx

    L dx,

    bn = 1

    L

    L

    L

    f(x)sin nxdx= 1L

    L

    L

    f(x)sinnxL

    dx.

    forn= 1, 2, . . . .Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    15/67

    Collorary

    Iff is even and 2L-periodic, then the Fourier seriesrepresentation is

    f(x) =a0

    2 +

    n=1

    ancos nx.

    Iff is odd and 2L-periodic, then the Fourier seriesrepresentation is

    f(x) =n=1

    bnsin nx.

    Here,a0, an, and bn are given by the Eulerformula.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    16/67

    Examples of Fourier Series

    (Odd function, digital impulses) Find the Fourierrepresentation of the periodic function f(x)with period2, where

    f(x) =

    1, < x

  • 8/12/2019 01 Fourier

    17/67

    Graphs for Digital Pulse Train and its Fourier Series

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    18/67

    Examples of Fourier Series

    (Even function) Find the Fourier series for f(x) =|x| if1< x

  • 8/12/2019 01 Fourier

    19/67

    Graphs forf(x) =|x|, f(x+ 2) =f(x)

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    20/67

    Examples of Fourier Series

    Find the Fourier series of the 2-periodic functionf(x) =x3 + if1< x

  • 8/12/2019 01 Fourier

    21/67

    Graphs forf(x) =x3 +, f(x+ 2) =f(x)

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    22/67

    Full-range Extensions

    Consider a function fthat is only defined in the interval [0, p).We could always extension the function outside the range toproduce a new function. Of course, we have infinite manyways to extend the function, but here we will focus only onthree specific extensions.

    Definition (Full-range Periodic Extension)The full-range periodic extension g of a function fdefined in[0, p) is a p-periodic function given by

    g(x) = f(x) if0x < p,

    g(x) = g(x+p) ifx

  • 8/12/2019 01 Fourier

    23/67

    Half-range Periodic Extensions

    Definition (Half-range Even Periodic Extension)The half-range even periodic extension fe of a function f

    defined in [0, p) is a 2p-periodic even function given by

    fe(x) =

    f(x) 0 x < p,

    f(x) px

  • 8/12/2019 01 Fourier

    24/67

    Half-range Periodic Extensions

    Definition (Half-range Odd Periodic Extension)The half-range odd periodic extension fo of a function f

    defined in [0, p) is a 2p-periodic odd function given by

    fe(x) =

    f(x) 0x < p,

    f(x) px

  • 8/12/2019 01 Fourier

    25/67

    Examples Periodic Extensions

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    26/67

    Full-range Fourier Series for fdefined on[0, p)

    TheoremIff(x) is a piecewise smooth function defined on an interval[0, p), then fhas a full-range Fourier series expansion

    f(x) = a02

    +n=1

    (ancos nx+ bnsin nx) , 0x < p, (8)

    where= 2p

    and the Fourier coefficients

    a0= 1p/2

    p0

    f(x) dx, an= 1p/2

    p0

    f(x)cos nx dx, and

    bn= 1

    p/2

    p0

    f(x)sin nx dx.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    27/67

    Fourier Cosine Series for fdefined on[0, p)

    TheoremIff(x) is a piecewise smooth function defined on an interval[0, p), then fhas a half-range Fourier cosine series expansion

    f(x) =a0

    2 +

    n=1

    ancos nx,0x < p, (9)

    where=

    p and the Fourier coefficients

    a0=

    2

    p p0 f(x) dx

    ,

    andan=2

    p

    p0

    f(x)cos nx dx.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    28/67

    Fourier Since Series forfdefined on[0, p)

    TheoremIff(x) is a piecewise smooth function defined on an interval[0, p), then fhas a half-range Fourier sine series expansion

    f(x) =n=1

    bnsin nx, 0 x < p, (10)

    where=

    p

    and the Fourier coefficients

    bn=2

    p

    p

    0

    f(x)sin nxdx.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    29/67

    Examples

    Consider a signal f(t) =t measured from an experiment overthe duration given by 0

  • 8/12/2019 01 Fourier

    30/67

    Convergence of Fourier Series

    In the Fourier Series Representation Theorem, we were sayingthat for every 2L-periodic piecewise smooth function f, wecould construct a partial sum

    sN(x) = a2

    +Nn=1

    (ancos nx+ bnsin nx) .

    And, when N , the partial sum sN(x) converges to

    f(x), iff(x) is continuous for all x;

    1

    2[f(x+) + f(x)], at the discontinuous points, or jumps.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    31/67

    Figure: sN(x)

    converges tof(x)

    ,except at the jumps.

