Top Banner
Cover Page DESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version : 2010 Edition, 2011a Addenda Analysis Performed by : PROCESS SYSTEM ENGINEERS (I) PVT. LTD Job File : E:\DESIGN-\LANSH ENGINEERING\003-HEAT EXCHANGER Date of Analysis : Sep 5,2012 PV Elite 2012, January 2012
306
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 003-Heat Exchanger.docx

Cover Page DESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version : 2010 Edition, 2011a Addenda Analysis Performed by : PROCESS SYSTEM ENGINEERS (I) PVT. LTD Job File : E:\DESIGN-\LANSH ENGINEERING\003-HEAT EXCHANGER Date of Analysis : Sep 5,2012 PV Elite 2012, January 2012

Page 2: 003-Heat Exchanger.docx

Title Page Note: PV Elite performs all calculations internally in Imperial Units to remain compliant with the ASME Code and any built in assumptions in the ASME Code formulas. The customary Imperial database is used for consistency. The finalized results are reflected to show the users set of selected units.

Page 3: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 1 Warnings and Errors : Step: 0 11:15p Sep 5,2012 Class From To : Basic Element Checks. ========================================================================== Class From To: Check of Additional Element Data ========================================================================== There were no geometry errors or warnings. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 4: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 2 Input Echo : Step: 1 11:15p Sep 5,2012 PV Elite Vessel Analysis Program: Input Data Exchanger Design Pressures and Temperatures Shell Side Design Pressure 11.000 bar Channel Side Design Pressure 33.000 bar Shell Side Design Temperature 215 C Channel Side Design Temperature 185 C Type of Hydrotest UG99-b Note [34] Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 250.00 mm Projection of Nozzle from Vessel Bottom 250.00 mm Minimum Design Metal Temperature 0 C Type of Construction Welded Special Service None Degree of Radiography RT 1 Miscellaneous Weight Percent 5.0 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest Y Is this a Heat Exchanger Yes User Defined Hydro. Press. (Used if > 0) 0.0000 bar User defined MAWP 0.0000 bar User defined MAPnc 0.0000 bar Load Case 1 NP+EW+WI+FW+BW Load Case 2 NP+EW+EE+FS+BS Load Case 3 NP+OW+WI+FW+BW Load Case 4 NP+OW+EQ+FS+BS Load Case 5 NP+HW+HI Load Case 6 NP+HW+HE Load Case 7 IP+OW+WI+FW+BW Load Case 8 IP+OW+EQ+FS+BS Load Case 9 EP+OW+WI+FW+BW Load Case 10 EP+OW+EQ+FS+BS Load Case 11 HP+HW+HI Load Case 12 HP+HW+HE Load Case 13 IP+WE+EW Load Case 14 IP+WF+CW Load Case 15 IP+VO+OW Load Case 16 IP+VE+EW Load Case 17 NP+VO+OW Load Case 18 FS+BS+IP+OW

Page 5: 003-Heat Exchanger.docx

Load Case 19 FS+BS+EP+OW Wind Design Code IS-875

Page 6: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 3 Input Echo : Step: 1 11:15p Sep 5,2012 Basic Wind Speed for IS-875 47.000 m/sec Wind Zone Number 4 Base Elevation 0.0000 mm Percent Wind for Hydrotest 33.0 Risk Factor 1.0700001 Terrain Category 1 Equipment Class 1 Topography Factor 1.0 Damping Factor (Beta) for Wind (Ope) 0.0100 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000 Seismic Design Code IS-1893-SCM Importance Factor for IS-1893 1.500 Soil Factor 1.200 Zone Number 4.000 Percent Seismic for Hydrotest 0.000 Design Nozzle for Des. Press. + St. Head Y Consider MAP New and Cold in Noz. Design N Consider External Loads for Nozzle Des. Y Use ASME VIII-1 Appendix 1-9 N Material Database Year Current w/Addenda or Code Year Configuration Directives: Do not use Nozzle MDMT Interpretation VIII-1 01-37 No Use Table G instead of exact equation for "A" Yes Shell Head Joints are Tapered Yes Compute "K" in corroded condition Yes Use Code Case 2286 No Use the MAWP to compute the MDMT Yes Using Metric Material Databases, ASME II D No Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Elliptical Description BONNET DISH Distance "FROM" to "TO" 40.000 mm Inside Diameter 475.00 mm Element Thickness 10.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 12.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 33.000 bar Design Temperature Internal Pressure 185 C Design External Pressure 1.0342 bar

Page 7: 003-Heat Exchanger.docx

Design Temperature External Pressure 185 C Effective Diameter Multiplier 1.2 Material Name SA-516 70

Page 8: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 4 Input Echo : Step: 1 11:15p Sep 5,2012 Allowable Stress, Ambient 20000. psi Allowable Stress, Operating 20000. psi Allowable Stress, Hydrotest 26000. psi Material Density 0.007750 kgm/cm³ P Number Thickness 31.750 mm Yield Stress, Operating 32885. psi UCS-66 Chart Curve Designation B External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node 10 Detail Type Liquid Detail ID LIQUID Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm Liquid Density 999.55 kgm/m³ -------------------------------------------------------------------- Element From Node 20 Element To Node 30 Element Type Cylinder Description BONNET SHELL Distance "FROM" to "TO" 630.00 mm Inside Diameter 475.00 mm Element Thickness 10.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 10.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 33.000 bar Design Temperature Internal Pressure 185 C Design External Pressure 1.0342 bar Design Temperature External Pressure 185 C Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Element From Node 20 Detail Type Liquid Detail ID Liquid 20 Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm Liquid Density 999.55 kgm/m³ Element From Node 20

Page 9: 003-Heat Exchanger.docx

Detail Type Nozzle Detail ID N1 Dist. from "FROM" Node / Offset dist 364.00 mm

Page 10: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 5 Input Echo : Step: 1 11:15p Sep 5,2012 Nozzle Diameter 200.0 mm Nozzle Schedule 80 Nozzle Class 300 Layout Angle 180.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 20 Detail Type Nozzle Detail ID N2 Dist. from "FROM" Node / Offset dist 325.00 mm Nozzle Diameter 200.0 mm Nozzle Schedule 80 Nozzle Class 300 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 20 Detail Type Nozzle Detail ID N8 Dist. from "FROM" Node / Offset dist 65.000 mm Nozzle Diameter 25.0 mm Nozzle Schedule XXS Nozzle Class 300 Layout Angle 180.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B -------------------------------------------------------------------- Element From Node 30 Element To Node 40 Element Type Flange Description BONNET FLANGE Distance "FROM" to "TO" 90.000 mm Flange Inside Diameter 475.00 mm Element Thickness 80.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 80.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 33.000 bar Design Temperature Internal Pressure 185 C Design External Pressure 1.0342 bar

Page 11: 003-Heat Exchanger.docx

Design Temperature External Pressure 185 C Effective Diameter Multiplier 1.2 Material Name SA-105

Page 12: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 6 Input Echo : Step: 1 11:15p Sep 5,2012 Allowable Stress, Ambient 20000. psi Allowable Stress, Operating 20000. psi Allowable Stress, Hydrotest 26000. psi Material Density 0.007750 kgm/cm³ P Number Thickness 31.750 mm Yield Stress, Operating 31150. psi UCS-66 Chart Curve Designation B External Pressure Chart Name CS-2 UNS Number K03504 Product Form Forgings Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 kgf Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange Element From Node 30 Detail Type Liquid Detail ID Liquid 30 Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm Liquid Density 999.55 kgm/m³ -------------------------------------------------------------------- Element From Node 40 Element To Node 50 Element Type Flange Description SHELL FLANGE Distance "FROM" to "TO" 90.000 mm Flange Inside Diameter 475.00 mm Element Thickness 80.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 80.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 11.000 bar Design Temperature Internal Pressure 215 C Design External Pressure 1.0342 bar Design Temperature External Pressure 215 C Effective Diameter Multiplier 1.2 Material Name SA-105 Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 kgf Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange Element From Node 40 Detail Type Liquid Detail ID Liquid 40 Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm

Page 13: 003-Heat Exchanger.docx

Liquid Density 999.55 kgm/m³ --------------------------------------------------------------------

Page 14: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 7 Input Echo : Step: 1 11:15p Sep 5,2012 Element From Node 50 Element To Node 60 Element Type Cylinder Description SHELL Distance "FROM" to "TO" 3006.0 mm Inside Diameter 475.00 mm Element Thickness 10.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 10.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 11.000 bar Design Temperature Internal Pressure 215 C Design External Pressure 1.0342 bar Design Temperature External Pressure 215 C Effective Diameter Multiplier 1.2 Material Name SA-516 70 Allowable Stress, Ambient 20000. psi Allowable Stress, Operating 20000. psi Allowable Stress, Hydrotest 26000. psi Material Density 0.007750 kgm/cm³ P Number Thickness 31.750 mm Yield Stress, Operating 32216. psi UCS-66 Chart Curve Designation B External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Element From Node 50 Detail Type Saddle Detail ID Lft Sdl Dist. from "FROM" Node / Offset dist 630.00 mm Width of Saddle 133.00 mm Height of Saddle at Bottom 498.00 mm Saddle Contact Angle 120.0 Height of Composite Ring Stiffener 0.0000 mm Width of Wear Plate 200.00 mm Thickness of Wear Plate 10.000 mm Contact Angle, Wear Plate (degrees) 131.0 Element From Node 50 Detail Type Saddle Detail ID Sdl 2 Fr50 Dist. from "FROM" Node / Offset dist 2090.0 mm Width of Saddle 133.00 mm Height of Saddle at Bottom 498.00 mm Saddle Contact Angle 120.0 Height of Composite Ring Stiffener 0.0000 mm

Page 15: 003-Heat Exchanger.docx

Width of Wear Plate 200.00 mm Thickness of Wear Plate 10.000 mm Contact Angle, Wear Plate (degrees) 131.0

Page 16: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 8 Input Echo : Step: 1 11:15p Sep 5,2012 Element From Node 50 Detail Type Liquid Detail ID Liquid 50 Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm Liquid Density 999.55 kgm/m³ Element From Node 50 Detail Type Nozzle Detail ID N3 Dist. from "FROM" Node / Offset dist 190.00 mm Nozzle Diameter 65.0 mm Nozzle Schedule 160 Nozzle Class 300 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 50 Detail Type Nozzle Detail ID N6 Dist. from "FROM" Node / Offset dist 1390.0 mm Nozzle Diameter 50.0 mm Nozzle Schedule 160 Nozzle Class 300 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 50 Detail Type Nozzle Detail ID N9 Dist. from "FROM" Node / Offset dist 2140.0 mm Nozzle Diameter 50.0 mm Nozzle Schedule 160 Nozzle Class 300 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 50 Detail Type Nozzle Detail ID N7

Page 17: 003-Heat Exchanger.docx

Dist. from "FROM" Node / Offset dist 190.00 mm Nozzle Diameter 25.0 mm Nozzle Schedule XXS

Page 18: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 9 Input Echo : Step: 1 11:15p Sep 5,2012 Nozzle Class 300 Layout Angle 180.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 50 Detail Type Nozzle Detail ID N5 Dist. from "FROM" Node / Offset dist 2875.0 mm Nozzle Diameter 40.0 mm Nozzle Schedule 160 Nozzle Class 300 Layout Angle 0.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 50 Detail Type Nozzle Detail ID N4 Dist. from "FROM" Node / Offset dist 2618.0 mm Nozzle Diameter 40.0 mm Nozzle Schedule 160 Nozzle Class 300 Layout Angle 180.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 kgf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B -------------------------------------------------------------------- Element From Node 60 Element To Node 70 Element Type Elliptical Description DISHED END Distance "FROM" to "TO" 40.000 mm Inside Diameter 475.00 mm Element Thickness 10.000 mm Internal Corrosion Allowance 3.0000 mm Nominal Thickness 12.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 11.000 bar Design Temperature Internal Pressure 215 C Design External Pressure 1.0342 bar Design Temperature External Pressure 215 C Effective Diameter Multiplier 1.2

Page 19: 003-Heat Exchanger.docx

Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0

Page 20: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 10 Input Echo : Step: 1 11:15p Sep 5,2012 Elliptical Head Factor 2.0 Element From Node 60 Detail Type Liquid Detail ID Liquid 60 Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 475.00 mm Liquid Density 999.55 kgm/m³ PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 21: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 11 XY Coordinate Calculations : Step: 2 11:15p Sep 5,2012 XY Coordinate Calculations | | | | | | From| To | X (Horiz.)| Y (Vert.) |DX (Horiz.)| DY (Vert.) | | | mm | mm | mm | mm | -------------------------------------------------------------- BONNET DIS| 40.0000 | ... | 40.0000 | ... | BONNET SHE| 670.000 | ... | 630.000 | ... | BONNET FLA| 670.000 | ... | -90.0000 | ... | SHELL FLAN| 834.000 | ... | 90.0000 | ... | SHELL| 3750.00 | ... | 3006.00 | ... | DISHED END| 3790.00 | ... | 40.0000 | ... | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 22: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 12 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 Flange Input Data Values Description: FLANGE : BONNET FLANGE Description of Flange Geometry (Type) Integral Ring Design Pressure P 33.05 bar Design Temperature 185 C Internal Corrosion Allowance ci 3.0000 mm External Corrosion Allowance ce 0.0000 mm Use Corrosion Allowance in Thickness Calcs. Yes Attached Shell Inside Diameter B 475.0000 mm Integral Ring Inside Diameter 495.0000 mm Flange Outside Diameter A 625.000 mm Flange Thickness t 80.0000 mm Thickness of Hub at Small End go 10.0000 mm Thickness of Hub at Large End g1 20.0000 mm Length of Hub h 10.0000 mm Flange Material SA-105 Flange Material UNS number K03504 Flange Allowable Stress At Temperature Sfo 20000.00 psi Flange Allowable Stress At Ambient Sfa 20000.00 psi Bolt Material SA-193 B7 Bolt Allowable Stress At Temperature Sb 25000.00 psi Bolt Allowable Stress At Ambient Sa 25000.00 psi Length of Weld Leg at Back of Ring tw 0.0000 mm Number of Splits in Ring Flange n 0 Diameter of Bolt Circle C 570.000 mm Nominal Bolt Diameter dB 22.0000 mm Type of Threads TEMA Metric Number of Bolts 20 Flange Face Outside Diameter Fod 538.000 mm Flange Face Inside Diameter Fid 475.000 mm Flange Facing Sketch 1, Code Sketch 1a Gasket Outside Diameter Go 515.000 mm Gasket Inside Diameter Gi 495.000 mm Gasket Factor m 2.5000 Gasket Design Seating Stress y 10000.00 psi Column for Gasket Seating 2, Code Column II Gasket Thickness tg 4.5000 mm

Page 23: 003-Heat Exchanger.docx

Length of Partition Gasket lp 525.0000 mm Width of Partition Gasket tp 8.0000 mm Partition Gasket Factor mPart 2.5000 Partition Gasket Design Seating Stress yPart 10000.00 psi

Page 24: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 13 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 ASME Code, Section VIII, Division 1, 2010, 2011a Corroded Flange Thickness, tc = T-ci 77.000 mm Corroded Flange ID, Bcor = B+2*Fcor 481.000 mm Corroded Large Hub, g1Cor = g1-ci 17.000 mm Corroded Small Hub, g0Cor = go-ci 7.000 mm Code R Dimension, R = ((C-Bcor)/2)-g1cor 27.500 mm Gasket Contact Width, N = (Go - Gi) / 2 10.000 mm Basic Gasket Width, bo = N / 2 5.000 mm Effective Gasket Width, b = bo 5.000 mm Gasket Reaction Diameter, G = (Go + Gi) / 2 505.000 mm Basic Flange and Bolt Loads: Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq = 0.785 * 505.0000² * 33.047 = 67495.555 kgf Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P + 2 * lp * bPart * mPart * P = 2 * 5.0000 * 3.1416 * 505.0000 * 2.5000 * 33.05 + 2.0 * 525.0000 * 4.0000 * 2.5000 * 33.0466 = 16903.727 kgf Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4 = 3.1416 * 481.0000² *33.0466/4 = 61232.594 kgf Pressure Force on Flange Face [Ht]: = H - Hd = 67495 - 61232 = 6262.958 kgf Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 ) = max( 67495 + 16903 + 0 , 0 ) = 84399.281 kgf = 91245.602 kgf , Mating Flange Load Governs Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp = 10000.00*5.0000*3.141*505.000+10000.00*4.0000*525.00 = 70535.523 kgf = 92685.398 kgf , Mating Flange Load Governs Required Bolt Area [Am]: = Maximum of Wm1/Sb, Wm2/Sa = Maximum of 91245/25000 , 92685/25000 = 5273.188 mm² ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]:

Page 25: 003-Heat Exchanger.docx

= 2a + 6t/(m + 0.5) = 2 * 22.000 + 6 * 77.000/(2.50 + 0.5) = 198.000 mm

Page 26: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 14 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) ) = 570.000 * sin( 3.142/20 ) = 89.168 mm ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 ) = max( sqrt( 89.168/( 2 * 22.000 + 77.000 )), 1 ) = 1.0000 Bolting Information for TEMA Metric Thread Series (Non Mandatory): Distance Across Corners for Nuts 41.570 mm Circular Wrench End Diameter a 0.000 mm ----------------------------------------------------------------------------- Minimum Actual Maximum ----------------------------------------------------------------------------- Bolt Area, mm² 5273.188 5448.380 Radial distance bet. hub and bolts 25.400 47.500 Radial distance bet. bolts and the edge 25.400 27.500 Circumferential spacing between bolts 53.980 89.168 198.000 ----------------------------------------------------------------------------- Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) ) = 5448.380 * 25000.00/(10000.00 * 3.14 * (515.000 + 495.00 ) ) = 4.293 mm Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2 = 25000.00 * ( 5273.1885 + 5448.3799 )/2 = 94225.04 kgf Gasket Load for the Operating Condition [HG]: = Wm1 - H = 91245 - 67495 = 23750.05 kgf Moment Arm Calculations: Distance to Gasket Load Reaction [hg]: = (C - G ) / 2 = ( 570.0000 - 505.0000 )/2 = 32.5000 mm Distance to Face Pressure Reaction [ht]: = ( R + g1 + hg ) / 2 = ( 27.5000 + 17.0000 + 32.5000 )/2 = 38.5000 mm Distance to End Pressure Reaction [hd]: = R + ( g1 / 2 )

Page 27: 003-Heat Exchanger.docx

= 27.5000 + ( 17.0000/2.0 ) = 36.0000 mm Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment End Pressure, Md 61233. 36.0000 1.0000 2204. kgf-m.

Page 28: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 15 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 Face Pressure, Mt 6263. 38.5000 1.0000 241. kgf-m. Gasket Load, Mg 23750. 32.5000 1.0000 772. kgf-m. Gasket Seating, Matm 94225. 32.5000 1.0000 3062. kgf-m. Total Moment for Operation, Mop 3217. kgf-m. Total Moment for Gasket seating, Matm 3062. kgf-m. Effective Hub Length, ho = sqrt(Bcor*goCor) 58.026 mm Hub Ratio, h/h0 = HL / H0 0.172 Thickness Ratio, g1/g0 = (g1Cor/goCor) 2.429 Flange Factors for Integral Flange: Factor F per 2-7.2 0.895 Factor V per 2-7.3 0.359 Factor f per 2-7.6 4.145 Factors from Figure 2-7.1 K = 1.299 T = 1.798 U = 8.307 Y = 7.560 Z = 3.905 d = 65769.977 mm ³ e = 0.0154 mm ^-1 Stress Factors ALPHA = 2.188 BETA = 2.584 GAMMA = 1.217 DELTA = 6.941 Lamda = 8.158 Longitudinal Hub Stress, Operating [SHo]: = ( f * Mop / Bcor ) / ( L * g1² ) = (4.1446*3217/481.0000)/(8.1584*17.0000²) = 16723.81 psi Longitudinal Hub Stress, Seating [SHa]: = ( f * Matm / Bcor ) / ( L * g1² ) = (4.1446*3062/481.0000)/(8.1584*17.0000²) = 15917.82 psi Radial Flange Stress, Operating [SRo]: = ( Beta * Mop / Bcor ) / ( L * t² ) = (2.5837*3217/481.0000)/(8.1584*77.0000²) = 508.18 psi Radial Flange Stress, Seating [SRa]: = ( Beta * Matm/Bcor ) / ( L * t² ) = (2.5837*3062/481.0000)/(8.1584*77.0000²) = 483.68 psi Tangential Flange Stress, Operating [STo]: = ( Y * Mo / (t² * Bcor) ) - Z * SRo = (7.5598*3217/(77.0000²*481.0000))-3.9054*508 = 10146.07 psi Tangential Flange Stress, Seating [STa]: = ( y * Matm / (t² * Bcor) ) - Z * SRa = (7.5598*3062/(77.0000²*481.0000))-3.9054*483 = 9657.09 psi

Page 29: 003-Heat Exchanger.docx

Average Flange Stress, Operating [SAo]: = ( SHo + max( SRo, STo ) ) / 2 = (16723+max(508,10146))/2

Page 30: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 16 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 = 13434.94 psi Average Flange Stress, Seating [SAa]: = ( SHa + max( SRa, STa ) ) / 2 = (15917+max(483,9657))/2 = 12787.46 psi Bolt Stress, Operating [BSo]: = ( Wm1 / Ab ) = (91245/5448.3799) = 23820.26 psi Bolt Stress, Seating [BSa]: = ( Wm2 / Ab ) = (92685/5448.3799) = 24196.13 psi Stress Computation Results: Operating Gasket Seating Actual Allowed Actual Allowed Longitudinal Hub 16724. 30000. 15918. 30000. psi Radial Flange 508. 20000. 484. 20000. psi Tangential Flange 10146. 20000. 9657. 20000. psi Maximum Average 13435. 20000. 12787. 20000. psi Bolting 23820. 25000. 24196. 25000. psi Minimum Required Flange Thickness 67.183 mm Estimated M.A.W.P. ( Operating ) 34.7 bar Estimated Finished Weight of Flange at given Thk. 80.4 kg. Estimated Unfinished Weight of Forging at given Thk 80.4 kg. Flange Rigidity Based on Required Thickness [ASME]: Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki ) = 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 5.126 * 29400000 * 7.000^(2) * 58.026 * 0.300 ) = 0.635 (should be <= 1) Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki ) = 52.14 * 3217.4/1.0000 * 1422333 * 0.359/( 5.126 * 28040116 * 7.000^(2) * 58.026 * 0.300 ) = 0.699 (should be <= 1) Flange Rigidity Based on Given Thickness [ASME]: Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki ) = 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 8.158 * 29400000 * 7.000^(2) * 58.026 * 0.300 ) = 0.399 (should be <= 1)