    Figure: sN(x) converges

    uniformly on the interval [-1, 1]

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    32/67

    Pointwise Convergence

    Definition (Pointwise Convergence)A sequence of functions {sn} is said to converge pointwise to

    the function fon the set E, if the sequence of numbers{sn(x)}converges to the number f(x), for each x in E.

    Or,

    ifxE, sn(x)f(x), then{sn}converge pointwise to f.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    33/67

    Uniform Convergence

    Definition (Uniform Convergence)We say that sn converges to funiformly on a set E, and wewrite snfuniformly on E if, given >0, we can find apositive integer Nsuch that for allnN

    |sn(x) f(x)|< , xE.

    Definition (Uniform Convergence Series)A series s(x) =

    k=0 uk(x) is said to converge uniformly to

    f(x) on a set Eif the sequence of partial sumssn(x) =

    nk=0 uk(x)converges uniformly to f(x).

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    34/67

    Note that if a sequence of partial sums sn converges uniformlyto f, then sn is also pointwise convergence. However, theconverse is not always true.

    In order to determine is a sn is uniformly convergence, we usethe WeierstraM-test.

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    35/67

    WeierstraM-Test

    Theorem (WeierstraM-Test)Let{uk}

    k=0 be a sequence of real- or complex-valued functions

    on E. If there exists a sequence{Mk}k=0 of nonnegative real

    numbers such that the following two conditions hold:

    |uk(x)| Mk, xE, and

    k=0 Mk

  • 8/12/2019 01 Fourier

    36/67

    Gibbs Phenomena

    Here is an example of non-uniform convergence. The peaksremain same height but the width of the peaks changes.

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1 -0.5 0 0.5 1

    N=10

    sqr(x)S10(x)

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1 -0.5 0 0.5 1

    N=30

    sqr(x)S30(x)

    -1.5

    -1

    -0.5

    0

    0.5

    1

    1.5

    -1 -0.5 0 0.5 1

    N=50

    sqr(x)S50(x)

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -1 -0.5 0 0.5 1

    N=10

    err(x)

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -1 -0.5 0 0.5 1

    N=30

    err(x)

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    -1 -0.5 0 0.5 1

    N=50

    err(x)

    Y. K. GohFourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    37/67

    Mean Square Error

    SincesNconverges to fonly when N , for mostpractical purposes, we need Nto be large but finite. Thus, weare approximating f with sN, and it is important for us tokeep track of the error of the approximation.

    Definition (Mean Square Error)The mean square error of the partial sum sN relative to f is

    EN = 1

    2L L

    L

    [f(x) sN(x)]2 dx

    = 1

    2L

    LL

    [f(x)]2 dx 1

    4a20

    1

    2

    Nn=1

    a2n+ b

    2n

    .

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    38/67

    Mean Square Approximation

    Theorem (Mean Square Approximation)Suppose thatf is square integrable, i.e.

    L

    L|f(x)|2 dx on

    [L, L]. Then sN, theNth partial sum of the Fourier series of

    f, approximatesf in the mean square sense with an errorENthat decreases to zero asN .

    limN

    EN= 1

    2L L

    L

    [f(x)]2 dx 1

    4

    a20 1

    2

    N

    n=1

    a2n+ b2n= 0.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    39/67

    Bessels Inequality and Parsevals Identity

    SinceEN>0, from the definition ofEN, we getDefinition (Bessels Inequality)

    1

    4a20+

    1

    2

    N

    n=1

    (a2n+ b2n)

    1

    2L L

    L

    [f(x)]2 dx.

    A stronger result is when taking the limit N

    Definition (Parsevals Identity)

    1

    4a20+

    1

    2

    n=1

    (a2n+ b2n) =

    1

    2L

    LL

    [f(x)]2 dx.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    40/67

    Multiplication Theorem

    A generalisation of the Parsevals identity is the multiplicationtheorem.

    Theorem (Multiplication (Inner Product) Theorem)

    Iff andg are two2L-periodic piecewise smooth functions

    1

    2L

    LL

    f(x)g(x) dx=

    n=

    cndn

    wherecn anddn are the Fourier coefficients for the complexFourier series off andg respectively.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    41/67

    Complex Form of Fourier Series

    Theorem (Complex Form of Fourier Series)Letf be a 2L-periodic piecewise smooth function. Thecomplex form of the Fourier series off is

    n=

    cneinx,

    where the frequency = 2/2L and the Fourier coefficients

    cn= 12LLL f(x)einx dx, n= 0, 1, 2, . . . .