Page 31: 003-Heat Exchanger.docx

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

Page 32: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 17 Flg Calc [Int P] : FLANGE Flng: 7 11:15p Sep 5,2012 = 52.14 * 3217.4/1.0000 * 1422333 * 0.359/( 8.158 * 28040116 * 7.000^(2) * 58.026 * 0.300 ) = 0.439 (should be <= 1) PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 33: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 18 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 Flange Input Data Values Description: FLANGE : SHELL FLANGE Description of Flange Geometry (Type) Integral Ring Design Pressure P 11.05 bar Design Temperature 215 C Internal Corrosion Allowance ci 3.0000 mm External Corrosion Allowance ce 0.0000 mm Use Corrosion Allowance in Thickness Calcs. Yes Attached Shell Inside Diameter B 475.0000 mm Integral Ring Inside Diameter 495.0000 mm Flange Outside Diameter A 625.000 mm Flange Thickness t 80.0000 mm Thickness of Hub at Small End go 10.0000 mm Thickness of Hub at Large End g1 20.0000 mm Length of Hub h 10.0000 mm Flange Material SA-105 Flange Material UNS number K03504 Flange Allowable Stress At Temperature Sfo 19924.13 psi Flange Allowable Stress At Ambient Sfa 20000.00 psi Bolt Material SA-193 B7 Bolt Allowable Stress At Temperature Sb 25000.00 psi Bolt Allowable Stress At Ambient Sa 25000.00 psi Length of Weld Leg at Back of Ring tw 0.0000 mm Number of Splits in Ring Flange n 0 Diameter of Bolt Circle C 570.000 mm Nominal Bolt Diameter dB 22.0000 mm Type of Threads TEMA Metric Number of Bolts 20 Flange Face Outside Diameter Fod 538.000 mm Flange Face Inside Diameter Fid 475.000 mm Flange Facing Sketch 1, Code Sketch 1a Gasket Outside Diameter Go 515.000 mm Gasket Inside Diameter Gi 495.000 mm Gasket Factor m 2.5000 Gasket Design Seating Stress y 10000.00 psi Column for Gasket Seating 2, Code Column II Gasket Thickness tg 4.5000 mm

Page 34: 003-Heat Exchanger.docx

Mating Flange Operating Bolt Load 91245.60 kgf Mating Flange Seating Bolt Load 92685.40 kgf Mating Flange Design Bolt Load 94225.04 kgf

Page 35: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 19 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 ASME Code, Section VIII, Division 1, 2010, 2011a Corroded Flange Thickness, tc = T-ci 77.000 mm Corroded Flange ID, Bcor = B+2*Fcor 481.000 mm Corroded Large Hub, g1Cor = g1-ci 17.000 mm Corroded Small Hub, g0Cor = go-ci 7.000 mm Code R Dimension, R = ((C-Bcor)/2)-g1cor 27.500 mm Gasket Contact Width, N = (Go - Gi) / 2 10.000 mm Basic Gasket Width, bo = N / 2 5.000 mm Effective Gasket Width, b = bo 5.000 mm Gasket Reaction Diameter, G = (Go + Gi) / 2 505.000 mm Basic Flange and Bolt Loads: Hydrostatic End Load due to Pressure [H]: = 0.785 * G² * Peq = 0.785 * 505.0000² * 11.047 = 22561.918 kgf Contact Load on Gasket Surfaces [Hp]: = 2 * b * Pi * G * m * P = 2 * 5.0000 * 3.1416 * 505.0000 * 2.5000 * 11.05 = 4467.705 kgf Hydrostatic End Load at Flange ID [Hd]: = Pi * Bcor² * P / 4 = 3.1416 * 481.0000² *11.0466/4 = 20468.383 kgf Pressure Force on Flange Face [Ht]: = H - Hd = 22561 - 20468 = 2093.534 kgf Operating Bolt Load [Wm1]: = max( H + Hp + H'p, 0 ) = max( 22561 + 4467 + 0 , 0 ) = 27029.621 kgf = 91245.602 kgf , Mating Flange Load Governs Gasket Seating Bolt Load [Wm2]: = y * b * Pi * G + yPart * bPart * lp = 10000.00*5.0000*3.141*505.000+0.00*0.0000*0.00 = 55771.074 kgf = 92685.398 kgf , Mating Flange Load Governs Required Bolt Area [Am]: = Maximum of Wm1/Sb, Wm2/Sa = Maximum of 91245/25000 , 92685/25000 = 5273.188 mm² ASME Maximum Circumferential Spacing between Bolts per App. 2 eq. (3) [Bsmax]: = 2a + 6t/(m + 0.5) = 2 * 22.000 + 6 * 77.000/(2.50 + 0.5)

Page 36: 003-Heat Exchanger.docx

= 198.000 mm Actual Circumferential Bolt Spacing [Bs]: = C * sin( pi / n ) )

Page 37: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 20 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 = 570.000 * sin( 3.142/20 ) = 89.168 mm ASME Moment Multiplier for Bolt Spacing per App. 2 eq. (7) [Bsc]: = max( sqrt( Bs/( 2a + t )), 1 ) = max( sqrt( 89.168/( 2 * 22.000 + 77.000 )), 1 ) = 1.0000 Bolting Information for TEMA Metric Thread Series (Non Mandatory): Distance Across Corners for Nuts 41.570 mm Circular Wrench End Diameter a 0.000 mm ----------------------------------------------------------------------------- Minimum Actual Maximum ----------------------------------------------------------------------------- Bolt Area, mm² 5273.188 5448.380 Radial distance bet. hub and bolts 25.400 47.500 Radial distance bet. bolts and the edge 25.400 27.500 Circumferential spacing between bolts 53.980 89.168 198.000 ----------------------------------------------------------------------------- Min. Gasket Contact Width (Brownell Young) [Not an ASME Calc] [Nmin]: = Ab * Sa/( y * Pi * (Go + Gi) ) = 5448.380 * 25000.00/(10000.00 * 3.14 * (515.000 + 495.00 ) ) = 4.293 mm Flange Design Bolt Load, Gasket Seating [W]: = Sa * ( Am + Ab ) / 2 = 25000.00 * ( 5273.1885 + 5448.3799 )/2 = 94225.04 kgf Gasket Load for the Operating Condition [HG]: = Wm1 - H = 91245 - 22561 = 68683.68 kgf Moment Arm Calculations: Distance to Gasket Load Reaction [hg]: = (C - G ) / 2 = ( 570.0000 - 505.0000 )/2 = 32.5000 mm Distance to Face Pressure Reaction [ht]: = ( R + g1 + hg ) / 2 = ( 27.5000 + 17.0000 + 32.5000 )/2 = 38.5000 mm Distance to End Pressure Reaction [hd]: = R + ( g1 / 2 ) = 27.5000 + ( 17.0000/2.0 ) = 36.0000 mm

Page 38: 003-Heat Exchanger.docx

Summary of Moments for Internal Pressure: Loading Force Distance Bolt Corr Moment End Pressure, Md 20468. 36.0000 1.0000 737. kgf-m. Face Pressure, Mt 2094. 38.5000 1.0000 81. kgf-m. Gasket Load, Mg 68684. 32.5000 1.0000 2232. kgf-m.

Page 39: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 21 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 Gasket Seating, Matm 94225. 32.5000 1.0000 3062. kgf-m. Total Moment for Operation, Mop 3050. kgf-m. Total Moment for Gasket seating, Matm 3062. kgf-m. Effective Hub Length, ho = sqrt(Bcor*goCor) 58.026 mm Hub Ratio, h/h0 = HL / H0 0.172 Thickness Ratio, g1/g0 = (g1Cor/goCor) 2.429 Flange Factors for Integral Flange: Factor F per 2-7.2 0.895 Factor V per 2-7.3 0.359 Factor f per 2-7.6 4.145 Factors from Figure 2-7.1 K = 1.299 T = 1.798 U = 8.307 Y = 7.560 Z = 3.905 d = 65769.977 mm ³ e = 0.0154 mm ^-1 Stress Factors ALPHA = 2.188 BETA = 2.584 GAMMA = 1.217 DELTA = 6.941 Lamda = 8.158 Longitudinal Hub Stress, Operating [SHo]: = ( f * Mop / Bcor ) / ( L * g1² ) = (4.1446*3049/481.0000)/(8.1584*17.0000²) = 15852.16 psi Longitudinal Hub Stress, Seating [SHa]: = ( f * Matm / Bcor ) / ( L * g1² ) = (4.1446*3062/481.0000)/(8.1584*17.0000²) = 15917.82 psi Radial Flange Stress, Operating [SRo]: = ( Beta * Mop / Bcor ) / ( L * t² ) = (2.5837*3049/481.0000)/(8.1584*77.0000²) = 481.69 psi Radial Flange Stress, Seating [SRa]: = ( Beta * Matm/Bcor ) / ( L * t² ) = (2.5837*3062/481.0000)/(8.1584*77.0000²) = 483.68 psi Tangential Flange Stress, Operating [STo]: = ( Y * Mo / (t² * Bcor) ) - Z * SRo = (7.5598*3049/(77.0000²*481.0000))-3.9054*481 = 9617.25 psi Tangential Flange Stress, Seating [STa]: = ( y * Matm / (t² * Bcor) ) - Z * SRa = (7.5598*3062/(77.0000²*481.0000))-3.9054*483 = 9657.09 psi Average Flange Stress, Operating [SAo]: = ( SHo + max( SRo, STo ) ) / 2

Page 40: 003-Heat Exchanger.docx

= (15852+max(481,9617))/2 = 12734.71 psi Average Flange Stress, Seating [SAa]:

Page 41: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 22 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 = ( SHa + max( SRa, STa ) ) / 2 = (15917+max(483,9657))/2 = 12787.46 psi Bolt Stress, Operating [BSo]: = ( Wm1 / Ab ) = (91245/5448.3799) = 23820.26 psi Bolt Stress, Seating [BSa]: = ( Wm2 / Ab ) = (92685/5448.3799) = 24196.13 psi Stress Computation Results: Operating Gasket Seating Actual Allowed Actual Allowed Longitudinal Hub 15852. 29886. 15918. 30000. psi Radial Flange 482. 19924. 484. 20000. psi Tangential Flange 9617. 19924. 9657. 20000. psi Maximum Average 12735. 19924. 12787. 20000. psi Bolting 23820. 25000. 24196. 25000. psi Minimum Required Flange Thickness 65.710 mm Note: MAWP Cannot be calculated due to Entered Mating Flange Loads. Estimated Finished Weight of Flange at given Thk. 80.4 kg. Estimated Unfinished Weight of Forging at given Thk 80.4 kg. Flange Rigidity Based on Required Thickness [ASME]: Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki ) = 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 4.839 * 29400000 * 7.000^(2) * 58.026 * 0.300 ) = 0.672 (should be <= 1) Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki ) = 52.14 * 3049.7/1.0000 * 1422333 * 0.359/( 4.839 * 27786202 * 7.000^(2) * 58.026 * 0.300 ) = 0.708 (should be <= 1) Flange Rigidity Based on Given Thickness [ASME]: Flange Rigidity Index, Seating (rotation check) per APP. 2 [Js]: = 52.14 * Ma / Bsc * Cnv_fac * V / ( Lambda * Eamb * go^(2) * ho * Ki ) = 52.14 * 3062.3/1.0000 * 1422333 * 0.359/( 8.158 * 29400000 * 7.000^(2) * 58.026 * 0.300 ) = 0.399 (should be <= 1)

Page 42: 003-Heat Exchanger.docx

Flange Rigidity Index Operating (rotation check) per APP. 2 [J]: = 52.14 * Mo / Bsc * Cnv_fac * V / ( Lambda * Eop * goc^(2) * ho * Ki )

Page 43: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 23 Flg Calc [Int P] : FLANGE Flng: 8 11:15p Sep 5,2012 = 52.14 * 3049.7/1.0000 * 1422333 * 0.359/( 8.158 * 27786202 * 7.000^(2) * 58.026 * 0.300 ) = 0.420 (should be <= 1) PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 44: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 24 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 Element Thickness, Pressure, Diameter and Allowable Stress : | | Int. Press | Nominal | Total Corr| Element | Allowable | From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)| | | bar | mm | mm | mm | psi | --------------------------------------------------------------------------- BONNET DIS| 33.047 | 12.000 | 3.0000 | 475.00 | 20000. | BONNET SHE| 33.047 | 10.000 | 3.0000 | 475.00 | 20000. | BONNET FLA| 33.047 | 80.000 | 3.0000 | 475.00 | 20000. | SHELL FLAN| 11.047 | 80.000 | 3.0000 | 475.00 | 19924. | SHELL| 11.047 | 10.000 | 3.0000 | 475.00 | 20000. | DISHED END| 11.047 | 12.000 | 3.0000 | 475.00 | 20000. | Element Required Thickness and MAWP : | | Design | M.A.W.P. | M.A.P. | Minimum | Required | From| To | Pressure | Corroded | New & Cold | Thickness | Thickness | | | bar | bar | bar | mm | mm | ---------------------------------------------------------------------------- BONNET DIS| 33.0000 | 40.6350 | 57.8180 | 10.0000 | 8.68312 | BONNET SHE| 33.0000 | 39.4003 | 56.6308 | 10.0000 | 8.84768 | BONNET FLA| 33.0000 | 34.6364 | 37.4967 | 80.0000 | 67.1830 | SHELL FLAN| 11.0466 | No Calc | No Calc | 80.0000 | 65.7098 | SHELL| 11.0000 | 39.4003 | 56.6308 | 10.0000 | 4.93595 | DISHED END| 11.0000 | 40.6350 | 57.8180 | 10.0000 | 4.89671 | Summary of Heat Exchanger Maximum Allowable Working Pressures : Note: For ASME UHX designs, the following values include MAWPs that

Page 45: 003-Heat Exchanger.docx

consider the tubesheet, tubes, tube/tubesheet joint etc. These values were determined by iteration. Review the tubesheet analysis report for more information. Shell Side MAWP = 39.400 bar Shell Side MAPnc = 51.101 bar Channel Side MAWP = 34.636 bar Channel Side MAPnc = 37.497 bar Note: PV Elite could not compute the MAWP of one of the Flanges. Please check the reported MAWP by entering it as the design pressure and performing an extra analysis. Internal Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2010, 2011a Elliptical Head From 10 To 20 SA-516 70 , UCS-66 Crv. B at 185 C BONNET DISH Material UNS Number: K02700

Page 46: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 25 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (33.047*481.0000*0.984)/(2*20000.00*1.00-0.2*33.047) = 5.6831 + 3.0000 = 8.6831 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 0.047 bar = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c) = (2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000) = 40.682 - 0.047 = 40.635 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c) = (2*20000.00*1.00*10.0000)/(1.000*475.0000+0.2*10.0000) = 57.818 bar Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*D+0.2*t))/(2*E*t) = (33.047*(0.984*481.0000+0.2*7.0000))/(2*1.00*7.0000) = 16246.503 psi Straight Flange Required Thickness: = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1) = (33.047*240.5000)/(20000.00*1.00-0.6*33.047)+3.000 = 8.848 mm Straight Flange Maximum Allowable Working Pressure: Less Operating Hydrostatic Head Pressure of 0.047 bar = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00 * 1.00 * 9.0000 )/(240.5000 + 0.6 * 9.0000 ) = 50.470 - 0.047 = 50.423 bar Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 481.000/( 2 * 121.750 ))^(2))/6 = 0.983674 Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 10.375 % Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 10.000 , tr = 6.442 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.920 , Temp. Reduction = 4 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -33 C MDMT Calculations in the Head Straight Flange:

Page 47: 003-Heat Exchanger.docx

Govrn. thk, tg = 12.000 , tr = 6.640 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.738 , Temp. Reduction = 15 C

Page 48: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 26 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 Min Metal Temp. w/o impact per UCS-66 -23 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C Min Metal Temp. w/o impact per UG-20(f) -29 C Cylindrical Shell From 20 To 30 SA-516 70 , UCS-66 Crv. B at 185 C BONNET SHELL Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.047*240.5000)/(20000.00*1.00-0.6*33.047) = 5.8477 + 3.0000 = 8.8477 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 0.047 bar = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00*1.00*7.0000)/(240.5000+0.6*7.0000) = 39.447 - 0.047 = 39.400 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00*1.00*10.0000)/(237.5000+0.6*10.0000) = 56.631 bar Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (33.047*(240.5000+0.6*7.0000))/(1.00*7.0000) = 16755.000 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 2.062 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 10.000 , tr = 6.640 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.949 , Temp. Reduction = 3 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -32 C Cylindrical Shell From 50 To 60 SA-516 70 , UCS-66 Crv. B at 215 C SHELL Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1)

Page 49: 003-Heat Exchanger.docx

= (11.047*240.5000)/(20000.00*1.00-0.6*11.047) = 1.9360 + 3.0000 = 4.9360 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:

Page 50: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 27 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 Less Operating Hydrostatic Head Pressure of 0.047 bar = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00*1.00*7.0000)/(240.5000+0.6*7.0000) = 39.447 - 0.047 = 39.400 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00*1.00*10.0000)/(237.5000+0.6*10.0000) = 56.631 bar Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (11.047*(240.5000+0.6*7.0000))/(1.00*7.0000) = 5600.837 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 2.062 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 10.000 , tr = 6.992 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.999 , Temp. Reduction = 0 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -29 C Elliptical Head From 60 To 70 SA-516 70 , UCS-66 Crv. B at 215 C DISHED END Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (11.047*481.0000*0.984)/(2*20000.00*1.00-0.2*11.047) = 1.8967 + 3.0000 = 4.8967 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 0.047 bar = (2*S*E*t)/(Kcor*D+0.2*t) per Appendix 1-4 (c) = (2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000) = 40.682 - 0.047 = 40.635 bar Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*D+0.2*t) per Appendix 1-4 (c) = (2*20000.00*1.00*10.0000)/(1.000*475.0000+0.2*10.0000) = 57.818 bar Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*D+0.2*t))/(2*E*t) = (11.047*(0.984*481.0000+0.2*7.0000))/(2*1.00*7.0000)

Page 51: 003-Heat Exchanger.docx

= 5430.857 psi Straight Flange Required Thickness:

Page 52: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 28 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 = (P*R)/(S*E-0.6*P) + c per UG-27 (c)(1) = (11.047*240.5000)/(20000.00*1.00-0.6*11.047)+3.000 = 4.936 mm Straight Flange Maximum Allowable Working Pressure: Less Operating Hydrostatic Head Pressure of 0.047 bar = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (20000.00 * 1.00 * 9.0000 )/(240.5000 + 0.6 * 9.0000 ) = 50.470 - 0.047 = 50.423 bar Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))^(2))/6 = ( 2 + ( 481.000/( 2 * 121.750 ))^(2))/6 = 0.983674 Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 10.375 % Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 10.000 , tr = 6.779 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.968 , Temp. Reduction = 2 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -31 C MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 12.000 , tr = 6.992 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.777 , Temp. Reduction = 12 C Min Metal Temp. w/o impact per UCS-66 -23 C Min Metal Temp. at Required thickness (UCS 66.1) -35 C Min Metal Temp. w/o impact per UG-20(f) -29 C Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F Hydrostatic Test Pressure Results: Exchanger Shell Side Hydrostatic Test Pressures: Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 51.220 bar Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 14.300 bar Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 66.383 bar Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 43.340 bar Pressure per PED = 1.43 * MAWP 56.342 bar Exchanger Channel Side Hydrostatic Test Pressures:

Page 53: 003-Heat Exchanger.docx

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 45.027 bar Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 42.900 bar Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 48.746 bar

Page 54: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 29 Internal Pressure Calculations : Step: 5 11:15p Sep 5,2012 Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 38.100 bar Pressure per PED = 1.43 * MAWP 49.530 bar UG-99(b) Note 34, Test Pressure Calculation [Shell Side]: = Test Factor * Design Pressure * Stress Ratio = 1.3 * 11.000 * 1.000 = 14.300 bar UG-99(b) Note 34, Test Pressure Calculation [Channel Side]: = Test Factor * Design Pressure * Stress Ratio = 1.3 * 33.000 * 1.000 = 42.900 bar Horizontal Test performed per: UG-99b (Note 34) Please note that Nozzle, Shell, Head, Flange, etc MAWPs are all considered when determining the hydrotest pressure for those test types that are based on the MAWP of the vessel. Stresses on Elements due to Hydrostatic Test Pressure: From To Stress Allowable Ratio Pressure BONNET DISH 21113.4 26000.0 0.812 42.95 BONNET SHELL 21774.2 26000.0 0.837 42.95 SHELL 7273.8 26000.0 0.280 14.35 DISHED END 7053.1 26000.0 0.271 14.35 Elements Suitable for Internal Pressure. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 55: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 30 External Pressure Calculations : Step: 6 11:15p Sep 5,2012 External Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2010, 2011a Elliptical Head From 10 to 20 Ext. Chart: CS-2 at 185 C BONNET DISH Elastic Modulus from Chart: CS-2 at 185 C : 0.199E+07 kgf/cm² Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 7.000 495.00 70.71 0.0019641 13830.52 EMAP = B/(K0*D/t) = 13830.5156/(0.9000 *70.7143 ) = 14.9834 bar Results for Required Thickness (Tca): Tca OD D/t Factor A B 1.296 495.00 381.87 0.0003637 5155.57 EMAP = B/(K0*D/t) = 5155.5737/(0.9000 *381.8722 ) = 1.0343 bar Check the requirements of UG-33(a)(1) using P = 1.67 * External Design pressure for this head. Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (1.727*481.0000*0.984)/(2*20000.00*1.00-0.2*1.727) = 0.2963 + 3.0000 = 3.2963 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000))/1.67 = 24.360 bar Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 14.98 , 24.3604 ) = 14.983 bar Thickness requirements per UG-33(a)(1) govern the required thickness of this head. Cylindrical Shell From 20 to 30 Ext. Chart: CS-2 at 185 C BONNET SHELL Elastic Modulus from Chart: CS-2 at 185 C : 0.199E+07 kgf/cm²