    For all x,the complex Fourier series converges to f(x) iff is

    continuous at x, and to 1

    2[f(x+) + f(x)] otherwise.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    42/67

    Relations of Complex and Real Fourier Coefficients

    cn = cn;

    c0 = 1

    2a0

    cn = 1

    2(an ibn);

    cn = 1

    2(an+ ibn).

    a0 = 2c0;an = cn+ cn;

    bn = i(cn cn).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    43/67

    Complex Form of Parsevals Identity

    Theorem (Complex Form of Parsevals Identity)Supposef is a square integrable2L-periodic piecewise smooth

    function on [L, L]. Then

    1

    2L

    LL

    [f(x)]2 dx=

    n=

    cncn=

    n=

    |cn|2

    wherecn is the complex Fourier coefficients off.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    44/67

    Example

    Find the complex Fourier series for the 2-periodic functionf(x) =ex defined in (, ).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/http://goback/
  • 8/12/2019 01 Fourier

    45/67

    Frequency Spectra

    The distribution of the magnitude of complex Fouriercoefficients |cn| in frequency domain is called the amplitude

    spectrum off.

    The distribution ofp0=|c0|2 and pn=|cn|

    2 in frequencydomain is called the power spectrum off.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    46/67

    Inner Products

    Definition (Inner Products)Let and be (possibly complex) functions ofx on theinterval(a, b). Then the inner product of andis

    |= ba

    (x)(x) dx.

    Note that the notation of inner product in some books is

    (, ) =

    b

    a

    (x)(x) dx.

    Please take note on the order of and inthebrackets.Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    47/67

    Norm

    Definition (Norm)Letfbe (possibly complex) function ofx on the interval

    (a, b). Then the norm off is

    ||||=

    f|f=

    ba

    |f(x)|2 dx

    1/2.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    http://find/
  • 8/12/2019 01 Fourier

    48/67

    Orthogonal Functions

    Definition (Orthogonal Functions)The functions f andg are called orthogonal on the interval(a, b) if their inner product is zero,

    f|g= ba

    f(x)g(x) dx= 0.

    Definition (Orthogonal Set of Functions)

    A set of functions {F1

    , F2

    , F3

    , . . . } defined on the interval(a, b) is called an orthogonal set if

    ||Fn|| = 0for all n; and

    Fm|Fn= 0, form=n.Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    N l d O h l S

    http://find/
  • 8/12/2019 01 Fourier

    49/67

    Normalisation and Orthonormal Set

    Definition (Normalisation)A normalised function fn for a function Fn, with||Fn|| = 0, isdefined as

    fn(x) =Fn(x)

    ||Fn||

    .

    Definition (Orthonormal Set of Functions)A set of functions {f1, f2, f3, . . . }defined on the interval(a, b) is called an orthonormal set if

    ||fn||= 1for all n; and

    fm|fn= 0, form=n;

    or simply, fm|fn=mn, where mn is theKroneckersdelta.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    G li d F i S i

    http://find/
  • 8/12/2019 01 Fourier

    50/67

    Generalized Fourier Series

    Theorem (Generalized Fourier Series)If{f1, f2, f3, . . . } is a complete set of orthogonal functions on(a, b) and if fcan be represented as a linear combination of

    fn, then the generalised Fourier series of f is given by

    f(x) =n=1

    anfn(x) =n=1

    fn|f

    ||fn||2fn(x),

    wherean= fn|f||fn||2

    is the generalised Fourier coefficient.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    P l Id i

    http://find/
  • 8/12/2019 01 Fourier

    51/67

    Parsevals Identity

    Theorem (Generalized Parsevals Identity)If{f1, f2, f3, . . . } is a complete set of orthogonal functions on

    (a, b) and letf be such that||f|| is finite. Then ba

    |f(x)|2 dx=n=1

    |fn|f|2

    ||fn||2 .

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    O h li i h W i h ( )

    http://find/
  • 8/12/2019 01 Fourier

    52/67

    Orthogonality with respect to a Weight,w(x)

    (Inner product)f|g=

    ba

    f(x)g(x)w(x) dx

    (Orthogonality)

    fm|fn= ba

    fm(x)fn(x)w(x) dx=||fm||

    2

    mn

    (Generalised Fourier Series)

    f(x) =

    n=1fn|f

    ||fn||2fn(x)

    (Generalised Parsevals Identity) ba

    |f(x)|2w(x) dx=n=1

    |fn|f|2

    ||fn||2

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Adj i t d S lf dj i t O t

    http://find/
  • 8/12/2019 01 Fourier

    53/67

    Adjoint and Self-adjoint Operators

    Definition (Adjoints of Differential Operators)Suppose uandv are (possible complex) functions ofxin(a, b)and let L be a linear differential operator. Then, the formaladjointM ofL is another operator such that for all u andv

    f|L[g]= M[f]|g.