Page 56: 003-Heat Exchanger.docx

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B 7.000 495.00 709.58 70.71 1.4335 0.0015712 13148.97

Page 57: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 31 External Pressure Calculations : Step: 6 11:15p Sep 5,2012 EMAP = (4*B)/(3*(D/t)) = (4*13148.9697)/(3*70.7143 ) = 17.0940 bar Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B 1.860 495.00 709.58 266.07 1.4335 0.0002112 2993.39 EMAP = (4*B)/(3*(D/t)) = (4*2993.3899 )/(3*266.0696 ) = 1.0343 bar Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B 7.000 495.00 14379.52 70.71 29.0495 0.0002278 3228.88 EMAP = (4*B)/(3*(D/t)) = (4*3228.8821 )/(3*70.7143 ) = 4.1976 bar Cylindrical Shell From 50 to 60 Ext. Chart: CS-2 at 215 C SHELL Elastic Modulus from Chart: CS-2 at 215 C : 0.196E+07 kgf/cm² Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B 7.000 495.00 3085.58 70.71 6.2335 0.0003160 4394.27 EMAP = (4*B)/(3*(D/t)) = (4*4394.2705 )/(3*70.7143 ) = 5.7127 bar Results for Required Thickness (Tca): Tca OD SLEN D/t L/D Factor A B 3.510 495.00 3085.58 141.04 6.2335 0.0001141 1586.76 EMAP = (4*B)/(3*(D/t)) = (4*1586.7565 )/(3*141.0417 ) = 1.0342 bar Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B 7.000 495.00 ******** 70.71 50.0000 0.0002272 3159.39 EMAP = (4*B)/(3*(D/t)) = (4*3159.3948 )/(3*70.7143 ) = 4.1073 bar Elliptical Head From 60 to 70 Ext. Chart: CS-2 at 215 C DISHED END Elastic Modulus from Chart: CS-2 at 215 C : 0.196E+07 kgf/cm² Results for Maximum Allowable External Pressure (MAEP): Tca OD D/t Factor A B 7.000 495.00 70.71 0.0019641 12868.06 EMAP = B/(K0*D/t) = 12868.0586/(0.9000 *70.7143 ) = 13.9407 bar Results for Required Thickness (Tca): Tca OD D/t Factor A B 1.309 495.00 378.22 0.0003672 5106.24 EMAP = B/(K0*D/t) = 5106.2417/(0.9000 *378.2181 ) = 1.0343 bar Check the requirements of UG-33(a)(1) using P = 1.67 * External Design

Page 58: 003-Heat Exchanger.docx

pressure for this head. Material UNS Number: K02700

Page 59: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 32 External Pressure Calculations : Step: 6 11:15p Sep 5,2012 Required Thickness due to Internal Pressure [tr]: = (P*D*Kcor)/(2*S*E-0.2*P) Appendix 1-4(c) = (1.727*481.0000*0.984)/(2*20000.00*1.00-0.2*1.727) = 0.2963 + 3.0000 = 3.2963 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = ((2*S*E*t)/(Kcor*D+0.2*t))/1.67 per Appendix 1-4 (c) = ((2*20000.00*1.00*7.0000)/(0.984*481.0000+0.2*7.0000))/1.67 = 24.360 bar Maximum Allowable External Pressure [MAEP]: = min( MAEP, MAWP ) = min( 13.94 , 24.3604 ) = 13.941 bar Thickness requirements per UG-33(a)(1) govern the required thickness of this head. External Pressure Calculations | | Section | Outside | Corroded | Factor | Factor | From| To | Length | Diameter | Thickness | A | B | | | mm | mm | mm | | psi | --------------------------------------------------------------------------- 10| 20| No Calc | 495.000 | 7.00000 | 0.0019641 | 13830.5 | 20| 30| 709.583 | 495.000 | 7.00000 | 0.0015712 | 13149.0 | 30| 40| No Calc | ... | 77.0000 | No Calc | No Calc | 40| 50| No Calc | ... | 77.0000 | No Calc | No Calc | 50| 60| 3085.58 | 495.000 | 7.00000 | 0.00031602 | 4394.27 | 60| 70| No Calc | 495.000 | 7.00000 | 0.0019641 | 12868.1 | External Pressure Calculations | | External | External | External | External | From| To | Actual T. | Required T.|Des. Press. | M.A.W.P. | | | mm | mm | bar | bar | ---------------------------------------------------------------- 10| 20| 10.0000 | 4.50000 | 1.03421 | 14.9834 | 20| 30| 10.0000 | 4.86041 | 1.03421 | 17.0940 |

Page 60: 003-Heat Exchanger.docx

30| 40| 80.0000 | 62.0014 | 1.03421 | No Calc | 40| 50| 80.0000 | 65.7098 | 1.03421 | No Calc | 50| 60| 10.0000 | 6.50960 | 1.03421 | 5.71268 | 60| 70| 10.0000 | 4.50000 | 1.03421 | 13.9407 | Minimum 5.713 External Pressure Calculations | | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia | From| To | Bet. Stiff.| Bet. Stiff.| Required | Available | | | mm | mm | cm**4 | cm**4 | ------------------------------------------------------------------- 10| 20| No Calc | No Calc | No Calc | No Calc |

Page 61: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 33 External Pressure Calculations : Step: 6 11:15p Sep 5,2012 20| 30| 709.583 | 14379.5 | No Calc | No Calc | 30| 40| No Calc | No Calc | No Calc | No Calc | 40| 50| No Calc | No Calc | No Calc | No Calc | 50| 60| 3085.58 | 115477. | No Calc | No Calc | 60| 70| No Calc | No Calc | No Calc | No Calc | Elements Suitable for External Pressure. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 62: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 34 Element and Detail Weights : Step: 7 11:15p Sep 5,2012 Element and Detail Weights | | Element | Element | Corroded | Corroded | Extra due | From| To | Metal Wgt. | ID Volume |Metal Wgt. | ID Volume | Misc % | | | kg. | ltr | kg. | ltr | kg. | --------------------------------------------------------------------------- 10| 20| 32.0916 | 21.1208 | 24.0687 | 21.8395 | 1.60458 | 20| 30| 74.3968 | 111.659 | 52.3998 | 114.498 | 3.71984 | 30| 40| 80.3500 | ... | 80.3500 | ... | 4.01750 | 40| 50| 80.3500 | ... | 80.3500 | ... | 4.01750 | 50| 60| 354.979 | 419.347 | 250.022 | 432.892 | 17.7489 | 60| 70| 32.0916 | 21.1208 | 24.0687 | 21.8395 | 1.60458 | --------------------------------------------------------------------------- Total 654 573.25 511 591.07 32 For elements specified as shell side elements, the volume(s) shown above for those elements, reflects the displacement of the tubes. Weight of Details | | Weight of | X Offset, | Y Offset, | From|Type| Detail | Dtl. Cent. |Dtl. Cent. | Description | | kg. | mm | mm | ------------------------------------------------- 10|Liqd| 21.1075 | -39.5833 | 0.00002 | LIQUID 20|Liqd| 111.589 | 315.000 | ... | Liquid 20 20|Nozl| 48.5419 | 364.000 | 334.337 | N1 20|Nozl| 48.5419 | 325.000 | 334.337 | N2 20|Nozl| 3.10793 | 65.0000 | 245.107 | N8 30|Liqd| ... | 45.0000 | ... | Liquid 30 40|Liqd| ... | 45.0000 | ... | Liquid 40 50|Sadl| 41.0286 | 630.000 | 357.750 | Lft Sdl 50|Sadl| 41.0286 | 2090.00 | 357.750 | Sdl 2 Fr50 50|Liqd| 419.084 | 1503.00 | ... | Liquid 50 50|Nozl| 9.28453 | 190.000 | 264.488 | N3 50|Nozl| 6.51293 | 1390.00 | 258.925 | N6 50|Nozl| 6.51293 | 2140.00 | 258.925 | N9

Page 63: 003-Heat Exchanger.docx

50|Nozl| 3.10793 | 190.000 | 245.107 | N7 50|Nozl| 4.90170 | 2875.00 | 254.493 | N5 50|Nozl| 4.90170 | 2618.00 | 254.493 | N4 60|Liqd| 21.1075 | 79.5833 | 0.00002 | Liquid 60 30|FTsh| 114.016 | 117.000 | ... | TUBE SHEET 30|Tube| 269.566 | 1472.50 | ... | Total Weight of Each Detail Type Total Weight of Saddles 82.1 Total Weight of Liquid 572.9 Total Weight of Nozzles 135.4 Total Weight of Exchanger Components 383.6 --------------------------------------------------------------- Sum of the Detail Weights 1173.9 kg.

Page 64: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 35 Element and Detail Weights : Step: 7 11:15p Sep 5,2012 Weight Summation Fabricated Shop Test Shipping Erected Empty Operating ------------------------------------------------------------------------------ 687.0 1288.0 687.0 1288.0 687.0 1288.0 82.1 572.9 82.1 ... 82.1 572.9 135.4 ... 135.4 ... ... ... ... 78.8 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 135.4 ... 383.6 ... 383.6 ... ... ... ... ... ... ... 383.6 ... ------------------------------------------------------------------------------ 1288.0 1939.7 1288.0 1288.0 1288.0 1860.9 kg. Miscellaneous Weight Percent: 5.0 % Note that the above value for the miscellaneous weight percent has been applied to the shells/heads/flange/tubesheets/tubes etc. in the weight calculations for metallic components. Note: The shipping total has been modified because some items have been specified as being installed in the shop. Weight Summary Fabricated Wt. - Bare Weight W/O Removable Internals 1288.0 kg. Shop Test Wt. - Fabricated Weight + Water ( Full ) 1939.7 kg. Shipping Wt. - Fab. Wt + Rem. Intls.+ Shipping App. 1288.0 kg. Erected Wt. - Fab. Wt + Rem. Intls.+ Insul. (etc) 1288.0 kg. Ope. Wt. no Liq - Fab. Wt + Intls. + Details + Wghts. 1288.0 kg. Operating Wt. - Empty Wt + Operating Liq. Uncorroded 1860.9 kg. Oper. Wt. + CA - Corr Wt. + Operating Liquid 1710.8 kg. Field Test Wt. - Empty Weight + Water (Full) 1807.4 kg. Exchanger Tube Data Volume of Exchanger tubes : 78.9 ltr Weight of Ope Liq in tubes : 0.0 kg. Weight of Water in tubes : 78.8 kg. Note: The Corroded Weight and thickness are used in the Horizontal Vessel Analysis (Ope Case) and Earthquake Load Calculations.

Page 65: 003-Heat Exchanger.docx

Note: The Field Test weight as computed in the corroded condition. Outside Surface Areas of Elements | | Surface | From| To | Area |

Page 66: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 36 Element and Detail Weights : Step: 7 11:15p Sep 5,2012 | | mm² | ---------------------------- 10| 20| 332620. | 20| 30| 979706. | 30| 40| 286670. | 40| 50| 286670. | 50| 60| 4.675E+06 | 60| 70| 332620. | ----------------------------- Total 6892881.500 mm² PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 67: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 37 Nozzle Flange MAWP : Step: 8 11:15p Sep 5,2012 Nozzle Flange MAWP Results : Nozzle ----- Flange Rating Description Operating Ambient Temperature Class Grade|Group bar bar C ---------------------------------------------------------------------------- N1 44.2 51.1 185 300 GR 1.1 N2 44.2 51.1 185 300 GR 1.1 N8 44.2 51.1 185 300 GR 1.1 N3 43.2 51.1 215 300 GR 1.1 N6 43.2 51.1 215 300 GR 1.1 N9 43.2 51.1 215 300 GR 1.1 N7 43.2 51.1 215 300 GR 1.1 N5 43.2 51.1 215 300 GR 1.1 N4 43.2 51.1 215 300 GR 1.1 Shellside Flange Rating Lowest Flange Pressure Rating was (Ope)[ShellSide]: 43.231 bar Lowest Flange Pressure Rating was (Amb)[ShellSide]: 51.101 bar Channelside Flange Rating Lowest Flange Pressure Rating was (Ope)[TubeSide ]: 44.191 bar Lowest Flange Pressure Rating was (Amb)[TubeSide ]: 51.101 bar Note: ANSI Ratings are per ANSI/ASME B16.5 2009 Metric Edition PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 68: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 38 Wind Load Calculation : Step: 9 11:15p Sep 5,2012 Wind Load Calculations per India Std. IS-875 (Part-3) - 1987, Amd. 1&2 (2003): Actual Vessel Height to Diameter ratio 0.000 Force Coefficient per IS:875 Table 23, Cf 0.700 User Entered Basic Wind Speed 47.0 m/sec Base Elevation 0.00 m Wind Zone Number 4 Risk Factor (k1) 1.0700 Terrain Category 1 Equipment Class A Topography Factor (k3) 1.0000 Use Gust Response Factor (Dynamic Analysis) No User entered Beta Value ( Operating Case ) 0.0100 From fo` FO E S G(ope) G(emp) G(tst) ------------------------------------------------------------------ 10 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 20 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 30 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 40 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 50 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 60 824.50 4.19 0.0060 0.2421 1.0000 1.0000 1.0000 Design Wind Speed (Vz): = Basic Wind Speed * k1 * k2 * k3 Height Factor : = 0.6 * Vz² Element Wind Load : = Wind Area * Cf * Height Factor From Height k1 k2 k3 Vz Cf m m/sec ------------------------------------------------------------ 10 0.50 1.0700 1.0548 1.0000 53.04 0.7000 20 0.50 1.0700 1.0548 1.0000 53.04 0.7000 30 0.50 1.0700 1.0548 1.0000 53.04 0.7000 40 0.50 1.0700 1.0548 1.0000 53.04 0.7000 50 0.50 1.0700 1.0548 1.0000 53.04 0.7000 60 0.50 1.0700 1.0548 1.0000 53.04 0.7000 Wind Load Calculation | | Wind | Wind | Wind | Wind | Element |

Page 69: 003-Heat Exchanger.docx

From| To | Height | Diameter | Area | Pressure | Wind Load | | | mm | mm | mm² | kgf/m² | kgf | --------------------------------------------------------------------------- 10| 20| 498.000 | 594.000 | 73814.4 | 172.212 | 8.89499 | 20| 30| 498.000 | 594.000 | 374220. | 172.212 | 45.0953 | 30| 40| 498.000 | 570.000 | -51300.0 | 172.212 | -6.18190 |

Page 70: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 39 Wind Load Calculation : Step: 9 11:15p Sep 5,2012 40| 50| 498.000 | 570.000 | 51300.0 | 172.212 | 6.18190 | 50| 60| 498.000 | 594.000 | 1.786E+06 | 172.212 | 215.169 | 60| 70| 498.000 | 594.000 | 73814.4 | 172.212 | 8.89499 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 71: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 40 Earthquake Load Calculation : Step: 10 11:15p Sep 5,2012 Seismic Analysis Results per IS-1893 (1984), Seismic Coefficient Method. Soil Factor ß 1.2000 Importance Factor as Entered by User I 1.5000 Zone Number 4 Value of Alpha o per table 2 and Zone 0.0500 Horizontal Seismic Coefficient (Alpha h): = ß * I * Alpha o = 1.2000 * 1.5000 * 0.0500 = 0.0900 Earthquake Element Load, for the first Element: = Earthquake Weight * Alpha h = 213.85 * 0.0900 = 19.2 kgf Earthquake Load Calculation | | Earthquake | Earthquake | Element | From| To | Height | Weight | Ope Load | | | mm | kgf | kgf | ------------------------------------------------- 10| 20| 237.500 | 213.845 | 19.2461 | 20| 30| 237.500 | 213.845 | 19.2461 | 30| 40| 237.500 | 213.845 | 19.2461 | 40| 50| 237.500 | 213.845 | 19.2461 | 50|Sadl| 237.500 | 213.845 | 19.2461 | Sadl| 60| 237.500 | 213.845 | 19.2461 | 50| 60| 237.500 | 213.845 | 19.2461 | 60| 70| 237.500 | 213.845 | 19.2461 | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 72: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 41 Center of Gravity Calculation : Step: 11 11:15p Sep 5,2012 Shop/Field Installation Options : Note : The CG is computed from the first Element From Node Center of Gravity of Saddles 2104.000 mm Center of Gravity of Liquid 1852.531 mm Center of Gravity of Nozzles 857.598 mm Center of Gravity of Tubesheet(s) 877.000 mm Center of Gravity of Tubes 2232.500 mm Center of Gravity of Bare Shell New and Cold 1619.069 mm Center of Gravity of Bare Shell Corroded 1535.887 mm Vessel CG in the Operating Condition 1681.337 mm Vessel CG in the Fabricated (Shop/Empty) Condition 1632.603 mm Rigging Analysis Results: Total Effective Length of Vessel for this analysis 3896.00 mm Total vessel weight (No Liquid) Twt 1288.02 kgf Impact weight multiplication factor Imp 1.50 Design lifting weight, DWT = Imp * Twt 1932.04 kgf Elevation of the Tailing Lug (bottom) 1265.00 mm Elevation of the Lifting Lug (top ) 3250.00 mm Design Reaction force at the tailing lug 1574.24 kgf Design Reaction force at the lifting lug 357.79 kgf CG Distance from Tailing Lug 367.60 mm CG Distance from the Nearer Lifting Lug 367.60 mm Critical Values: Max Stress Elevation Allowables psi mm psi -----------|-----------|---------------|------------------------ Bending | 626.30 | 1451.20 | 17332.61 (UG-23) Shear | -109.72 | 850.00 | 14000.00 (0.7*S) -----------|-----------|---------------|------------------------ Forces and Moments at selected elevations (not all analysis points shown): Distance Bending Moment Bending Stress Shear Force Shear Stress mm kgf-m. psi kgf psi ------------------------------------------------------------------------------

Page 73: 003-Heat Exchanger.docx

0.00 0.0 0.0 -418.6 -39.1 40.00 29.0 22.8 -450.8 -42.1 670.00 307.9 241.8 -692.3 -64.6 760.00 369.5 290.2 -933.8 -87.2 850.00 452.8 355.6 -1175.3 -109.7 3856.00 18.7 14.7 32.2 3.0

Page 74: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 42 Center of Gravity Calculation : Step: 11 11:15p Sep 5,2012 Unity Check (Actual Stress / Allowable Stress): Maximum Unity Check is 0.0361 at elevation 1451.2001 mm - Must be <=1 Note: The rigging analysis is performed using a uniformly distributed load. --- Plot data successfully generated ...---- PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 75: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 43 Lifting Lug Calcs : Left Side Step: 12 11:15p Sep 5,2012 Lifting Lug Calculations: Lug(s) on Left End of Vessel Input Values: Lifting Lug Material SA-516 70 Lifting Lug Yield Stress Yield 38000.00 psi Total Height of Lifting Lug w 65.0000 mm Thickness of Lifting Lug t 16.0000 mm Diameter of Hole in Lifting Lug dh 30.0000 mm Radius of Semi-Circular Arc of Lifting Lug r 32.5000 mm Height of Lug from bottom to Center of Hole h 32.5000 mm Offset from Vessel OD to Center of Hole off 40.0000 mm Lug Fillet Weld Size tw 10.0000 mm Length of weld along side of Lifting Lug wl 65.0000 mm Length of Weld along Bottom of Lifting Lug wb 16.0000 mm Thickness of Collar (if any) tc 0.0000 mm Diameter of Collar (if any) dc 0.0000 mm Impact Factor Impfac 1.50 Sling Angle from Horizontal 90.0000 deg Number of Lugs in Group 1 Lifting Lug Orientation to Vessel: Perpendicular Lift Orientation : Horizontal Lift PV Elite does not compute weak axis bending forces on the lugs. It is assumed that a spreader bar is used. Computed Results: Force Along Vessel Axis Fax 0.00 kgf Force Normal to Vessel Fn 1574.24 kgf Force Tangential to Vessel Ft 0.00 kgf Converting the weld leg dimension (tw) to the weld throat dimension. Weld Group Inertia Calculations: Weld Group Inertia about the Circumferential Axis Ilc 61.832 cm**4 Weld Group Centroid distance in the Long. Direction Yll 39.570 mm Dist. of Weld Group Centroid from Lug bottom Yll_b 32.500 mm Weld Group Inertia about the Longitudinal Axis Ill 2.698 cm**4 Weld Group Centroid Distance in the Circ. Direction Ylc 8.000 mm Note: The Impact Factor is applied to the Forces acting on the Lug. Primary Shear Stress in the Welds due to Shear Loads [Ssll]: = sqrt( Fax^(2) + Ft^(2) + Fn^(2) )/(( 2 * (wl + wb) ) * tw ) = sqrt(0^(2)+0^(2)+1574^(2))/((2*(65.0+16.0))*7.0700)

Page 76: 003-Heat Exchanger.docx

= 1954.97 psi Shear Stress in the Welds due to Bending Loads [Sblf]:

Page 77: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 44 Lifting Lug Calcs : Left Side Step: 12 11:15p Sep 5,2012 = (Fn*(h-Yll_b)) *Yll/Ilc + (Fax*off *Yll/Ilc) + (Ft*off *Ylc/Ill) = (1574 *(32.500 -32.500 )) * 39.570/61.832 + (0 *0.000 * 39.570/61.832 ) + (0 *0.000 * 8.000/2.698 ) = 0.00 psi Total Shear Stress for Combined Loads [St]: = Ssll + Sblf = 1954.966 + 0.000 = 1954.97 psi Allowable Shear Stress for Combined Loads [Sta]: = 0.4 * Yield * Occfac (AISC Shear Allowable) = 0.4 * 38000 * 1.00 = 15200.00 psi Shear Stress in Lug above Hole [Shs]: = sqrt( Pl^(2) + Fax^(2) ) / Sha = sqrt( 1574^(2) + 0^(2) )/560.000 = 3998.39 psi Allowable Shear Stress in Lug above Hole [Sas]: = 0.4 * Yield * Occfac = 0.4 * 38000 * 1.00 = 15200.00 psi Pin Hole Bearing Stress [Pbs]: = sqrt( Fax^(2) + Fn^(2) ) / ( t * dh ) = sqrt( 0^(2) + 1574^(2) )/( 16.000 * 30.000 ) = 4664.79 psi Allowable Bearing Stress [Pba]: = min( 0.75 * Yield * Occfac, 0.9 * Yield ) AISC Bearing All. = min( 0.75 * 38000 * 1.00 , 34200.0 ) = 28500.00 psi Bending Stress at the Base of the Lug [Fbs]: = Ft * off/(w * t^(2)/6) + Fax * off/(w^(2) * t/6) = 0 * 40.000/(65.000 * 16.000^(2)/6) + 0 * 40.000/(65.000^(2) * 16.000/6) = 0.00 psi Tensile Stress at the Base of the Lug [Fa]: = Fn / (w * t) = 0/(65.000 * 16.000 ) = 2152.98 psi Total Combined Stress at the Base of the Lug: = Fbs + Fa = 0.0 + 2153.0

Page 78: 003-Heat Exchanger.docx

= 2152.98 psi Lug Allowable Stress for Bending and Tension:

Page 79: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 45 Lifting Lug Calcs : Left Side Step: 12 11:15p Sep 5,2012 = min( 0.66 * Yield * Occfac, 0.75 * Yield ) = min( 0.66 * 38000 * 1.00 , 28500.0 ) = 25080.00 psi Required Shackle Pin Diameter [Spd]: = sqrt[(2 * sqrt(Fn^(2) + Fax^(2))/( Pi * Sta))] = sqrt[2 * sqrt(1574^(2) + 0^(2))/( Pi * 15200 )] = 9.6840 mm WRC 107 Stress Analysis for the Lifting Lug to Shell Junction in the new and Cold Condition (no corrosion applied). Input Echo, WRC107 Item 1, Description: Lift Lug Diameter Basis for Vessel Vbasis ID Cylindrical or Spherical Vessel Cylsph Cylindrical Internal Corrosion Allowance Cas 0.0000 mm Vessel Diameter Dv 475.000 mm Vessel Thickness Tv 10.000 mm Design Temperature 37.78 C Attachment Type Type Rectangular Parameter C11 C11 36.00 mm Parameter C22 C22 85.00 mm Design Internal Pressure Dp 0.000 bar Include Pressure Thrust No External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P -1574.2 kgf Longitudinal Shear (SUS) Vl 0.0 kgf Circumferential Shear (SUS) Vc 0.0 kgf Circumferential Moment (SUS) Mc 0.0 kgf-m. Longitudinal Moment (SUS) Ml 0.0 kgf-m. Torsional Moment (SUS) Mt 0.0 kgf-m. Use Interactive Control No WRC107 Version Version March 1979 Include Pressure Stress Indices per Div. 2 No Compute Pressure Stress per WRC-368 No WRC 107 Stress Calculation for SUStained loads: Radial Load P -1574.2 kgf Circumferential Shear VC 0.0 kgf Longitudinal Shear VL 0.0 kgf Circumferential Moment MC 0.0 kgf-m. Longitudinal Moment ML 0.0 kgf-m.

Page 80: 003-Heat Exchanger.docx

Torsional Moment MT 0.0 kgf-m. Dimensionless Parameters used : Gamma = 24.25

Page 81: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 46 Lifting Lug Calcs : Left Side Step: 12 11:15p Sep 5,2012 Dimensionless Loads for Cylindrical Shells at Attachment Junction: ------------------------------------------------------------------- Curves read for 1979 Beta Figure Value Location ------------------------------------------------------------------- N(PHI) / ( P/Rm ) 0.156 4C 3.951 (A,B) N(PHI) / ( P/Rm ) 0.156 3C 3.207 (C,D) M(PHI) / ( P ) 0.104 2C1 0.108 (A,B) M(PHI) / ( P ) 0.104 1C 0.145 (C,D) N(PHI) / ( MC/(Rm**2 * Beta) ) 0.099 3A 0.600 (A,B,C,D) M(PHI) / ( MC/(Rm * Beta) ) 0.114 1A 0.098 (A,B,C,D) N(PHI) / ( ML/(Rm**2 * Beta) ) 0.132 3B 2.486 (A,B,C,D) M(PHI) / ( ML/(Rm * Beta) ) 0.122 1B 0.046 (A,B,C,D) N(x) / ( P/Rm ) 0.132 3C 3.547 (A,B) N(x) / ( P/Rm ) 0.132 4C 4.179 (C,D) M(x) / ( P ) 0.136 1C1 0.120 (A,B) M(x) / ( P ) 0.136 2C 0.082 (C,D) N(x) / ( MC/(Rm**2 * Beta) ) 0.099 4A 0.797 (A,B,C,D) M(x) / ( MC/(Rm * Beta) ) 0.146 2A 0.050 (A,B,C,D) N(x) / ( ML/(Rm**2 * Beta) ) 0.132 4B 0.717 (A,B,C,D) M(x) / ( ML/(Rm * Beta) ) 0.149 2B 0.068 (A,B,C,D) Stress Concentration Factors Kn = 1.00, Kb = 1.00 Stresses in the Vessel at the Attachment Junction ------------------------------------------------------------------------ | Stress Values at Type of | (psi ) ---------------|-------------------------------------------------------- Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------- Circ. Memb. P | 3648 3648 3648 3648 2960 2960 2960 2960 Circ. Bend. P | 14468 -14468 14468 -14468 19466 -19466 19466 -19466 Circ. Memb. MC | 0 0 0 0 0 0 0 0 Circ. Bend. MC | 0 0 0 0 0 0 0 0 Circ. Memb. ML | 0 0 0 0 0 0 0 0 Circ. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Circ. Str.| 18116 -10820 18116 -10820 22426 -16505 22426 -16505 ------------------------------------------------------------------------ Long. Memb. P | 3275 3275 3275 3275 3858 3858 3858 3858 Long. Bend. P | 16176 -16176 16176 -16176 11037 -11037 11037 -11037 Long. Memb. MC | 0 0 0 0 0 0 0 0 Long. Bend. MC | 0 0 0 0 0 0 0 0 Long. Memb. ML | 0 0 0 0 0 0 0 0 Long. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Long. Str.| 19452 -12901 19452 -12901 14896 -7178 14896 -7178

Page 82: 003-Heat Exchanger.docx

------------------------------------------------------------------------ Shear VC | 0 0 0 0 0 0 0 0 Shear VL | 0 0 0 0 0 0 0 0

Page 83: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 47 Lifting Lug Calcs : Left Side Step: 12 11:15p Sep 5,2012 Shear MT | 0 0 0 0 0 0 0 0 | Tot. Shear| 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Str. Int. | 19452 12901 19452 12901 22426 16505 22426 16505 ------------------------------------------------------------------------ WRC 107 Stress Summations: Vessel Stress Summation at Attachment Junction ------------------------------------------------------------------------ Type of | Stress Values at Stress Int. | (psi ) ---------------|-------------------------------------------------------- Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------- Circ. Pm (SUS) | 0 0 0 0 0 0 0 0 Circ. Pl (SUS) | 3648 3648 3648 3648 2960 2960 2960 2960 Circ. Q (SUS) | 14468 -14468 14468 -14468 19466 -19466 19466 -19466 ------------------------------------------------------------------------ Long. Pm (SUS) | 0 0 0 0 0 0 0 0 Long. Pl (SUS) | 3275 3275 3275 3275 3858 3858 3858 3858 Long. Q (SUS) | 16176 -16176 16176 -16176 11037 -11037 11037 -11037 ------------------------------------------------------------------------ Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 0 0 0 0 0 0 0 0 Shear Q (SUS) | 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Pm (SUS) | 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Pm+Pl (SUS) | 3648 3648 3648 3648 3858 3858 3858 3858 ------------------------------------------------------------------------ Pm+Pl+Q (Total)| 19452 12901 19452 12901 22426 16505 22426 16505 ------------------------------------------------------------------------ ------------------------------------------------------------------------ Type of | Max. S.I. S.I. Allowable | Result Stress Int. | psi | ---------------|-------------------------------------------------------- Pm (SUS) | 0 20000 | Passed Pm+Pl (SUS) | 3858 30000 | Passed Pm+Pl+Q (TOTAL)| 22426 60000 | Passed ------------------------------------------------------------------------ PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 84: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 48 Lifting Lug Calcs : Right Side Step: 13 11:15p Sep 5,2012 Lifting Lug Calculations: Lug(s) on Right End of Vessel Input Values: Lifting Lug Material SA-516 70 Lifting Lug Yield Stress Yield 38000.00 psi Total Height of Lifting Lug w 65.0000 mm Thickness of Lifting Lug t 16.0000 mm Diameter of Hole in Lifting Lug dh 30.0000 mm Radius of Semi-Circular Arc of Lifting Lug r 32.5000 mm Height of Lug from bottom to Center of Hole h 32.5000 mm Offset from Vessel OD to Center of Hole off 40.0000 mm Lug Fillet Weld Size tw 10.0000 mm Length of weld along side of Lifting Lug wl 65.0000 mm Length of Weld along Bottom of Lifting Lug wb 16.0000 mm Thickness of Collar (if any) tc 0.0000 mm Diameter of Collar (if any) dc 0.0000 mm Impact Factor Impfac 1.50 Sling Angle from Horizontal 90.0000 deg Number of Lugs in Group 1 Lifting Lug Orientation to Vessel: Perpendicular Lift Orientation : Horizontal Lift PV Elite does not compute weak axis bending forces on the lugs. It is assumed that a spreader bar is used. Computed Results: Force Along Vessel Axis Fax 0.00 kgf Force Normal to Vessel Fn 357.79 kgf Force Tangential to Vessel Ft 0.00 kgf Converting the weld leg dimension (tw) to the weld throat dimension. Weld Group Inertia Calculations: Weld Group Inertia about the Circumferential Axis Ilc 61.832 cm**4 Weld Group Centroid distance in the Long. Direction Yll 39.570 mm Dist. of Weld Group Centroid from Lug bottom Yll_b 32.500 mm Weld Group Inertia about the Longitudinal Axis Ill 2.698 cm**4 Weld Group Centroid Distance in the Circ. Direction Ylc 8.000 mm Note: The Impact Factor is applied to the Forces acting on the Lug. Primary Shear Stress in the Welds due to Shear Loads [Ssll]: = sqrt( Fax^(2) + Ft^(2) + Fn^(2) )/(( 2 * (wl + wb) ) * tw ) = sqrt(0^(2)+0^(2)+357^(2))/((2*(65.0+16.0))*7.0700)

Page 85: 003-Heat Exchanger.docx

= 444.33 psi Shear Stress in the Welds due to Bending Loads [Sblf]:

Page 86: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 49 Lifting Lug Calcs : Right Side Step: 13 11:15p Sep 5,2012 = (Fn*(h-Yll_b)) *Yll/Ilc + (Fax*off *Yll/Ilc) + (Ft*off *Ylc/Ill) = (357 *(32.500 -32.500 )) * 39.570/61.832 + (0 *0.000 * 39.570/61.832 ) + (0 *0.000 * 8.000/2.698 ) = 0.00 psi Total Shear Stress for Combined Loads [St]: = Ssll + Sblf = 444.326 + 0.000 = 444.33 psi Allowable Shear Stress for Combined Loads [Sta]: = 0.4 * Yield * Occfac (AISC Shear Allowable) = 0.4 * 38000 * 1.00 = 15200.00 psi Shear Stress in Lug above Hole [Shs]: = sqrt( Pl^(2) + Fax^(2) ) / Sha = sqrt( 357^(2) + 0^(2) )/560.000 = 908.76 psi Allowable Shear Stress in Lug above Hole [Sas]: = 0.4 * Yield * Occfac = 0.4 * 38000 * 1.00 = 15200.00 psi Pin Hole Bearing Stress [Pbs]: = sqrt( Fax^(2) + Fn^(2) ) / ( t * dh ) = sqrt( 0^(2) + 357^(2) )/( 16.000 * 30.000 ) = 1060.22 psi Allowable Bearing Stress [Pba]: = min( 0.75 * Yield * Occfac, 0.9 * Yield ) AISC Bearing All. = min( 0.75 * 38000 * 1.00 , 34200.0 ) = 28500.00 psi Bending Stress at the Base of the Lug [Fbs]: = Ft * off/(w * t^(2)/6) + Fax * off/(w^(2) * t/6) = 0 * 40.000/(65.000 * 16.000^(2)/6) + 0 * 40.000/(65.000^(2) * 16.000/6) = 0.00 psi Tensile Stress at the Base of the Lug [Fa]: = Fn / (w * t) = 0/(65.000 * 16.000 ) = 489.33 psi Total Combined Stress at the Base of the Lug: = Fbs + Fa = 0.0 + 489.3

Page 87: 003-Heat Exchanger.docx

= 489.33 psi Lug Allowable Stress for Bending and Tension:

Page 88: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 50 Lifting Lug Calcs : Right Side Step: 13 11:15p Sep 5,2012 = min( 0.66 * Yield * Occfac, 0.75 * Yield ) = min( 0.66 * 38000 * 1.00 , 28500.0 ) = 25080.00 psi Required Shackle Pin Diameter [Spd]: = sqrt[(2 * sqrt(Fn^(2) + Fax^(2))/( Pi * Sta))] = sqrt[2 * sqrt(357^(2) + 0^(2))/( Pi * 15200 )] = 4.6167 mm WRC 107 Stress Analysis for the Lifting Lug to Shell Junction in the new and Cold Condition (no corrosion applied). Input Echo, WRC107 Item 1, Description: Lift Lug Diameter Basis for Vessel Vbasis ID Cylindrical or Spherical Vessel Cylsph Cylindrical Internal Corrosion Allowance Cas 0.0000 mm Vessel Diameter Dv 475.000 mm Vessel Thickness Tv 10.000 mm Design Temperature 37.78 C Attachment Type Type Rectangular Parameter C11 C11 36.00 mm Parameter C22 C22 85.00 mm Design Internal Pressure Dp 0.000 bar Include Pressure Thrust No External Forces and Moments in WRC 107 Convention: Radial Load (SUS) P -357.8 kgf Longitudinal Shear (SUS) Vl 0.0 kgf Circumferential Shear (SUS) Vc 0.0 kgf Circumferential Moment (SUS) Mc 0.0 kgf-m. Longitudinal Moment (SUS) Ml 0.0 kgf-m. Torsional Moment (SUS) Mt 0.0 kgf-m. Use Interactive Control No WRC107 Version Version March 1979 Include Pressure Stress Indices per Div. 2 No Compute Pressure Stress per WRC-368 No WRC 107 Stress Calculation for SUStained loads: Radial Load P -357.8 kgf Circumferential Shear VC 0.0 kgf Longitudinal Shear VL 0.0 kgf Circumferential Moment MC 0.0 kgf-m. Longitudinal Moment ML 0.0 kgf-m.

Page 89: 003-Heat Exchanger.docx

Torsional Moment MT 0.0 kgf-m. Dimensionless Parameters used : Gamma = 24.25

Page 90: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 51 Lifting Lug Calcs : Right Side Step: 13 11:15p Sep 5,2012 Dimensionless Loads for Cylindrical Shells at Attachment Junction: ------------------------------------------------------------------- Curves read for 1979 Beta Figure Value Location ------------------------------------------------------------------- N(PHI) / ( P/Rm ) 0.156 4C 3.951 (A,B) N(PHI) / ( P/Rm ) 0.156 3C 3.207 (C,D) M(PHI) / ( P ) 0.104 2C1 0.108 (A,B) M(PHI) / ( P ) 0.104 1C 0.145 (C,D) N(PHI) / ( MC/(Rm**2 * Beta) ) 0.099 3A 0.600 (A,B,C,D) M(PHI) / ( MC/(Rm * Beta) ) 0.114 1A 0.098 (A,B,C,D) N(PHI) / ( ML/(Rm**2 * Beta) ) 0.132 3B 2.486 (A,B,C,D) M(PHI) / ( ML/(Rm * Beta) ) 0.122 1B 0.046 (A,B,C,D) N(x) / ( P/Rm ) 0.132 3C 3.547 (A,B) N(x) / ( P/Rm ) 0.132 4C 4.179 (C,D) M(x) / ( P ) 0.136 1C1 0.120 (A,B) M(x) / ( P ) 0.136 2C 0.082 (C,D) N(x) / ( MC/(Rm**2 * Beta) ) 0.099 4A 0.797 (A,B,C,D) M(x) / ( MC/(Rm * Beta) ) 0.146 2A 0.050 (A,B,C,D) N(x) / ( ML/(Rm**2 * Beta) ) 0.132 4B 0.717 (A,B,C,D) M(x) / ( ML/(Rm * Beta) ) 0.149 2B 0.068 (A,B,C,D) Stress Concentration Factors Kn = 1.00, Kb = 1.00 Stresses in the Vessel at the Attachment Junction ------------------------------------------------------------------------ | Stress Values at Type of | (psi ) ---------------|-------------------------------------------------------- Stress Load| Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------- Circ. Memb. P | 829 829 829 829 672 672 672 672 Circ. Bend. P | 3288 -3288 3288 -3288 4424 -4424 4424 -4424 Circ. Memb. MC | 0 0 0 0 0 0 0 0 Circ. Bend. MC | 0 0 0 0 0 0 0 0 Circ. Memb. ML | 0 0 0 0 0 0 0 0 Circ. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Circ. Str.| 4117 -2459 4117 -2459 5097 -3751 5097 -3751 ------------------------------------------------------------------------ Long. Memb. P | 744 744 744 744 877 877 877 877 Long. Bend. P | 3676 -3676 3676 -3676 2508 -2508 2508 -2508 Long. Memb. MC | 0 0 0 0 0 0 0 0 Long. Bend. MC | 0 0 0 0 0 0 0 0 Long. Memb. ML | 0 0 0 0 0 0 0 0 Long. Bend. ML | 0 0 0 0 0 0 0 0 | Tot. Long. Str.| 4421 -2932 4421 -2932 3385 -1631 3385 -1631

Page 91: 003-Heat Exchanger.docx

------------------------------------------------------------------------ Shear VC | 0 0 0 0 0 0 0 0 Shear VL | 0 0 0 0 0 0 0 0

Page 92: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 52 Lifting Lug Calcs : Right Side Step: 13 11:15p Sep 5,2012 Shear MT | 0 0 0 0 0 0 0 0 | Tot. Shear| 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Str. Int. | 4421 2932 4421 2932 5097 3751 5097 3751 ------------------------------------------------------------------------ WRC 107 Stress Summations: Vessel Stress Summation at Attachment Junction ------------------------------------------------------------------------ Type of | Stress Values at Stress Int. | (psi ) ---------------|-------------------------------------------------------- Location | Au Al Bu Bl Cu Cl Du Dl ---------------|-------------------------------------------------------- Circ. Pm (SUS) | 0 0 0 0 0 0 0 0 Circ. Pl (SUS) | 829 829 829 829 672 672 672 672 Circ. Q (SUS) | 3288 -3288 3288 -3288 4424 -4424 4424 -4424 ------------------------------------------------------------------------ Long. Pm (SUS) | 0 0 0 0 0 0 0 0 Long. Pl (SUS) | 744 744 744 744 877 877 877 877 Long. Q (SUS) | 3676 -3676 3676 -3676 2508 -2508 2508 -2508 ------------------------------------------------------------------------ Shear Pm (SUS) | 0 0 0 0 0 0 0 0 Shear Pl (SUS) | 0 0 0 0 0 0 0 0 Shear Q (SUS) | 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Pm (SUS) | 0 0 0 0 0 0 0 0 ------------------------------------------------------------------------ Pm+Pl (SUS) | 829 829 829 829 877 877 877 877 ------------------------------------------------------------------------ Pm+Pl+Q (Total)| 4421 2932 4421 2932 5097 3751 5097 3751 ------------------------------------------------------------------------ ------------------------------------------------------------------------ Type of | Max. S.I. S.I. Allowable | Result Stress Int. | psi | ---------------|-------------------------------------------------------- Pm (SUS) | 0 20000 | Passed Pm+Pl (SUS) | 877 30000 | Passed Pm+Pl+Q (TOTAL)| 5097 60000 | Passed ------------------------------------------------------------------------ PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 93: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 53 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 ASME Horizontal Vessel Analysis: Stresses for the Left Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Horizontal Vessel Stress Calculations : Operating Case Input and Calculated Values: Vessel Mean Radius Rm 244.00 mm Stiffened Vessel Length per 4.15.6 L 3046.00 mm Distance from Saddle to Vessel tangent a 630.00 mm Saddle Width b 133.00 mm Saddle Bearing Angle theta 120.00 degrees Wear Plate Width b1 200.00 mm Wear Plate Bearing Angle theta1 131.00 degrees Wear Plate Thickness tr 10.0 mm Wear Plate Allowable Stress Sr 16600.00 psi Shell Allowable Stress used in Calculation 20000.00 psi Head Allowable Stress used in Calculation 19924.13 psi Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 1705.01 kgf Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 2524.77 20000.00 psi Long. Stress at Bottom of Midspan 3048.12 20000.00 psi Long. Stress at Top of Saddles 4880.52 20000.00 psi Long. Stress at Bottom of Saddles 1625.78 20000.00 psi Tangential Shear in Shell 974.62 16000.00 psi Circ. Stress at Horn of Saddle 1021.96 25000.00 psi Circ. Compressive Stress in Shell 133.38 20000.00 psi Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 278.1/2 + 0 ) * 498.0000/422.6205 = 491.5 kgf Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 39.77 , 364.06 , 0 ) * 498.0000/1460.0001 = 124.2 kgf