    Definition (Self-adjoint Operators)Suppose M is the formal adjoint operator for a linear operatorL in space S. IfM=L, then the operator L is said to beformally self-adjoint or formally Hermitian.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    E l Adj i t f L[] ( )d/d

    http://find/
  • 8/12/2019 01 Fourier

    54/67

    Example: Adjoint for L[]p(x)d/dx

    Suppose L[]p(x)d/dx,then

    u|L[v] =

    ba

    up

    d

    dx

    v dx= [upv]ba

    ba

    v

    d

    dx(pu)

    dx

    = M[u]|v

    In the last step, we set the boundary term to zero. The theadjoint for the operator L consists of

    Formal adjoint M[] ddx

    (p);and

    Boundary conditions [upv]ba= 0.

    Furhermore, ifp(x) is a pure imaginary constant, thenM=L. i.e. L is self-adjoint.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Adjoi t fo 2nd O de Li ea Diffe e tial O e ato s

    http://find/
  • 8/12/2019 01 Fourier

    55/67

    Adjoint for 2nd Order Linear Differential Operators

    Suppose L[]a0(x)

    + a1(x)

    + a2(x). Then,u|L[v]= [ua0v + ua1v v(a0u

    )]ba+ b

    a

    v [(a0u) (a1u

    ) + a2u] dx=M[u]|vwith

    appropriate choice of boundary conditions. Note that

    M[] a0 + (2a0 a1)

    + (a2 a1+ a

    0).

    Mcan be made self-adjoint ifa1=a0.

    The self-adjoint operator S is

    S[] = d

    dx

    a0(x)d

    dx

    + a2(x).

    The neccessary boundary condition is[a0u

    v a0v(u)]

    ba= 0.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Eigenvalue Problems & Sturm Liouville Equation

    http://find/
  • 8/12/2019 01 Fourier

    56/67

    Eigenvalue Problems & Sturm-Liouville Equation

    Definition (Eigenvalue Problem)The eigenvalue problem associated to a differential operator Lis the equation Ly+ y = 0, where is called the eigenvalue,andy is called the eigenfunction.

    It is possible to find a weight factor w(x)> 0 forL such thatS[y] w(x)L[y] is self-adjoint. The resulting eigenvalueequation is called the Sturm-Liouville Equation

    Definition (Sturm-Liouville Equation)

    [S+ w(x)] y= d

    dx

    a0(x)

    dy

    dx

    + a2(x)y+ w(x)y= 0for

    a < x < b.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Regular Sturm Liouville Problems

    http://find/
  • 8/12/2019 01 Fourier

    57/67

    Regular Sturm-Liouville Problems

    Definition (Regular Sturm-Liouville Problem)A regular SL problem is a boundary value problem on a closedfinite interval[a, b] of the form

    ddx

    a0(x) dydx

    + a2(x)y+ w(x)y= 0, a < x < b,

    satisfying regularity conditions and boundary conditions

    c1y(a) + c2y

    (a) = 0, d1y(b) + d2y

    (b) = 0,

    where at least one ofc1 andc2 and at least one ofd1 andd2are non-zero.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Singular Sturm Liouville Problems

    http://find/
  • 8/12/2019 01 Fourier

    58/67

    Singular Sturm-Liouville Problems

    Definition (Regularity Conditions)The regularity conditions of a regular SL problem are

    a0(x), a0(x), a2(x) andw(x) are continuous in [a, b];

    a0(x)> 0andw(x)> 0.

    Definition (Singular Sturm-Liouville Problem)A singular SL problem is a boundary value problem consists ofSturm-Liouville equation, but either

    fails the regularity conditions; or infinite boundary conditions; or

    one or more of the coefficients become singular.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Solutions of SL Problems

    http://find/
  • 8/12/2019 01 Fourier

    59/67

    Solutions of SL Problems

    A trivial (not useful) solution to the SL problem is y= 0. Other non-trivial solutions would be the eigenfunctions

    ym, and for each of these eigenfunctions there is acorresponding eigenvalue m.