Page 94: 003-Heat Exchanger.docx

Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]: = Max( Fl, Friction Force, Sum of X Forces ) * B / Ls = Max( 153.97 , 364.06 , 0 ) * 498.0000/1460.0001

Page 95: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 54 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 = 124.2 kgf Saddle Reaction Force due to Earthquake Ft [Fst]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 153/2 + 0 ) * 498.0000/422.6205 = 272.1 kgf Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 1213 + Max( 124 , 491 , 124 , 272 ) = 1705.0 kgf Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 1746.04 kgf Transverse Shear Load Saddle 139.03 kgf Longitudinal Shear Load Saddle 364.06 kgf Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1 The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011 K5 = 0.7603 K6 = 0.0529 K7 = 0.0529 K8 = 0.3405 K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0442 K7P = 0.0442 The suffix 'p' denotes the values for a wear plate if it exists. Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -1705*630.00[1-(1-630.00/3046.00+(244.000²-0.000²)/ (2*630.00*3046.00))/(1+(4*0.00)/(3*3046.00))] = -205.5 kgf-m. Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 1705*3046/4(1+2(244²-0²)/(3046²))/(1+(4*0)/ (3*3046))-4*629/3046 = 240.9 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 11.02 * 244.000/(2*7.000 ) - 240.9/(pi*244.0²*7.000 ) = 2524.77 psi Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t)

Page 96: 003-Heat Exchanger.docx

= 11.02 * 244.000/(2 * 7.000 ) + 240.9/(pi * 244.0² * 7.000 ) = 3048.12 psi

Page 97: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 55 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 11.02*244.000/(2*7.000)--205.5/(0.1066*pi*244.0²*7.000) = 4880.52 psi Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 11.02*244.000/(2*7.000)+-205.5/(0.1923*pi*244.0²*7.000) = 1625.78 psi Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 1705 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 0.00/3)) = 999.7 kgf Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t ) = 1.1707 * 999.72/( 244.0000 * 7.0000 ) = 974.62 psi Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 244.000 * 7.000 ) = 32.236 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.7603 * 1705 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) ) = -133.38 psi Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 ) = 197.47 mm Wear Plate/Shell Stress ratio (4.15.29) [eta]: = min( Sr/S, 1 ) = min( 16600.000/20000.000 , 1 ) = 0.8300 Circumferential Stress at wear plate (4.15.26) [sigma6,r]: = -K5 * Q * k / ( B1( t + eta * tr ) ) = -0.7603 * 1705 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) ) = -61.02 psi Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27) [sigma7,r]: = -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr)²) = -1705/(4(7.000 + 0.830 * 10.000 )197.472 ) - 3 * 0.053 * 1705/(2(7.000 + 0.830 * 10.000 )²) = -1021.96 psi

Page 98: 003-Heat Exchanger.docx

Free Un-Restrained Thermal Expansion between the Saddles [Exp]: = Alpha * Ls * ( Design Temperature - Ambient Temperature )

Page 99: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 56 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 = 0.128E-04 * 1460.000 * ( 215.0 - 21.1 ) = 3.637 mm Results for Vessel Ribs, Web and Base: Baseplate Length Bplen 451.2500 mm Baseplate Thickness Bpthk 25.4000 mm Baseplate Width Bpwid 200.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 2 Rib Thickness Ribtk 8.0000 mm Web Thickness Webtk 8.0000 mm Web Location Webloc Side Moment of Inertia of Saddle - Lateral Direction Y A AY Io Shell 3. 1848. 6468. 3. Wearplate 12. 2000. 24000. 30. Web 110. 1485. 163031. 2216. BasePlate 215. 5080. 1093724. 23575. Totals 341. 10413. 1287223. 25825. Value C1 = Sumof(Ay)/Sumof(A) = 124. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 9912. cm**4 Value As = Sumof(A) - Ashell = 8565. mm² K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035 Fh = K1 * Q = 0.2035 * 1705.014 = 347.0074 kgf Tension Stress, St = ( Fh/As ) = 57.6267 psi Allowed Stress, Sa = 0.6 * Yield Str = 21600.0000 psi d = B - R*Sin(theta) / theta = 269.6081 mm Bending Moment, M = Fh * d = 93.5561 kgf-m. Bending Stress, Sb = ( M * C1 / I ) = 165.9491 psi Allowed Stress, Sa = 2/3 * Yield Str = 24000.0000 psi Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength * AllStress ))½ = ( 3 * (1705 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))½ = 8.294 mm Calculation of Axial Load, Intermediate Values and Compressive Stress Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm

Page 100: 003-Heat Exchanger.docx

Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 425.8500 * 200.0000/2 = 42585.0039 mm²

Page 101: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 57 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 Axial Load [P]: = Ap * Bp = 42585.0 * 0.02 = 804.5 kgf Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000 = 3036.200 mm² Compressive Stress [Sc]: = P/Ar = 804.5/3036.2000 = 376.8853 psi Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 91.3 1166.4 106492.3 313.2 242.5 Web 4.0 1703.4 6813.6 214.5 1.8 Values 39.5 2869.8 113305.9 527.6 244.4 Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 364.1/( 2 * 451.25 ) * 425.850 * 344.75/2 = 29.611 kgf-m. KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 6.84 )²/(2 * 126.10² )) * 36000/ ( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84³)/(8*126.10³) Sca = 21308.56 psi AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 376.89/21308.56 + (29.61/5.714 )/24000.00 Check = 0.05 Input Data for Base Plate Bolting Calculations: Total Number of Bolts per BasePlate Nbolts 2 Total Number of Bolts in Tension/Baseplate Nbt 1 Bolt Material Specification SA-36 Bolt Allowable Stress Stba 16600.00 psi Bolt Corrosion Allowance Bca 0.0000 mm Distance from Bolts to Edge Edgedis 80.0100 mm Nominal Bolt Diameter Bnd 20.0000 mm Thread Series Series TEMA Metric BasePlate Allowable Stress S 16600.00 psi Area Available in a Single Bolt BltArea 217.0510 mm²

Page 102: 003-Heat Exchanger.docx

Saddle Load QO (Weight) QO 1254.6 kgf Saddle Load QL (Wind/Seismic contribution) QL 124.2 kgf Maximum Transverse Force Ft 139.0 kgf

Page 103: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 58 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 Maximum Longitudinal Force Fl 364.1 kgf Saddle Bolted to Steel Foundation No Bolt Area Calculation per Dennis R. Moss Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction) Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts) = 364.06/(16600.00 * 2.00 ) = 15.5970 mm² Bolt Area due to Transverse Load Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments = 498.00 * 139.03 + 0.00 = 69.24 kgf-m. Eccentricity (e): = Rmom / QO = 69.24/1254.57 = 55.19 mm < Bplen/6 --> No Uplift in Transverse direction Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift) Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart] = max[0.0000 , 15.5970 , 0.0000 ] = 15.5970 mm² ASME Horizontal Vessel Analysis: Stresses for the Right Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Input and Calculated Values: Vessel Mean Radius Rm 244.00 mm Stiffened Vessel Length per 4.15.6 L 3046.00 mm Distance from Saddle to Vessel tangent a 630.00 mm Saddle Width b 133.00 mm Saddle Bearing Angle theta 120.00 degrees Wear Plate Width b1 200.00 mm Wear Plate Bearing Angle theta1 131.00 degrees Wear Plate Thickness tr 10.0 mm Wear Plate Allowable Stress Sr 16600.00 psi

Page 104: 003-Heat Exchanger.docx

Inside Depth of Head h2 121.75 mm

Page 105: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 59 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 Shell Allowable Stress used in Calculation 20000.00 psi Head Allowable Stress used in Calculation 20000.00 psi Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Operating Case 906.64 kgf Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 2688.02 20000.00 psi Long. Stress at Bottom of Midspan 2884.88 20000.00 psi Long. Stress at Top of Saddles 4159.46 20000.00 psi Long. Stress at Bottom of Saddles 2025.44 20000.00 psi Tangential Shear in Shell 492.03 16000.00 psi Circ. Stress at Horn of Saddle 543.42 25000.00 psi Circ. Compressive Stress in Shell 70.92 20000.00 psi Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 278.1/2 + 0 ) * 498.0000/422.6205 = 491.5 kgf Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001 = 13.6 kgf Saddle Reaction Force due to Earthquake Fl or Friction [Fsl]: = Max( Fl, Friction Force, Sum of X Forces ) * B / Ls = Max( 153.97 , 0.00 , 0 ) * 498.0000/1460.0001 = 52.5 kgf Saddle Reaction Force due to Earthquake Ft [Fst]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 153/2 + 0 ) * 498.0000/422.6205 = 272.1 kgf Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 415 + Max( 13 , 491 , 52 , 272 ) = 906.6 kgf Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 947.67 kgf Transverse Shear Load Saddle 139.03 kgf Longitudinal Shear Load Saddle 153.97 kgf

Page 106: 003-Heat Exchanger.docx

Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1

Page 107: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 60 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011 K5 = 0.7603 K6 = 0.0529 K7 = 0.0529 K8 = 0.3405 K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0442 K7P = 0.0442 The suffix 'p' denotes the values for a wear plate if it exists. Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -906*630.00[1-(1-630.00/3046.00+(244.000²-121.750²)/ (2*630.00*3046.00))/(1+(4*121.75)/(3*3046.00))] = -134.7 kgf-m. Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 906*3046/4(1+2(244²-121²)/(3046²))/(1+(4*121)/ (3*3046))-4*629/3046 = 90.6 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 11.02 * 244.000/(2*7.000 ) - 90.6/(pi*244.0²*7.000 ) = 2688.02 psi Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t) = 11.02 * 244.000/(2 * 7.000 ) + 90.6/(pi * 244.0² * 7.000 ) = 2884.88 psi Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 11.02*244.000/(2*7.000)--134.7/(0.1066*pi*244.0²*7.000) = 4159.46 psi Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 11.02*244.000/(2*7.000)+-134.7/(0.1923*pi*244.0²*7.000) = 2025.44 psi Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 906 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 121.75/3)) = 504.7 kgf Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t )

Page 108: 003-Heat Exchanger.docx

= 1.1707 * 504.70/( 244.0000 * 7.0000 ) = 492.03 psi

Page 109: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 61 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 244.000 * 7.000 ) = 32.236 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.7603 * 906 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) ) = -70.92 psi Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 ) = 197.47 mm Wear Plate/Shell Stress ratio (4.15.29) [eta]: = min( Sr/S, 1 ) = min( 16600.000/20000.000 , 1 ) = 0.8300 Circumferential Stress at wear plate (4.15.26) [sigma6,r]: = -K5 * Q * k / ( B1( t + eta * tr ) ) = -0.7603 * 906 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) ) = -32.45 psi Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27) [sigma7,r]: = -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr)²) = -906/(4(7.000 + 0.830 * 10.000 )197.472 ) - 3 * 0.053 * 906/(2(7.000 + 0.830 * 10.000 )²) = -543.42 psi Results for Vessel Ribs, Web and Base Baseplate Length Bplen 451.2500 mm Baseplate Thickness Bpthk 25.4000 mm Baseplate Width Bpwid 200.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 2 Rib Thickness Ribtk 8.0000 mm Web Thickness Webtk 8.0000 mm Web Location Webloc Side Moment of Inertia of Saddle - Lateral Direction Y A AY Io Shell 3. 1848. 6468. 3. Wearplate 12. 2000. 24000. 30. Web 110. 1485. 163031. 2216. BasePlate 215. 5080. 1093724. 23575. Totals 341. 10413. 1287223. 25825.

Page 110: 003-Heat Exchanger.docx

Value C1 = Sumof(Ay)/Sumof(A) = 124. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 9912. cm**4 Value As = Sumof(A) - Ashell = 8565. mm²

Page 111: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 62 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035 Fh = K1 * Q = 0.2035 * 906.637 = 184.5204 kgf Tension Stress, St = ( Fh/As ) = 30.6429 psi Allowed Stress, Sa = 0.6 * Yield Str = 21600.0000 psi d = B - R*Sin(theta) / theta = 269.6081 mm Bending Moment, M = Fh * d = 49.7482 kgf-m. Bending Stress, Sb = ( M * C1 / I ) = 88.2430 psi Allowed Stress, Sa = 2/3 * Yield Str = 24000.0000 psi Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength * AllStress ))½ = ( 3 * (906 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))½ = 6.110 mm Calculation of Axial Load, Intermediate Values and Compressive Stress Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 425.8500 * 200.0000/2 = 42585.0039 mm² Axial Load [P]: = Ap * Bp = 42585.0 * 0.01 = 427.8 kgf Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000 = 3036.200 mm² Compressive Stress [Sc]: = P/Ar = 427.8/3036.2000 = 200.4078 psi Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 91.3 1166.4 106492.3 313.2 242.5 Web 4.0 1703.4 6813.6 214.5 1.8 Values 39.5 2869.8 113305.9 527.6 244.4

Page 112: 003-Heat Exchanger.docx

Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 154.0/( 2 * 451.25 ) * 425.850 * 344.75/2

Page 113: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 63 Horizontal Vessel Analysis (Ope.) : Step: 14 11:15p Sep 5,2012 = 12.523 kgf-m. KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 6.84 )²/(2 * 126.10² )) * 36000/ ( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84³)/(8*126.10³) Sca = 21308.56 psi AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 200.41/21308.56 + (12.52/5.714 )/24000.00 Check = 0.02 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 114: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 64 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 ASME Horizontal Vessel Analysis: Stresses for the Left Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Horizontal Vessel Stress Calculations : Test Case Input and Calculated Values: Vessel Mean Radius Rm 244.00 mm Stiffened Vessel Length per 4.15.6 L 3046.00 mm Distance from Saddle to Vessel tangent a 630.00 mm Saddle Width b 133.00 mm Saddle Bearing Angle theta 120.00 degrees Wear Plate Width b1 200.00 mm Wear Plate Bearing Angle theta1 131.00 degrees Wear Plate Thickness tr 10.0 mm Wear Plate Allowable Stress Sr 16600.00 psi Shell Allowable Stress used in Calculation 20000.00 psi Head Allowable Stress used in Calculation 20000.00 psi Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Test Case, no Ext. Forces 1501.83 kgf Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 3390.29 20000.00 psi Long. Stress at Bottom of Midspan 3851.27 20000.00 psi Long. Stress at Top of Saddles 5465.30 20000.00 psi Long. Stress at Bottom of Saddles 2598.43 20000.00 psi Tangential Shear in Shell 858.48 16000.00 psi Circ. Stress at Horn of Saddle 900.17 25000.00 psi Circ. Compressive Stress in Shell 117.48 20000.00 psi Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 91.8/2 + 0 ) * 498.0000/422.6205 = 162.2 kgf Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001 = 4.5 kgf

Page 115: 003-Heat Exchanger.docx

Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 1339 + Max( 4 , 162 , 0 , 0 )

Page 116: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 65 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 = 1501.8 kgf Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 1542.86 kgf Transverse Shear Load Saddle 45.88 kgf Longitudinal Shear Load Saddle 13.12 kgf Hydrostatic Test Pressure at center of Vessel: 14.324 bar Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1 The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011 K5 = 0.7603 K6 = 0.0529 K7 = 0.0529 K8 = 0.3405 K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0442 K7P = 0.0442 The suffix 'p' denotes the values for a wear plate if it exists. Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -1501*630.00[1-(1-630.00/3046.00+(244.000²-0.000²)/ (2*630.00*3046.00))/(1+(4*0.00)/(3*3046.00))] = -181.0 kgf-m. Moment per Equation 4.15.4 [M2]: = Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 1501*3046/4(1+2(244²-0²)/(3046²))/(1+(4*0)/ (3*3046))-4*629/3046 = 212.2 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 14.32 * 244.000/(2*7.000 ) - 212.2/(pi*244.0²*7.000 ) = 3390.29 psi Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t) = 14.32 * 244.000/(2 * 7.000 ) + 212.2/(pi * 244.0² * 7.000 ) = 3851.27 psi Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 14.32*244.000/(2*7.000)--181.0/(0.1066*pi*244.0²*7.000) = 5465.30 psi

Page 117: 003-Heat Exchanger.docx

Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 14.32*244.000/(2*7.000)+-181.0/(0.1923*pi*244.0²*7.000)

Page 118: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 66 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 = 2598.43 psi Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 1501 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 0.00/3)) = 880.6 kgf Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t ) = 1.1707 * 880.59/( 244.0000 * 7.0000 ) = 858.48 psi Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 244.000 * 7.000 ) = 32.236 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.7603 * 1501 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) ) = -117.48 psi Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 ) = 197.47 mm Wear Plate/Shell Stress ratio (4.15.29) [eta]: = min( Sr/S, 1 ) = min( 16600.000/20000.000 , 1 ) = 0.8300 Circumferential Stress at wear plate (4.15.26) [sigma6,r]: = -K5 * Q * k / ( B1( t + eta * tr ) ) = -0.7603 * 1501 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) ) = -53.75 psi Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27) [sigma7,r]: = -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr)²) = -1501/(4(7.000 + 0.830 * 10.000 )197.472 ) - 3 * 0.053 * 1501/(2(7.000 + 0.830 * 10.000 )²) = -900.17 psi Results for Vessel Ribs, Web and Base: Baseplate Length Bplen 451.2500 mm Baseplate Thickness Bpthk 25.4000 mm Baseplate Width Bpwid 200.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 2 Rib Thickness Ribtk 8.0000 mm Web Thickness Webtk 8.0000 mm

Page 119: 003-Heat Exchanger.docx

Web Location Webloc Side Moment of Inertia of Saddle - Lateral Direction

Page 120: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 67 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 Y A AY Io Shell 3. 1848. 6468. 3. Wearplate 12. 2000. 24000. 30. Web 110. 1485. 163031. 2216. BasePlate 215. 5080. 1093724. 23575. Totals 341. 10413. 1287223. 25825. Value C1 = Sumof(Ay)/Sumof(A) = 124. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 9912. cm**4 Value As = Sumof(A) - Ashell = 8565. mm² K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035 Fh = K1 * Q = 0.2035 * 1501.827 = 305.6545 kgf Tension Stress, St = ( Fh/As ) = 50.7593 psi Allowed Stress, Sa = 0.6 * Yield Str = 21600.0000 psi d = B - R*Sin(theta) / theta = 269.6081 mm Bending Moment, M = Fh * d = 82.4070 kgf-m. Bending Stress, Sb = ( M * C1 / I ) = 146.1729 psi Allowed Stress, Sa = 2/3 * Yield Str = 24000.0000 psi Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength * AllStress ))½ = ( 3 * (1501 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))½ = 7.797 mm Calculation of Axial Load, Intermediate Values and Compressive Stress Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 425.8500 * 200.0000/2 = 42585.0039 mm² Axial Load [P]: = Ap * Bp = 42585.0 * 0.02 = 708.6 kgf Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000 = 3036.200 mm²

Page 121: 003-Heat Exchanger.docx

Compressive Stress [Sc]: = P/Ar = 708.6/3036.2000 = 331.9718 psi

Page 122: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 68 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 91.3 1166.4 106492.3 313.2 242.5 Web 4.0 1703.4 6813.6 214.5 1.8 Values 39.5 2869.8 113305.9 527.6 244.4 Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 13.1/( 2 * 451.25 ) * 425.850 * 344.75/2 = 1.067 kgf-m. KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 6.84 )²/(2 * 126.10² )) * 36000/ ( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84³)/(8*126.10³) Sca = 21308.56 psi AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 331.97/21308.56 + (1.07/5.714 )/24000.00 Check = 0.02 Input Data for Base Plate Bolting Calculations: Total Number of Bolts per BasePlate Nbolts 2 Total Number of Bolts in Tension/Baseplate Nbt 1 Bolt Material Specification SA-36 Bolt Allowable Stress Stba 16600.00 psi Bolt Corrosion Allowance Bca 0.0000 mm Distance from Bolts to Edge Edgedis 80.0100 mm Nominal Bolt Diameter Bnd 20.0000 mm Thread Series Series TEMA Metric BasePlate Allowable Stress S 16600.00 psi Area Available in a Single Bolt BltArea 217.0510 mm² Saddle Load QO (Weight) QO 1380.7 kgf Saddle Load QL (Wind/Seismic contribution) QL 4.5 kgf Maximum Transverse Force Ft 45.9 kgf Maximum Longitudinal Force Fl 13.1 kgf Saddle Bolted to Steel Foundation No Bolt Area Calculation per Dennis R. Moss Bolt Area Requirement Due to Longitudinal Load [Bltarearl]: = 0.0 (QO > QL --> No Uplift in Longitudinal direction) Bolt Area due to Shear Load [Bltarears]: = Fl / (Stba * Nbolts)

Page 123: 003-Heat Exchanger.docx

= 13.12/(16600.00 * 2.00 ) = 0.5622 mm²

Page 124: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 69 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 Bolt Area due to Transverse Load Moment on Baseplate Due to Transverse Load [Rmom]: = B * Ft + Sum of X Moments = 498.00 * 45.88 + 0.00 = 22.85 kgf-m. Eccentricity (e): = Rmom / QO = 22.85/1380.67 = 16.55 mm < Bplen/6 --> No Uplift in Transverse direction Bolt Area due to Transverse Load [Bltareart]: = 0 (No Uplift) Required of a Single Bolt [Bltarear] = max[Bltarearl, Bltarears, Bltareart] = max[0.0000 , 0.5622 , 0.0000 ] = 0.5622 mm² ASME Horizontal Vessel Analysis: Stresses for the Right Saddle (per ASME Sec. VIII Div. 2 based on the Zick method.) Input and Calculated Values: Vessel Mean Radius Rm 244.00 mm Stiffened Vessel Length per 4.15.6 L 3046.00 mm Distance from Saddle to Vessel tangent a 630.00 mm Saddle Width b 133.00 mm Saddle Bearing Angle theta 120.00 degrees Wear Plate Width b1 200.00 mm Wear Plate Bearing Angle theta1 131.00 degrees Wear Plate Thickness tr 10.0 mm Wear Plate Allowable Stress Sr 16600.00 psi Inside Depth of Head h2 121.75 mm Shell Allowable Stress used in Calculation 20000.00 psi Head Allowable Stress used in Calculation 20000.00 psi Circumferential Efficiency in Plane of Saddle 1.00 Circumferential Efficiency at Mid-Span 1.00 Saddle Force Q, Test Case, no Ext. Forces 680.22 kgf Horizontal Vessel Analysis Results: Actual Allowable ------------------------------------------------------------------- Long. Stress at Top of Midspan 3546.93 20000.00 psi