    There are infinite many of these eigenfunctions, and theset of eigenfunctions {y1, y2, . . . , ym, . . . }forms acomplete orthogonal set of functions that span theinfinite dimensional Hilbert space.

    Any function f in the Hilbert space can be expressed as a

    linear combination of the eigenfunctions,

    f(x) =n=1

    anyn(x).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Eigenvalues of Sturm-Liouville Problems

    http://find/
  • 8/12/2019 01 Fourier

    60/67

    Eigenvalues of Sturm-Liouville Problems

    Theorem (Sturm-Liouville Problem)The eigenvalues and eigenfunctions of a SL problem has the

    properties of

    All eigenvalues are real and compose a countably infinite

    collections satisfying1< 2< 3< . . . wherej asj .

    To each eigenvaluej there corresponds only to oneindependent eigenfunction yj(x).

    The eigenfunctionsyj(x), j = 1, 2, . . . , compose acomplete orthogonal set with appropriate to the weight

    functionsw(x) in doubly-integrable functions spaceL2(a, b).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Eigenfunction Expansions

    http://find/
  • 8/12/2019 01 Fourier

    61/67

    Eigenfunction Expansions

    Theorem (Eigenfunction Expansions)Iff L2(a, b) then eigenfunction expansion off on{y1, y2, . . . } is

    f(x) =n=1

    Anyn, a < x < b,

    whereAn=

    yn|f

    ||yn||2 =

    b

    a

    yn(x)f(x)w(x) dx/

    b

    a

    |yn(x)|2w(x) dx.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Example SL Problem: Harmonic Equation

    http://find/
  • 8/12/2019 01 Fourier

    62/67

    Example SL Problem: Harmonic Equation

    An example of SL equation is the Harmonic Equation withboundary condition.

    ODE : y + y= 0, 0< x < L.

    Dirichlet Boundary condition: y(0) =y(L) = 0.

    Eigenvalues: n=k2n=

    n22

    L2 , n= 1, 2, . . . ;

    Eigenfunctions: yn(x) = sin

    n

    Lx

    forn= 1, 2, . . . ;

    Eigenfunction expansion: f(x) =n=1

    bnsinnL

    x.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Example SL Problem: Harmonic Equation

    http://find/
  • 8/12/2019 01 Fourier

    63/67

    Example SL Problem: Harmonic Equation

    Again, the Harmonic Equation with another boundarycondition.

    ODE : y + y= 0, 0< x < L.

    Neumann Boundary condition: y(0) =y(L) = 0.

    Eigenvalues: n=k2n=

    n22

    L2 ;

    Eigenfunctions: yn(x) = cos

    n

    Lx

    forn= 0, 1, 2, . . . ;

    Eigenfunction expansion: f(x) = a02

    +n=1

    ancosnL

    x.

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Example SL Problem: Harmonic Equation

    http://find/
  • 8/12/2019 01 Fourier

    64/67

    Example SL Problem: Harmonic Equation

    The Harmonic Equation with periodic boundary condition.

    ODE:y + y= 0, 0< x

  • 8/12/2019 01 Fourier

    65/67

    Example SL Problem: (Parametric) Bessel

    Equation

    Bessel Equation. x2y + xy + (2x2 2)y = 0or

    [x2y] + (2x 2

    x)y = 0 in the interval 0< x < L.

    Since a0(x) =x2 is zero at x= 0, = singular SL

    problem. ODE:x2y + xy + (2x2 2)y= 0; Boundary conditions: y(x) is bounded, and y(L) = 0; Eigenvalues: 2 =2n=

    nL

    , n= 1, 2, . . . , where n is

    thenth-root ofJ, i.e. J(n) = 0; Eigenfunctions: yn(x) =J(nx), n= 1, 2, . . . ; Weight: w(x) =x; Eigenfunction expansion: f(x) =

    n=1 anJ(nx).

    Y. K. Goh

    Fourier Series and Sturm-Liouville Eigenvalue Problems

    Example SL Problem: Spherical Bessel Equation

    http://find/
  • 8/12/2019 01 Fourier

    66/67

    Example SL Problem: Spherical Bessel Equation

    Bessel Equation. x

    2

    y

    + xy

    + (

    2

    x

    2

    n(n+ 1))y= 0in theinterval0< x

  • 8/12/2019 01 Fourier

    67/67

    p g q

    Legendre Equation. (1 x2)y 2xy + n(n+ 1)y= 0or[(1 x2)y] + n(n+ 1)y= 0, in the interval 1< x