Page 125: 003-Heat Exchanger.docx

Long. Stress at Bottom of Midspan 3694.63 20000.00 psi Long. Stress at Top of Saddles 4650.90 20000.00 psi Long. Stress at Bottom of Saddles 3049.82 20000.00 psi

Page 126: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 70 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 Tangential Shear in Shell 369.15 16000.00 psi Circ. Stress at Horn of Saddle 407.71 25000.00 psi Circ. Compressive Stress in Shell 53.21 20000.00 psi Intermediate Results: Saddle Reaction Q due to Wind or Seismic Saddle Reaction Force due to Wind Ft [Fwt]: = Ftr * ( Ft/Num of Saddles + Z Force Load ) * B / E = 3.00 * ( 91.8/2 + 0 ) * 498.0000/422.6205 = 162.2 kgf Saddle Reaction Force due to Wind Fl or Friction [Fwl]: = Max( Fl, Friction Load, Sum of X Forces) * B / Ls = Max( 39.77 , 0.00 , 0 ) * 498.0000/1460.0001 = 4.5 kgf Load Combination Results for Q + Wind or Seismic [Q]: = Saddle Load + Max( Fwl, Fwt, Fsl, Fst ) = 518 + Max( 4 , 162 , 0 , 0 ) = 680.2 kgf Summary of Loads at the base of this Saddle: Vertical Load (including saddle weight) 721.25 kgf Transverse Shear Load Saddle 45.88 kgf Longitudinal Shear Load Saddle 13.12 kgf Hydrostatic Test Pressure at center of Vessel: 14.324 bar Formulas and Substitutions for Horizontal Vessel Analysis: Note: Wear Plate is Welded to the Shell, k = 0.1 The Computed K values from Table 4.15.1: K1 = 0.1066 K2 = 1.1707 K3 = 0.8799 K4 = 0.4011 K5 = 0.7603 K6 = 0.0529 K7 = 0.0529 K8 = 0.3405 K9 = 0.2711 K10 = 0.0581 K1* = 0.1923 K6p = 0.0442 K7P = 0.0442 The suffix 'p' denotes the values for a wear plate if it exists. Note: Dimension a is greater than or equal to Rm / 2. Moment per Equation 4.15.3 [M1]: = -Q*a [1 - (1- a/L + (R²-h2²)/(2a*L))/(1+(4h2)/3L)] = -680*630.00[1-(1-630.00/3046.00+(244.000²-121.750²)/ (2*630.00*3046.00))/(1+(4*121.75)/(3*3046.00))] = -101.1 kgf-m. Moment per Equation 4.15.4 [M2]:

Page 127: 003-Heat Exchanger.docx

= Q*L/4(1+2(R²-h2²)/(L²))/(1+(4h2)/( 3L))-4a/L = 680*3046/4(1+2(244²-121²)/(3046²))/(1+(4*121)/ (3*3046))-4*629/3046

Page 128: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 71 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 = 68.0 kgf-m. Longitudinal Stress at Top of Shell (4.15.6) [Sigma1]: = P * Rm/(2t) - M2/(pi*Rm²t) = 14.32 * 244.000/(2*7.000 ) - 68.0/(pi*244.0²*7.000 ) = 3546.93 psi Longitudinal Stress at Bottom of Shell (4.15.7) [Sigma2]: = P * Rm/(2t) + M2/(pi * Rm² * t) = 14.32 * 244.000/(2 * 7.000 ) + 68.0/(pi * 244.0² * 7.000 ) = 3694.63 psi Longitudinal Stress at Top of Shell at Support (4.15.10) [Sigma*3]: = P * Rm/(2t) - M1/(K1*pi*Rm²t) = 14.32*244.000/(2*7.000)--101.1/(0.1066*pi*244.0²*7.000) = 4650.90 psi Longitudinal Stress at Bottom of Shell at Support (4.15.11) [Sigma*4]: = P * Rm/(2t) + M1/(K1* * pi * Rm² * t) = 14.32*244.000/(2*7.000)+-101.1/(0.1923*pi*244.0²*7.000) = 3049.82 psi Maximum Shear Force in the Saddle (4.15.5) [T]: = Q(L-2a)/(L+(4*h2/3)) = 680 ( 3046.00 - 2 * 630.00 )/(3046.00 + ( 4 * 121.75/3)) = 378.7 kgf Shear Stress in the shell no rings, not stiffened (4.15.14) [tau2]: = K2 * T / ( Rm * t ) = 1.1707 * 378.66/( 244.0000 * 7.0000 ) = 369.15 psi Decay Length (4.15.22) [x1,x2]: = 0.78 * sqrt( Rm * t ) = 0.78 * sqrt( 244.000 * 7.000 ) = 32.236 mm Circumferential Stress in shell, no rings (4.15.23) [sigma6]: = -K5 * Q * k / ( t * ( b + X1 + X2 ) ) = -0.7603 * 680 * 0.1/( 7.000 * ( 133.00 + 32.24 + 32.24 ) ) = -53.21 psi Effective reinforcing plate width (4.15.1) [B1]: = min( b + 1.56 * sqrt( Rm * t ), 2a ) = min( 133.00 + 1.56 * sqrt( 244.000 * 7.000 ), 2 * 630.000 ) = 197.47 mm Wear Plate/Shell Stress ratio (4.15.29) [eta]: = min( Sr/S, 1 ) = min( 16600.000/20000.000 , 1 )

Page 129: 003-Heat Exchanger.docx

= 0.8300 Circumferential Stress at wear plate (4.15.26) [sigma6,r]:

Page 130: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 72 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 = -K5 * Q * k / ( B1( t + eta * tr ) ) = -0.7603 * 680 * 0.1/( 197.472 ( 7.000 + 0.830 * 10.000 ) ) = -24.35 psi Circ. Comp. Stress at Horn of Saddle, L>=8Rm (4.15.27) [sigma7,r]: = -Q/(4(t+eta*tr)b1) - 3*K7*Q/(2(t+eta*tr)²) = -680/(4(7.000 + 0.830 * 10.000 )197.472 ) - 3 * 0.053 * 680/(2(7.000 + 0.830 * 10.000 )²) = -407.71 psi Results for Vessel Ribs, Web and Base Baseplate Length Bplen 451.2500 mm Baseplate Thickness Bpthk 25.4000 mm Baseplate Width Bpwid 200.0000 mm Number of Ribs ( inc. outside ribs ) Nribs 2 Rib Thickness Ribtk 8.0000 mm Web Thickness Webtk 8.0000 mm Web Location Webloc Side Moment of Inertia of Saddle - Lateral Direction Y A AY Io Shell 3. 1848. 6468. 3. Wearplate 12. 2000. 24000. 30. Web 110. 1485. 163031. 2216. BasePlate 215. 5080. 1093724. 23575. Totals 341. 10413. 1287223. 25825. Value C1 = Sumof(Ay)/Sumof(A) = 124. mm Value I = Sumof(Io) - C1*Sumof(Ay) = 9912. cm**4 Value As = Sumof(A) - Ashell = 8565. mm² K1 = (1+Cos(beta)-.5*Sin(beta)² )/(pi-beta+Sin(beta)*Cos(beta)) = 0.2035 Fh = K1 * Q = 0.2035 * 680.219 = 138.4394 kgf Tension Stress, St = ( Fh/As ) = 22.9903 psi Allowed Stress, Sa = 0.6 * Yield Str = 21600.0000 psi d = B - R*Sin(theta) / theta = 269.6081 mm Bending Moment, M = Fh * d = 37.3244 kgf-m. Bending Stress, Sb = ( M * C1 / I ) = 66.2057 psi Allowed Stress, Sa = 2/3 * Yield Str = 24000.0000 psi Minimum Thickness of Baseplate per Moss : = ( 3 * ( Q + Saddle_Wt ) * BasePlateWidth / ( 2 * BasePlateLength * AllStress ))½

Page 131: 003-Heat Exchanger.docx

= ( 3 * (680 + 41 ) * 200.00/( 2 * 451.250 * 24000.000 ))½ = 5.331 mm Calculation of Axial Load, Intermediate Values and Compressive Stress

Page 132: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 73 Horizontal Vessel Analysis (Test) : Step: 15 11:15p Sep 5,2012 Effective Baseplate Length [e]: = ( Bplen - Clearance ) / ( Nribs - 1) = ( 451.2500 - 25.4 )/( 2 - 1 ) = 425.8500 mm Baseplate Pressure Area [Ap]: = e * Bpwid / 2 = 425.8500 * 200.0000/2 = 42585.0039 mm² Axial Load [P]: = Ap * Bp = 42585.0 * 0.01 = 321.0 kgf Area of the Rib and Web [Ar]: = ( Bpwid - Clearance - Webtk ) * Ribtk + e/2 * Webtk = ( 200.000 - 25.4 - 8.000 ) * 8.000 + 425.8500/2 * 8.000 = 3036.200 mm² Compressive Stress [Sc]: = P/Ar = 321.0/3036.2000 = 150.3592 psi Check of Outside Ribs: Inertia of Saddle, Outer Ribs - Longitudinal Direction Y A AY Ay² Io Rib 91.3 1166.4 106492.3 313.2 242.5 Web 4.0 1703.4 6813.6 214.5 1.8 Values 39.5 2869.8 113305.9 527.6 244.4 Bending Moment [Rm]: = Fl /( 2 * Bplen ) * e * rl / 2 = 13.1/( 2 * 451.25 ) * 425.850 * 344.75/2 = 1.067 kgf-m. KL/R < Cc ( 6.8369 < 126.0992 ) per AISC E2-1 Sca = (1-(Klr)²/(2*Cc²))*Fy/(5/3+3*(Klr)/(8*Cc)-(Klr³)/(8*Cc³) Sca = ( 1-( 6.84 )²/(2 * 126.10² )) * 36000/ ( 5/3+3*(6.84 )/(8* 126.10 )-( 6.84³)/(8*126.10³) Sca = 21308.56 psi AISC Unity Check on Outside Ribs ( must be <= 1.0 ) Check = Sc/Sca + (Rm/Z)/Sba Check = 150.36/21308.56 + (1.07/5.714 )/24000.00 Check = 0.01 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 133: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 74 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N1 From : 20 Pressure for Reinforcement Calculations P 33.047 bar Temperature for Internal Pressure Temp 185 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 185 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 709.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 404.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 180.00 deg Diameter 200.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 80 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 10.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm

Page 134: 003-Heat Exchanger.docx

Pad Material SA-516 70 Pad Allowable Stress at Temperature Sp 20000.00 psi Pad Allowable Stress At Ambient Spa 20000.00 psi

Page 135: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 75 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 Diameter of Pad along vessel surface Dp 320.0000 mm Thickness of Pad te 10.0000 mm Weld leg size between Pad and Shell Wp 8.0000 mm Groove weld depth between Pad and Nozzle Wgpn 8.0000 mm Reinforcing Pad Width 50.4625 mm ASME Code Weld Type per UW-16 None Class of attached Flange 300 Grade of attached Flange GR 1.1 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: N1 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 193.675 mm. Actual Thickness Used in Calculation 12.700 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.05*240.5000)/(20000*1.00-0.6*33.05) = 5.8476 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.05*99.84)/(17100*1.00-0.6*33.05) = 2.8462 mm Required Nozzle thickness under External Pressure per UG-28 : 0.7502 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 399.3500 mm Parallel to Vessel Wall, opening length d 199.6750 mm Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Page 136: 003-Heat Exchanger.docx

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

Page 137: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 76 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 20000.0/20000.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 188.356 NA mm² Area in Shell A1 NA 1011.789 NA mm² Area in Nozzle Wall A2 NA 267.824 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 144.156 NA mm² Area in Element A5 NA 756.937 NA mm² TOTAL AREA AVAILABLE Atot NA 2180.707 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. The area available with the given pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(199.6750*1.8604*1+2*9.7000*1.8604*1*(1-0.86)) = 188.356 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 199.675 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 9.700 ( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 ) = 1011.789 mm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 17.50 ) * ( 9.70 - 0.75 ) * 0.8550 = 267.824 mm²

Page 138: 003-Heat Exchanger.docx

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

Page 139: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 77 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 = (93.7500 ) * 0.86 + (0.0000 ) * 0.86 + 64.0000² * 1.00 = 144.156 mm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 320.0000 - 219.0750 ) * 10.0000 * 1.0000 = 756.937 mm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 5.8462 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 8.8476 mm Wall Thickness tb1 = max(trb1, tr16b) = 8.8476 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 10.1600 mm Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 10.160 , max( 8.848 , 4.500 ) ] = 8.8476 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 5.8462 , 8.8476 ) = 8.8476 mm Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 11.113 , tr = 2.846 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.351 , Temp. Reduction = 75 C Min Metal Temp. w/o impact per UCS-66 -26 C Min Metal Temp. at Required thickness (UCS 66.1) -48 C Min Metal Temp. w/o impact per UG-20(f) -29 C MDMT of Nozzle Neck to Pad Weld for the Nozzle,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3)

Page 140: 003-Heat Exchanger.docx

Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Nozzle Neck to Pad Weld for Reinforcement pad,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00

Page 141: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 78 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Shell to Pad Weld at Pad OD for pad,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , tr = 5.848 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , tr = 5.848 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.835 , Temp. Reduction = 9 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C Governing MDMT of the Nozzle : -38 C Governing MDMT of the Reinforcement Pad : -38 C Governing MDMT of all the sub-joints of this Junction : -38 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -48 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 33.05/51.10 = 0.647 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 12.700 - 3.000 = 9.700 mm Effective Pressure Radius [Reff]:

Page 142: 003-Heat Exchanger.docx

= Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm Effective Length of Vessel Wall [LR]: Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

Page 143: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 79 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 = 10 * t = 10 * 7.000 = 70.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 99.837 * 9.700 ) = 31.273 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 10.000 ) = 136.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 31.273 , 257.000 , 136.000 ) = 31.273 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (199.67 + 9.700 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 3.582 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 70.000 * max( 3.582/4, 1 ) = 490.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 9.700 * 31.273 = 303.350 mm² Area Contributed by the Pad Fillet Weld [A42]: = 0.5 * Leg42^(2) = 0.5 * 8.000^(2) = 32.000 mm²

Page 144: 003-Heat Exchanger.docx

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) = 0.5 * 10.000^(2)

Page 145: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 80 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 = 50.000 mm² Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te ) = min( 50.462 * 10.000 , 70.000 * 10.000 ) = 504.625 mm² The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 ) = 490.000+1.000(303.350+0.000)+50.000+32.000+0.000+1.000(504.625) = 1379.975 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 33.047 * 99.837 ( 31.273 - 7.000 ) = 816.6 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 33.047 * 240.500 * ( 70.000 + 9.700 ) = 6459.2 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 33.047 * 240.500 * 99.837 = 8091.2 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 99.837 ( 31.273 - 7.000 ) + 240.500 ( 70.000 + 9.700 + 99.837 ) = 45602.1 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 45602.148/1379.975 - 240.500/7.000 ) = 65.2 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 65.180 , 40.136 )

Page 146: 003-Heat Exchanger.docx

= 40.136 bar Average Primary Membrane Stress [SigmaAvg]:

Page 147: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 81 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 = ( fN + fS + fY ) / AT = ( 816.627 + 6459.159 + 8091.170 )/1379.975 = 15838.668 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff = 33.047 * 240.500/7.000 = 16467.3 psi Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 15838.668 - 16467.273 , 16467.273 ) = 16467.3 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 16467.27 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 99.837 + 9.700 )/99.837 = 1.097 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 99.837 + 9.700 ) = 172.061 mm Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W ) = pi/2 * ( 99.837 + 9.700 + 50.462 ) = 251.327 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 7.071, 5.657, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(8091*1.10,1.5*17100.0(303.350+0.000),pi/4*33.0*99.84^2*1.10^2) = 3175.543 kgf Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp ) = 3175.5*7.00*20000/(7.000*20000+10.000*20000) = 1307.577 kgf Discontinuity Force [fwp]:

Page 148: 003-Heat Exchanger.docx

= fwelds * te * Sp / ( t * S + te * Sp ) = 3175.5*10.00*20000/(7.000*20000+10.000*20000) = 1867.967 kgf

Page 149: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 82 Nozzle Calcs. : N1 Nozl: 10 11:15p Sep 5,2012 Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) ) = 1307.577/( 172.061 * ( 0.6 * 7.000 + 0.49 * 0.000 ) ) = 2573.577 psi Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) ) = 1867.967/( 172.061 * ( 0.6 * 8.000 + 0.49 * 7.071 ) ) = 1868.343 psi Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) ) = 1867.967/( 251.327 * ( 0.49 * 5.657 ) ) = 3813.857 psi Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 ) = max( 2573.577 , 1868.343 , 3813.857 ) = 3813.9 must be less than or equal to 20000.0 psi Weld Size Calculations, Description: N1 Intermediate Calc. for nozzle/shell Welds Tmin 9.7000 mm Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 6.7900 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm Pad Weld 3.5000 = 0.5*TminPad 5.6560 = 0.7 * Wp mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.447 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar The Drop for this Nozzle is : 26.7684 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 286.7684 mm PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 150: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 83 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N2 From : 20 Pressure for Reinforcement Calculations P 33.000 bar Temperature for Internal Pressure Temp 185 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 185 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 709.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 365.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 0.00 deg Diameter 200.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 80 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 10.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm

Page 151: 003-Heat Exchanger.docx

Pad Material SA-516 70 Pad Allowable Stress at Temperature Sp 20000.00 psi Pad Allowable Stress At Ambient Spa 20000.00 psi

Page 152: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 84 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 Diameter of Pad along vessel surface Dp 320.0000 mm Thickness of Pad te 10.0000 mm Weld leg size between Pad and Shell Wp 8.0000 mm Groove weld depth between Pad and Nozzle Wgpn 8.0000 mm Reinforcing Pad Width 50.4625 mm ASME Code Weld Type per UW-16 None Class of attached Flange 300 Grade of attached Flange GR 1.1 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\|__| Insert Nozzle With Pad, no Inside projection Reinforcement CALCULATION, Description: N2 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 193.675 mm. Actual Thickness Used in Calculation 12.700 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.00*240.5000)/(20000*1.00-0.6*33.00) = 5.8393 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.00*99.84)/(17100*1.00-0.6*33.00) = 2.8421 mm Required Nozzle thickness under External Pressure per UG-28 : 0.7502 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 399.3500 mm Parallel to Vessel Wall, opening length d 199.6750 mm Normal to Vessel Wall (Thickness Limit), pad side Tlwp 17.5000 mm

Page 153: 003-Heat Exchanger.docx

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S )

Page 154: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 85 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 20000.0/20000.0 ) = 1.000 Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 188.356 NA mm² Area in Shell A1 NA 1011.789 NA mm² Area in Nozzle Wall A2 NA 267.824 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 144.156 NA mm² Area in Element A5 NA 756.937 NA mm² TOTAL AREA AVAILABLE Atot NA 2180.707 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. The area available with the given pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(199.6750*1.8604*1+2*9.7000*1.8604*1*(1-0.86)) = 188.356 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 199.675 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 9.700 ( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 ) = 1011.789 mm² Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 17.50 ) * ( 9.70 - 0.75 ) * 0.8550 = 267.824 mm²

Page 155: 003-Heat Exchanger.docx

Area Available in Welds [A41 + A42 + A43]: = (Wo² - Ar Lost)*Fr3+((Wi-can/0.707)² - Ar Lost)*fr2 + Wp²*fr4

Page 156: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 86 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 = (93.7500 ) * 0.86 + (0.0000 ) * 0.86 + 64.0000² * 1.00 = 144.156 mm² Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 320.0000 - 219.0750 ) * 10.0000 * 1.0000 = 756.937 mm² Note: Per user request, A5 multiplied by 0.75, see UG-37(h). UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 5.8421 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 8.8393 mm Wall Thickness tb1 = max(trb1, tr16b) = 8.8393 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 10.1600 mm Determine Nozzle Thickness candidate [tb]: = min[ tb3, max( tb1,tb2) ] = min[ 10.160 , max( 8.839 , 4.500 ) ] = 8.8393 mm Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 5.8421 , 8.8393 ) = 8.8393 mm Available Nozzle Neck Thickness = 0.875 * 12.700 = 11.113 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 11.113 , tr = 2.842 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.350 , Temp. Reduction = 75 C Min Metal Temp. w/o impact per UCS-66 -26 C Min Metal Temp. at Required thickness (UCS 66.1) -48 C Min Metal Temp. w/o impact per UG-20(f) -29 C MDMT of Nozzle Neck to Pad Weld for the Nozzle,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3)

Page 157: 003-Heat Exchanger.docx

Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Nozzle Neck to Pad Weld for Reinforcement pad,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , c = 3.0000 mm , E* = 1.00

Page 158: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 87 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C Pad governing, Conservatively assuming Pad stress = Shell stress(Div. 1 L-9.3) Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Shell to Pad Weld at Pad OD for pad,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , tr = 5.839 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 10.000 , tr = 5.839 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.834 , Temp. Reduction = 9 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -38 C Governing MDMT of the Nozzle : -38 C Governing MDMT of the Reinforcement Pad : -38 C Governing MDMT of all the sub-joints of this Junction : -38 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -48 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 33.00/51.10 = 0.646 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 12.700 - 3.000 = 9.700 mm Effective Pressure Radius [Reff]:

Page 159: 003-Heat Exchanger.docx

= Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm Effective Length of Vessel Wall [LR]: Note : Pad Thk >= 0.5T and Pad Width < 8(Shell Thk + Pad Thk)

Page 160: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 88 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 = 10 * t = 10 * 7.000 = 70.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 99.837 * 9.700 ) = 31.273 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 10.000 ) = 136.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 31.273 , 257.000 , 136.000 ) = 31.273 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (199.67 + 9.700 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 3.582 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 70.000 * max( 3.582/4, 1 ) = 490.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 9.700 * 31.273 = 303.350 mm² Area Contributed by the Pad Fillet Weld [A42]: = 0.5 * Leg42^(2) = 0.5 * 8.000^(2) = 32.000 mm²

Page 161: 003-Heat Exchanger.docx

Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) = 0.5 * 10.000^(2)

Page 162: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 89 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 = 50.000 mm² Area Contributed by the Reinforcing Pad [A5]: = min( W * te , LR * te ) = min( 50.462 * 10.000 , 70.000 * 10.000 ) = 504.625 mm² The total area contributed by A1 through A5 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43 + frp( A5 ) = 490.000+1.000(303.350+0.000)+50.000+32.000+0.000+1.000(504.625) = 1379.975 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 33.000 * 99.837 ( 31.273 - 7.000 ) = 815.5 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 33.000 * 240.500 * ( 70.000 + 9.700 ) = 6450.1 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 33.000 * 240.500 * 99.837 = 8079.8 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 99.837 ( 31.273 - 7.000 ) + 240.500 ( 70.000 + 9.700 + 99.837 ) = 45602.1 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 45602.148/1379.975 - 240.500/7.000 ) = 65.2 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 65.180 , 40.136 )

Page 163: 003-Heat Exchanger.docx

= 40.136 bar Average Primary Membrane Stress [SigmaAvg]:

Page 164: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 90 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 = ( fN + fS + fY ) / AT = ( 815.476 + 6450.058 + 8079.771 )/1379.975 = 15816.353 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff = 33.000 * 240.500/7.000 = 16444.1 psi Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 15816.353 - 16444.072 , 16444.072 ) = 16444.1 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 16444.07 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 99.837 + 9.700 )/99.837 = 1.097 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 99.837 + 9.700 ) = 172.061 mm Weld Length of Pad to Shell Weld [LtauP]: = pi/2 * ( Rn + tn + W ) = pi/2 * ( 99.837 + 9.700 + 50.462 ) = 251.327 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 7.071, 5.657, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(8079*1.10,1.5*17100.0(303.350+0.000),pi/4*33.0*99.84^2*1.10^2) = 3171.069 kgf Discontinuity Force [fws]: = fwelds * t * S/( t * S + te * Sp ) = 3171.1*7.00*20000/(7.000*20000+10.000*20000) = 1305.734 kgf Discontinuity Force [fwp]:

Page 165: 003-Heat Exchanger.docx

= fwelds * te * Sp / ( t * S + te * Sp ) = 3171.1*10.00*20000/(7.000*20000+10.000*20000) = 1865.335 kgf

Page 166: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 91 Nozzle Calcs. : N2 Nozl: 11 11:15p Sep 5,2012 Shear Stress [tau1]: = fws / ( Ltau * ( 0.6 * tw1 + 0.49 * L43T ) ) = 1305.734/( 172.061 * ( 0.6 * 7.000 + 0.49 * 0.000 ) ) = 2569.951 psi Shear Stress [tau2]: = fwp / ( Ltau * ( 0.6 * tw2 + 0.49 * L41T ) ) = 1865.335/( 172.061 * ( 0.6 * 8.000 + 0.49 * 7.071 ) ) = 1865.711 psi Shear Stress [tau3]: = fwp / ( Ltau * ( 0.49 * L42T ) ) = 1865.335/( 251.327 * ( 0.49 * 5.657 ) ) = 3808.483 psi Maximum Shear Stress in the Welds: = max( tau1, tau2, tau3 ) = max( 2569.951 , 1865.711 , 3808.483 ) = 3808.5 must be less than or equal to 20000.0 psi Weld Size Calculations, Description: N2 Intermediate Calc. for nozzle/shell Welds Tmin 9.7000 mm Intermediate Calc. for pad/shell Welds TminPad 7.0000 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 6.7900 = 0.7 * tmin. 7.0700 = 0.7 * Wo mm Pad Weld 3.5000 = 0.5*TminPad 5.6560 = 0.7 * Wp mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.400 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar The Drop for this Nozzle is : 26.7684 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 286.7684 mm PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 167: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 92 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N8 From : 20 Pressure for Reinforcement Calculations P 33.047 bar Temperature for Internal Pressure Temp 185 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 185 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 709.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 105.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 180.00 deg Diameter 25.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn XXS Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 168: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 169: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 93 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N8 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 15.215 mm. Actual Thickness Used in Calculation 9.093 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (33.05*240.5000)/(20000*1.00-0.6*33.05) = 5.8476 mm Reqd thk per App. 1 of Nozzle Wall, Trn [Int. Press] = R( exp([P/(SE)] - 1 ) per Appendix 1-2 (a)(1) = 10.607(exp([33.05/(17100.00*1.00]-1) = 0.3015 mm Required Nozzle thickness under External Pressure per UG-28 : 0.2551 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 47.4010 mm Parallel to Vessel Wall Rn+tn+t 23.7005 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 15.2330 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 170: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 171: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 94 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 21.378 NA mm² Area in Shell A1 NA 125.505 NA mm² Area in Nozzle Wall A2 NA 152.074 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 53.865 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 331.444 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(21.2146*1.8604*1+2*6.0932*1.8604*1*(1-0.86)) = 21.378 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 26.186 ( 1.00 * 7.0000 - 1.0 * 1.860 ) - 2 * 6.093 ( 1.00 * 7.0000 - 1.0 * 1.8604 ) * ( 1 - 0.855 ) = 125.505 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 15.23 ) * ( 6.09 - 0.26 ) * 0.8550 = 152.074 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = ( Wo² - Area Lost )*fr2 + ( (Wi-can/0.707)² - Area Lost)*fr2 = ( 8.0000² - 1.0000 ) * 0.8550 + ( 0.0000² -0.0000 ) * 0.8550 = 53.865 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3015 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 8.8476 mm Wall Thickness tb1 = max(trb1, tr16b) = 8.8476 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 5.9464 mm Determine Nozzle Thickness candidate [tb]:

Page 172: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 5.946 , max( 8.848 , 4.500 ) ] = 5.9464 mm

Page 173: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 95 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3015 , 5.9464 ) = 5.9464 mm Available Nozzle Neck Thickness = 0.875 * 9.093 = 7.957 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.957 , tr = 0.302 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.061 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.957 , tr = 0.302 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.061 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -48 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 33.05/51.10 = 0.647 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 9.093 - 3.000 = 6.093 mm

Page 174: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 175: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 96 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 10.607 * 6.093 ) = 13.271 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 13.271 , 257.000 , 56.000 ) = 13.271 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (21.21 + 6.093 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.467 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.467/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 6.093 * 13.271 = 80.861 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit = 0.5 * 8.000^(2) - 1.495 = 30.505 mm²

Page 176: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 177: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 97 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 = 392.000+1.000(80.861+0.000)+30.505+0.000+0.000 = 503.366 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 33.047 * 10.607 ( 13.271 - 7.000 ) = 22.4 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 33.047 * 240.500 * ( 56.000 + 6.093 ) = 5032.2 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 33.047 * 240.500 * 10.607 = 859.7 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 10.607 ( 13.271 - 7.000 ) + 240.500 ( 56.000 + 6.093 + 10.607 ) = 17551.0 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 17550.986/503.366 - 240.500/7.000 ) = 58.5 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 58.468 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 22.414 + 5032.244 + 859.652 )/503.366 = 16711.756 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 178: 003-Heat Exchanger.docx

= 33.047 * 240.500/7.000 = 16467.3 psi

Page 179: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 98 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 16711.756 - 16467.273 , 16467.273 ) = 16956.2 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 16956.24 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 10.607 + 6.093 )/10.607 = 1.574 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 10.607 + 6.093 ) = 26.233 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(859*1.57,1.5*17100.0(80.861+0.000),pi/4*33.0*10.61^2*1.57^2) = 73.816 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 73.816/(26.233 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 574.060 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N8 Intermediate Calc. for nozzle/shell Welds Tmin 6.0932 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 4.2652 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.447 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 180: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 0.5879 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 260.5879 mm

Page 181: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 99 Nozzle Calcs. : N8 Nozl: 12 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 182: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 100 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N3 From : 50 Pressure for Reinforcement Calculations P 11.000 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 1024.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 0.00 deg Diameter 65.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 183: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 184: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 101 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N3 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 53.975 mm. Actual Thickness Used in Calculation 9.525 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*240.5000)/(20000*1.00-0.6*11.00) = 1.9277 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*29.99)/(17100*1.00-0.6*11.00) = 0.2814 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3969 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 119.9500 mm Parallel to Vessel Wall, opening length d 59.9750 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 16.3125 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 185: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 186: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 102 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 108.565 NA mm² Area in Shell A1 NA 202.732 NA mm² Area in Nozzle Wall A2 NA 170.941 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 54.720 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 428.393 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(59.9750*3.5096*1+2*6.5250*3.5096*1*(1-0.86)) = 108.565 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 59.975 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 6.525 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 202.732 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 16.31 ) * ( 6.52 - 0.40 ) * 0.8550 = 170.941 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 8.0000² * 0.8550 + ( 0.0000 )² * 0.8550 = 54.720 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3969 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9277 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9277 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 7.5200 mm Determine Nozzle Thickness candidate [tb]:

Page 187: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 7.520 , max( 4.928 , 4.500 ) ] = 4.9277 mm

Page 188: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 103 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3969 , 4.9277 ) = 4.9277 mm Available Nozzle Neck Thickness = 0.875 * 9.525 = 8.334 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 8.334 , tr = 0.281 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.053 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 8.334 , tr = 0.281 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.053 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.00/51.10 = 0.215 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 9.525 - 3.000 = 6.525 mm

Page 189: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 190: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 104 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 29.988 * 6.525 ) = 17.911 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 17.911 , 257.000 , 56.000 ) = 17.911 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (59.98 + 6.525 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 1.138 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 1.138/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 6.525 * 17.911 = 116.868 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) = 0.5 * 8.000^(2) = 32.000 mm²

Page 191: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 192: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 105 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 = 392.000+1.000(116.868+0.000)+32.000+0.000+0.000 = 540.868 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.000 * 29.988 ( 17.911 - 7.000 ) = 36.7 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.000 * 240.500 * ( 56.000 + 6.525 ) = 1686.7 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.000 * 240.500 * 29.988 = 809.0 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 29.988 ( 17.911 - 7.000 ) + 240.500 ( 56.000 + 6.525 + 29.988 ) = 22576.4 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 22576.445/540.868 - 240.500/7.000 ) = 42.1 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 42.106 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 36.700 + 1686.700 + 808.955 )/540.868 = 6659.407 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 193: 003-Heat Exchanger.docx

= 11.000 * 240.500/7.000 = 5481.4 psi

Page 194: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 106 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 6659.407 - 5481.357 , 5481.357 ) = 7837.5 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 7837.46 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 29.988 + 6.525 )/29.988 = 1.218 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 29.988 + 6.525 ) = 57.354 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(808*1.22,1.5*17100.0(116.868+0.000),pi/4*11.0*29.99^2*1.22^2) = 117.447 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 117.447/(57.354 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 417.768 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N3 Intermediate Calc. for nozzle/shell Welds Tmin 6.5250 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 4.5675 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.400 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 195: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 2.8234 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 262.8234 mm

Page 196: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 107 Nozzle Calcs. : N3 Nozl: 13 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 197: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 108 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N6 From : 50 Pressure for Reinforcement Calculations P 11.000 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 2224.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 0.00 deg Diameter 50.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 198: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 199: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 109 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N6 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 42.850 mm. Actual Thickness Used in Calculation 8.738 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*240.5000)/(20000*1.00-0.6*11.00) = 1.9277 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*24.42)/(17100*1.00-0.6*11.00) = 0.2292 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3555 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 97.6996 mm Parallel to Vessel Wall, opening length d 48.8498 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 14.3440 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 200: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 201: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 110 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 88.641 NA mm² Area in Shell A1 NA 164.698 NA mm² Area in Nozzle Wall A2 NA 132.012 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 54.720 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 351.430 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(48.8498*3.5096*1+2*5.7376*3.5096*1*(1-0.86)) = 88.641 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 48.850 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 5.738 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 164.698 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 14.34 ) * ( 5.74 - 0.36 ) * 0.8550 = 132.012 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 8.0000² * 0.8550 + ( 0.0000 )² * 0.8550 = 54.720 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3555 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9277 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9277 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 6.4200 mm Determine Nozzle Thickness candidate [tb]:

Page 202: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 6.420 , max( 4.928 , 4.500 ) ] = 4.9277 mm

Page 203: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 111 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3555 , 4.9277 ) = 4.9277 mm Available Nozzle Neck Thickness = 0.875 * 8.738 = 7.645 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.00/51.10 = 0.215 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 8.738 - 3.000 = 5.738 mm

Page 204: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 205: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 112 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 24.425 * 5.738 ) = 16.234 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 16.234 , 257.000 , 56.000 ) = 16.234 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (48.85 + 5.738 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.934 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.934/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 5.738 * 16.234 = 93.143 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) = 0.5 * 8.000^(2) = 32.000 mm²

Page 206: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 207: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 113 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 = 392.000+1.000(93.143+0.000)+32.000+0.000+0.000 = 517.143 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.000 * 24.425 ( 16.234 - 7.000 ) = 25.3 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.000 * 240.500 * ( 56.000 + 5.738 ) = 1665.5 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.000 * 240.500 * 24.425 = 658.9 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 24.425 ( 16.234 - 7.000 ) + 240.500 ( 56.000 + 5.738 + 24.425 ) = 20947.6 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 20947.613/517.143 - 240.500/7.000 ) = 44.3 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 44.334 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 25.298 + 1665.459 + 658.896 )/517.143 = 6462.423 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 208: 003-Heat Exchanger.docx

= 11.000 * 240.500/7.000 = 5481.4 psi

Page 209: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 114 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 6462.423 - 5481.357 , 5481.357 ) = 7443.5 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 7443.49 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 24.425 + 5.738 )/24.425 = 1.235 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 24.425 + 5.738 ) = 47.379 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(658*1.23,1.5*17100.0(93.143+0.000),pi/4*11.0*24.42^2*1.23^2) = 80.148 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 80.148/(47.379 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 345.113 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N6 Intermediate Calc. for nozzle/shell Welds Tmin 5.7376 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 4.0163 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.400 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 210: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 1.9231 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.9231 mm

Page 211: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 115 Nozzle Calcs. : N6 Nozl: 14 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 212: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 116 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N9 From : 50 Pressure for Reinforcement Calculations P 11.000 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 2974.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 0.00 deg Diameter 50.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 213: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 214: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 117 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N9 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 42.850 mm. Actual Thickness Used in Calculation 8.738 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*240.5000)/(20000*1.00-0.6*11.00) = 1.9277 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*24.42)/(17100*1.00-0.6*11.00) = 0.2292 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3555 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 97.6996 mm Parallel to Vessel Wall, opening length d 48.8498 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 14.3440 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 215: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 216: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 118 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 88.641 NA mm² Area in Shell A1 NA 164.698 NA mm² Area in Nozzle Wall A2 NA 132.012 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 54.720 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 351.430 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(48.8498*3.5096*1+2*5.7376*3.5096*1*(1-0.86)) = 88.641 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 48.850 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 5.738 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 164.698 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 14.34 ) * ( 5.74 - 0.36 ) * 0.8550 = 132.012 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 8.0000² * 0.8550 + ( 0.0000 )² * 0.8550 = 54.720 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3555 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9277 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9277 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 6.4200 mm Determine Nozzle Thickness candidate [tb]:

Page 217: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 6.420 , max( 4.928 , 4.500 ) ] = 4.9277 mm

Page 218: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 119 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3555 , 4.9277 ) = 4.9277 mm Available Nozzle Neck Thickness = 0.875 * 8.738 = 7.645 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.645 , tr = 0.229 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.049 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.00/51.10 = 0.215 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 8.738 - 3.000 = 5.738 mm

Page 219: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 220: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 120 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 24.425 * 5.738 ) = 16.234 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 16.234 , 257.000 , 56.000 ) = 16.234 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (48.85 + 5.738 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.934 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.934/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 5.738 * 16.234 = 93.143 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) = 0.5 * 8.000^(2) = 32.000 mm²

Page 221: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 222: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 121 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 = 392.000+1.000(93.143+0.000)+32.000+0.000+0.000 = 517.143 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.000 * 24.425 ( 16.234 - 7.000 ) = 25.3 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.000 * 240.500 * ( 56.000 + 5.738 ) = 1665.5 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.000 * 240.500 * 24.425 = 658.9 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 24.425 ( 16.234 - 7.000 ) + 240.500 ( 56.000 + 5.738 + 24.425 ) = 20947.6 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 20947.613/517.143 - 240.500/7.000 ) = 44.3 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 44.334 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 25.298 + 1665.459 + 658.896 )/517.143 = 6462.423 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 223: 003-Heat Exchanger.docx

= 11.000 * 240.500/7.000 = 5481.4 psi

Page 224: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 122 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 6462.423 - 5481.357 , 5481.357 ) = 7443.5 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 7443.49 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 24.425 + 5.738 )/24.425 = 1.235 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 24.425 + 5.738 ) = 47.379 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(658*1.23,1.5*17100.0(93.143+0.000),pi/4*11.0*24.42^2*1.23^2) = 80.148 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 80.148/(47.379 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 345.113 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N9 Intermediate Calc. for nozzle/shell Welds Tmin 5.7376 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 4.0163 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.400 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 225: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 1.9231 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.9231 mm

Page 226: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 123 Nozzle Calcs. : N9 Nozl: 15 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 227: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 124 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N7 From : 50 Pressure for Reinforcement Calculations P 11.047 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 1024.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 180.00 deg Diameter 25.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn XXS Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 228: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 229: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 125 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N7 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 15.215 mm. Actual Thickness Used in Calculation 9.093 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.05*240.5000)/(20000*1.00-0.6*11.05) = 1.9359 mm Reqd thk per App. 1 of Nozzle Wall, Trn [Int. Press] = R( exp([P/(SE)] - 1 ) per Appendix 1-2 (a)(1) = 10.607(exp([11.05/(17100.00*1.00]-1) = 0.0999 mm Required Nozzle thickness under External Pressure per UG-28 : 0.2572 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 47.4010 mm Parallel to Vessel Wall Rn+tn+t 23.7005 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 15.2330 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 230: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 231: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 126 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 40.328 NA mm² Area in Shell A1 NA 85.233 NA mm² Area in Nozzle Wall A2 NA 152.020 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 53.865 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 291.118 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(21.2146*3.5096*1+2*6.0932*3.5096*1*(1-0.86)) = 40.328 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 26.186 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 6.093 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 85.233 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 15.23 ) * ( 6.09 - 0.26 ) * 0.8550 = 152.020 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = ( Wo² - Area Lost )*fr2 + ( (Wi-can/0.707)² - Area Lost)*fr2 = ( 8.0000² - 1.0000 ) * 0.8550 + ( 0.0000² -0.0000 ) * 0.8550 = 53.865 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.2572 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9359 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9359 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 5.9464 mm Determine Nozzle Thickness candidate [tb]:

Page 232: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 5.946 , max( 4.936 , 4.500 ) ] = 4.9359 mm

Page 233: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 127 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.2572 , 4.9359 ) = 4.9359 mm Available Nozzle Neck Thickness = 0.875 * 9.093 = 7.957 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.957 , tr = 0.100 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.020 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 7.957 , tr = 0.100 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.020 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.05/51.10 = 0.216 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 9.093 - 3.000 = 6.093 mm

Page 234: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 235: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 128 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 10.607 * 6.093 ) = 13.271 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 13.271 , 257.000 , 56.000 ) = 13.271 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (21.21 + 6.093 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.467 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.467/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 6.093 * 13.271 = 80.861 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit = 0.5 * 8.000^(2) - 1.495 = 30.505 mm²

Page 236: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 237: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 129 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 = 392.000+1.000(80.861+0.000)+30.505+0.000+0.000 = 503.366 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.047 * 10.607 ( 13.271 - 7.000 ) = 7.5 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.047 * 240.500 * ( 56.000 + 6.093 ) = 1682.1 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.047 * 240.500 * 10.607 = 287.4 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 10.607 ( 13.271 - 7.000 ) + 240.500 ( 56.000 + 6.093 + 10.607 ) = 17551.0 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 17550.986/503.366 - 240.500/7.000 ) = 58.5 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 58.468 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 7.493 + 1682.141 + 287.358 )/503.366 = 5586.283 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 238: 003-Heat Exchanger.docx

= 11.047 * 240.500/7.000 = 5504.6 psi

Page 239: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 130 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 5586.283 - 5504.559 , 5504.559 ) = 5668.0 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 5668.01 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 10.607 + 6.093 )/10.607 = 1.574 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 10.607 + 6.093 ) = 26.233 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(287*1.57,1.5*17100.0(80.861+0.000),pi/4*11.0*10.61^2*1.57^2) = 24.675 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 24.675/(26.233 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 191.893 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N7 Intermediate Calc. for nozzle/shell Welds Tmin 6.0932 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 4.2652 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.447 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 240: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 0.5879 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 260.5879 mm

Page 241: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 131 Nozzle Calcs. : N7 Nozl: 16 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 242: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 132 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N5 From : 50 Pressure for Reinforcement Calculations P 11.000 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 3709.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 0.00 deg Diameter 40.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 243: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 244: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 133 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N5 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 33.985 mm. Actual Thickness Used in Calculation 7.137 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*240.5000)/(20000*1.00-0.6*11.00) = 1.9277 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.00*19.99)/(17100*1.00-0.6*11.00) = 0.1876 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3156 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 79.9704 mm Parallel to Vessel Wall, opening length d 39.9852 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 10.3435 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 245: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 246: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 134 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 72.272 NA mm² Area in Shell A1 NA 135.376 NA mm² Area in Nozzle Wall A2 NA 67.598 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 54.720 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 257.694 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(39.9852*3.5096*1+2*4.1374*3.5096*1*(1-0.86)) = 72.272 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 39.985 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 4.137 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 135.376 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 10.34 ) * ( 4.14 - 0.32 ) * 0.8550 = 67.598 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 8.0000² * 0.8550 + ( 0.0000 )² * 0.8550 = 54.720 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3156 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9277 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9277 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 6.2200 mm Determine Nozzle Thickness candidate [tb]:

Page 247: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 6.220 , max( 4.928 , 4.500 ) ] = 4.9277 mm

Page 248: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 135 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3156 , 4.9277 ) = 4.9277 mm Available Nozzle Neck Thickness = 0.875 * 7.137 = 6.245 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.00/51.10 = 0.215 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 7.137 - 3.000 = 4.137 mm

Page 249: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 250: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 136 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 19.993 * 4.137 ) = 14.094 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 14.094 , 257.000 , 56.000 ) = 14.094 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (39.99 + 4.137 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.755 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.755/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 4.137 * 14.094 = 58.313 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit = 0.5 * 8.000^(2) - 0.410 = 31.590 mm²

Page 251: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 252: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 137 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 = 392.000+1.000(58.313+0.000)+31.590+0.000+0.000 = 481.902 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.000 * 19.993 ( 14.094 - 7.000 ) = 15.9 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.000 * 240.500 * ( 56.000 + 4.137 ) = 1622.3 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.000 * 240.500 * 19.993 = 539.3 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 19.993 ( 14.094 - 7.000 ) + 240.500 ( 56.000 + 4.137 + 19.993 ) = 19413.1 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 19413.094/481.902 - 240.500/7.000 ) = 44.8 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 44.760 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 15.909 + 1622.291 + 539.328 )/481.902 = 6426.979 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 253: 003-Heat Exchanger.docx

= 11.000 * 240.500/7.000 = 5481.4 psi

Page 254: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 138 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 6426.979 - 5481.357 , 5481.357 ) = 7372.6 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 7372.60 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 19.993 + 4.137 )/19.993 = 1.207 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 19.993 + 4.137 ) = 37.903 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(539*1.21,1.5*17100.0(58.313+0.000),pi/4*11.0*19.99^2*1.21^2) = 51.295 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 51.295/(37.903 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 276.090 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N5 Intermediate Calc. for nozzle/shell Welds Tmin 4.1374 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 2.8962 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.400 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 255: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 1.2290 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.2290 mm

Page 256: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 139 Nozzle Calcs. : N5 Nozl: 17 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 257: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 140 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 INPUT VALUES, Nozzle Description: N4 From : 50 Pressure for Reinforcement Calculations P 11.047 bar Temperature for Internal Pressure Temp 215 C Design External Pressure Pext 1.03 bar Temperature for External Pressure Tempex 215 C Shell Material SA-516 70 Shell Allowable Stress at Temperature S 20000.00 psi Shell Allowable Stress At Ambient Sa 20000.00 psi Inside Diameter of Cylindrical Shell D 475.00 mm Design Length of Section L 3085.5833 mm Shell Finished (Minimum) Thickness t 10.0000 mm Shell Internal Corrosion Allowance c 3.0000 mm Shell External Corrosion Allowance co 0.0000 mm Distance from Bottom/Left Tangent 3452.0000 mm User Entered Minimum Design Metal Temperature 0.00 C Type of Element Connected to the Shell : Nozzle Material SA-106 B Material UNS Number K03006 Material Specification/Type Smls. pipe Allowable Stress at Temperature Sn 17100.00 psi Allowable Stress At Ambient Sna 17100.00 psi Diameter Basis (for tr calc only) ID Layout Angle 180.00 deg Diameter 40.0000 mm. Size and Thickness Basis Nominal Nominal Thickness tn 160 Flange Material SA-105 Flange Type Slip on Corrosion Allowance can 3.0000 mm Joint Efficiency of Shell Seam at Nozzle E1 1.00 Joint Efficiency of Nozzle Neck En 1.00 Outside Projection ho 250.0000 mm Weld leg size between Nozzle and Pad/Shell Wo 8.0000 mm Groove weld depth between Nozzle and Vessel Wgnv 8.0000 mm Inside Projection h 0.0000 mm Weld leg size, Inside Element to Shell Wi 0.0000 mm ASME Code Weld Type per UW-16 C

Page 258: 003-Heat Exchanger.docx

Class of attached Flange 300 Grade of attached Flange GR 1.1

Page 259: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 141 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 The Pressure Design option was Design Pressure + static head. Nozzle Sketch (may not represent actual weld type/configuration) | | | | | | | | ____________/| | | \ | | | \ | | |____________\|__| Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N4 ASME Code, Section VIII, Division 1, 2010, 2011a, UG-37 to UG-45 Actual Inside Diameter Used in Calculation 33.985 mm. Actual Thickness Used in Calculation 7.137 mm Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.05*240.5000)/(20000*1.00-0.6*11.05) = 1.9359 mm Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (11.05*19.99)/(17100*1.00-0.6*11.05) = 0.1884 mm Required Nozzle thickness under External Pressure per UG-28 : 0.3156 mm UG-40, Limits of Reinforcement : [External Pressure] Parallel to Vessel Wall (Diameter Limit) Dl 79.9704 mm Parallel to Vessel Wall, opening length d 39.9852 mm Normal to Vessel Wall (Thickness Limit), no pad Tlnp 10.3435 mm Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 ) = 0.855 Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0/20000.0 )

Page 260: 003-Heat Exchanger.docx

= 0.855 Weld Strength Reduction Factor [fr3]:

Page 261: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 142 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855 Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Design External Mapnc Area Required Ar NA 72.272 NA mm² Area in Shell A1 NA 135.376 NA mm² Area in Nozzle Wall A2 NA 67.598 NA mm² Area in Inward Nozzle A3 NA 0.000 NA mm² Area in Welds A41+A42+A43 NA 54.720 NA mm² Area in Element A5 NA 0.000 NA mm² TOTAL AREA AVAILABLE Atot NA 257.694 NA mm² Nozzle Angle Used in Area Calculations 90.00 Degs. The area available without a pad is Sufficient. Area Required [A]: = 0.5( d * tr*F + 2 * tn * tr*F * (1-fr1) ) per UG-37(d) or UG-39 = 0.5(39.9852*3.5096*1+2*4.1374*3.5096*1*(1-0.86)) = 72.272 mm² Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 39.985 ( 1.00 * 7.0000 - 1.0 * 3.510 ) - 2 * 4.137 ( 1.00 * 7.0000 - 1.0 * 3.5096 ) * ( 1 - 0.855 ) = 135.376 mm² Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 10.34 ) * ( 4.14 - 0.32 ) * 0.8550 = 67.598 mm² Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 8.0000² * 0.8550 + ( 0.0000 )² * 0.8550 = 54.720 mm² UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Thickness for Internal/External pressures ta = 3.3156 mm Wall Thickness per UG16(b), tr16b = 4.5000 mm Wall Thickness, shell/head, internal pressure trb1 = 4.9359 mm Wall Thickness tb1 = max(trb1, tr16b) = 4.9359 mm Wall Thickness tb2 = max(trb2, tr16b) = 4.5000 mm Wall Thickness per table UG-45 tb3 = 6.2200 mm Determine Nozzle Thickness candidate [tb]:

Page 262: 003-Heat Exchanger.docx

= min[ tb3, max( tb1,tb2) ] = min[ 6.220 , max( 4.936 , 4.500 ) ] = 4.9359 mm

Page 263: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 143 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 Minimum Wall Thickness of Nozzle Necks [tUG-45]: = max( ta, tb ) = max( 3.3156 , 4.9359 ) = 4.9359 mm Available Nozzle Neck Thickness = 0.875 * 7.137 = 6.245 mm --> OK Nozzle Junction Minimum Design Metal Temperature (MDMT) Calculations: MDMT of the Nozzle Neck to Flange Weld,

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C MDMT of Nozzle-Shell/Head Weld for the Nozzle (UCS-66(a)1(b)),

Curve: B ---------------------------------------------------------------------- Govrn. thk, tg = 6.245 , tr = 0.188 , c = 3.0000 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.058 , Temp. Reduction = 78 C Min Metal Temp. w/o impact per UCS-66 -29 C Min Metal Temp. at Required thickness (UCS 66.1) -104 C Governing MDMT of all the sub-joints of this Junction : -104 C ANSI Flange MDMT including Temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) -29 C Flange MDMT with Temp reduction per UCS-66(b)(1)(b) -104 C Flange MDMT with Temp reduction per UCS-66(b)(1)(c) -104 C Where the Stress Reduction Ratio per UCS-66(b)(1)(b) is : Design Pressure/Ambient Rating = 11.05/51.10 = 0.216 Note: Using the minimum value from (b)(1)(b) and (b)(1)(c) above as the calculated nozzle flange MDMT. Nozzle Calculations per App. 1-10: Internal Pressure Case: Thickness of Nozzle [tn]: = thickness - corrosion allowance = 7.137 - 3.000 = 4.137 mm

Page 264: 003-Heat Exchanger.docx

Effective Pressure Radius [Reff]: = Di/2 + corrosion allowance = 475.000/2 + 3.000 = 240.500 mm

Page 265: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 144 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 Effective Length of Vessel Wall [LR]: = 8 * t = 8 * 7.000 = 56.000 mm Thickness Limit Candidate [LH1]: = t + 0.78 * sqrt( Rn * tn ) = 7.000 + 0.78 * sqrt( 19.993 * 4.137 ) = 14.094 mm Thickness Limit Candidate [LH2]: = Lpr1 + T = 250.000 + 7.000 = 257.000 mm Thickness Limit Candidate [LH3]: = 8( t + te ) = 8( 7.000 + 0.000 ) = 56.000 mm Effective Nozzle Wall Length Outside the Vessel [LH]: = min[ LH1, LH2, LH3 ] = min[ 14.094 , 257.000 , 56.000 ) = 14.094 mm Effective Vessel Thickness [teff]: = t = 7.000 mm Determine Parameter [Lamda]: = min( 10, ( Dn + Tn )/( sqrt( ( Di + teff ) * teff )) ) = min( 10, (39.99 + 4.137 )/( sqrt((481.00 + 7.000 ) * 7.000 )) ) = 0.755 Compute Areas A1-A43 (No Pad) or A1-A5 (With Pad) : Area Contributed by the Vessel Wall [A1]: = t * LR * max( Lamda/4, 1 ) = 7.000 * 56.000 * max( 0.755/4, 1 ) = 392.000 mm² Area Contributed by the Nozzle Outside the Vessel Wall [A2]: = tn * LH = 4.137 * 14.094 = 58.313 mm² Area Contributed by the Outside Fillet Weld [A41]: = 0.5 * Leg41^(2) - Area cut by thickness limit = 0.5 * 8.000^(2) - 0.410 = 31.590 mm²

Page 266: 003-Heat Exchanger.docx

The total area contributed by A1 through A43 [AT]: = A1 + frn( A2 + A3 ) + A41 + A42 + A43

Page 267: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 145 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 = 392.000+1.000(58.313+0.000)+31.590+0.000+0.000 = 481.902 mm² Allowable Local Primary Membrane Stress [Sallow]: = 1.5 * S * E = 1.5 * 20000.000 * 1.000 = 30000.0 psi Determine Force acting on the Nozzle [fN]: = P * Rn( LH - t ) = 11.047 * 19.993 ( 14.094 - 7.000 ) = 16.0 kgf Determine Force acting on the Shell [fS]: = P * Reff * ( LR + tn ) = 11.047 * 240.500 * ( 56.000 + 4.137 ) = 1629.2 kgf Discontinuity Force from Internal Pressure [fY]: = P * Reff * Rnc = 11.047 * 240.500 * 19.993 = 541.6 kgf Area Resisting Internal Pressure [Ap]: = Rn( LH - t ) + Reff( LR + tn + Rnc ) = 19.993 ( 14.094 - 7.000 ) + 240.500 ( 56.000 + 4.137 + 19.993 ) = 19413.1 mm² Maximum Allowable Working Pressure Candidate [Pmax1]: = Sallow /( 2 * Ap/AT - Rxs/teff ) = 30000.000/( 2 * 19413.094/481.902 - 240.500/7.000 ) = 44.8 bar Maximum Allowable Working Pressure Candidate [Pmax2]: = S[t/Reff] = 20000.000 [7.000/240.500 ] = 40.1 bar Maximum Allowable Working Pressure [Pmax]: = min( Pmax1, Pmax2 ) = min( 44.760 , 40.136 ) = 40.136 bar Average Primary Membrane Stress [SigmaAvg]: = ( fN + fS + fY ) / AT = ( 15.976 + 1629.158 + 541.611 )/481.902 = 6454.183 psi General Primary Membrane Stress [SigmaCirc]: = P * Reff / teff

Page 268: 003-Heat Exchanger.docx

= 11.047 * 240.500/7.000 = 5504.6 psi

Page 269: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 146 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 Maximum Local Primary Membrane Stress [PL]: = max( 2 * SigmaAvg - SigmaCirc, SigmaCirc ) = max( 2 * 6454.183 - 5504.559 , 5504.559 ) = 7403.8 psi Summary of Nozzle Pressure/Stress Results: Allowed Local Primary Membrane Stress Sallow 30000.00 psi Local Primary Membrane Stress PL 7403.81 psi Maximum Allowable Working Pressure Pmax 40.14 bar Strength of Nozzle Attachment Welds per 1-10 and U-2(g) Discontinuity Force Factor [ky]: = ( Rnc + tn ) / Rnc = ( 19.993 + 4.137 )/19.993 = 1.207 For set-in Nozzles Weld Length of Nozzle to Shell Weld [Ltau]: = pi/2 * ( Rn + tn ) = pi/2 * ( 19.993 + 4.137 ) = 37.903 mm Weld Throat Dimensions, (0.7071*Leg Dimensions) [L41T, L42T, L43T]: = 5.657, 0.000, 0.000, mm Weld Load Value [fwelds]: = min( fy * ky, 1.5 * Sn( A2 + A3 ), pi/4*P*Rn^2*ky^2 ) = min(541*1.21,1.5*17100.0(58.313+0.000),pi/4*11.0*19.99^2*1.21^2) = 51.512 kgf Weld Stress Value [tau]: = fwelds/(Ltau(0.49*L41T + 0.6*tw1 + 0.49*L43T ) ) = 51.512/(37.903 (0.49*5.657 + 0.6*7.000 + 0.49*0.000 ) ) = 277.259 < or = to 20000.000 Weld Size is OK Weld Size Calculations, Description: N4 Intermediate Calc. for nozzle/shell Welds Tmin 4.1374 mm Results Per UW-16.1: Required Thickness Actual Thickness Nozzle Weld 2.8962 = 0.7 * tmin. 5.6560 = 0.7 * Wo mm Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case 39.447 bar Note: The MAWP of this junction was limited by the parent Shell/Head. Nozzle is O.K. for the External Pressure 1.034 bar

Page 270: 003-Heat Exchanger.docx

The Drop for this Nozzle is : 1.2290 mm The Cut Length for this Nozzle is, Drop + Ho + H + T : 261.2290 mm

Page 271: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 147 Nozzle Calcs. : N4 Nozl: 18 11:15p Sep 5,2012 PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 272: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 148 Nozzle Schedule : Step: 25 11:15p Sep 5,2012 Nozzle Schedule: Nominal Flange Noz. Wall Re-Pad Cut Description Size Sch/Type O/Dia Thk ODia Thick Length mm Cls mm mm mm mm mm ------------------------------------------------------------------------------ N8 25 XXS SlipOn 33.401 9.093 - - 260 N7 25 XXS SlipOn 33.401 9.093 - - 260 N5 40 160 SlipOn 48.260 7.137 - - 261 N4 40 160 SlipOn 48.260 7.137 - - 261 N6 50 160 SlipOn 60.325 8.738 - - 261 N9 50 160 SlipOn 60.325 8.738 - - 261 N3 65 160 SlipOn 73.025 9.525 - - 262 N1 200 80 SlipOn219.075 12.700 320.00 10.00 286 N2 200 80 SlipOn219.075 12.700 320.00 10.00 286 General Notes for the above table: The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Thickness. This value does not include weld gaps, nor does it account for shrinkage. In the case of Oblique Nozzles, the Outside Diameter must be increased. The Re-Pad WIDTH around the nozzle is calculated as follows: Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2 For hub nozzles, the thickness and diameter shown are those of the smaller and thinner section. Nozzle Material and Weld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Nozzle Material Weld Weld Weld Weld Weld

Page 273: 003-Heat Exchanger.docx

mm mm mm mm mm ------------------------------------------------------------------------------ N8 SA-106 B 8.000 8.000 - - - N7 SA-106 B 8.000 8.000 - - - N5 SA-106 B 8.000 8.000 - - - N4 SA-106 B 8.000 8.000 - - - N6 SA-106 B 8.000 8.000 - - - N9 SA-106 B 8.000 8.000 - - - N3 SA-106 B 8.000 8.000 - - - N1 SA-106 B 8.000 10.000 8.000 8.000 - N2 SA-106 B 8.000 10.000 8.000 8.000 - Note: The Outside projections below do not include the flange thickness. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In Nozzle From Datum Angle Outside Inside Component mm deg. mm mm ----------------------------------------------------------------------------

Page 274: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 149 Nozzle Schedule : Step: 25 11:15p Sep 5,2012 N8 105.000 180.00 250.00 0.00 BONNET SHELL N7 934.000 180.00 250.00 0.00 SHELL N5 3619.000 0.00 250.00 0.00 SHELL N4 3362.000 180.00 250.00 0.00 SHELL N6 2134.000 0.00 250.00 0.00 SHELL N9 2884.000 0.00 250.00 0.00 SHELL N3 934.000 0.00 250.00 0.00 SHELL N1 404.000 180.00 250.00 0.00 BONNET SHELL N2 365.000 0.00 250.00 0.00 BONNET SHELL Weld Sizes for Slip On Nozzle Flanges per UW-21: Nozzle to Flange Fillet Weld Leg dimension [xmin]: = min( 0.7 * Hub Thickness, Nozzle Thickness-Corrosion )/0.7 for Socket Welds = min( 1.4 * tmin, Hub Thickness ) / 0.7 for Slip on Flanges. The Nozzle Wall thicknesses shown below are in the corroded condition. Hubs are considered to be straight. Nominal Flange Noz. Wall Hub Throat xmin Description Size Sch/Type O/Dia Thk -------- Thickness mm Cls mm mm mm mm mm ------------------------------------------------------------------------------ N8 25 XXS SlipOn 33.4 6.09 9.7 6.0 8.5 N7 25 XXS SlipOn 33.4 6.09 9.7 6.0 8.5 N5 40 160 SlipOn 48.3 4.14 10.2 4.1 5.8 N4 40 160 SlipOn 48.3 4.14 10.2 4.1 5.8 N6 50 160 SlipOn 60.3 5.74 11.0 5.6 8.0 N9 50 160 SlipOn 60.3 5.74 11.0 5.6 8.0 Warning - Could not determine small end hub thickness ... N1 200 80 SlipOn 219.1 9.70 19.4 9.5 13.6 N2 200 80 SlipOn 219.1 9.70 19.4 9.5 13.6

Page 275: 003-Heat Exchanger.docx

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 276: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 150 Nozzle Summary : Step: 26 11:15p Sep 5,2012 Nozzle Calculation Summary: Description MAWP Ext MAPNC UG45 [tr] Weld Areas or bar bar Path Stresses --------------------------------------------------------------------------- N1 39.40 OK 0.00 OK 8.85 OK Passed N2 39.40 OK 0.00 OK 8.84 OK Passed N8 39.40 OK 0.00 OK 5.95 OK Passed N3 39.40 OK 0.00 OK 4.93 OK Passed N6 39.40 OK 0.00 OK 4.93 OK Passed N9 39.40 OK 0.00 OK 4.93 OK Passed N7 39.40 OK 0.00 OK 4.94 OK Passed N5 39.40 OK 0.00 OK 4.93 OK Passed N4 39.40 OK 0.00 OK 4.94 OK Passed --------------------------------------------------------------------------- Min. - Nozzles 39.40 N4 0.00 N4 Note: MAWPs (Internal Case) shown above are at the High Point. Check the Spatial Relationship between the Nozzles From Node Nozzle Description X Coordinate, Layout Angle, Dia. Limit 20 N1 404.000 180.000 399.350 20 N2 365.000 0.000 399.350 20 N8 105.000 180.000 145.401 50 N3 1024.000 0.000 185.025 50 N6 2224.000 0.000 172.325 50 N9 2974.000 0.000 172.325 50 N7 1024.000 180.000 145.401 50 N5 3709.000 0.000 160.260 50 N4 3452.000 180.000 160.260 The nozzle spacing is computed by the following: = Sqrt( ll² + lc² ) where ll - Arc length along the inside vessel surface in the long. direction. lc - Arc length along the inside vessel surface in the circ. direction If any interferences/violations are found, they will be noted below. No interference violations have been detected ! PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 277: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 151 MDMT Summary : Step: 27 11:15p Sep 5,2012 Minimum Design Metal Temperature Results Summary : Curve Basic Reduced UG-20(f) Thickness Gov E* Description MDMT MDMT MDMT ratio Thk Notes C C C mm ---------------------------------------------------------------------------- BONNET DISH [10] B -29 -33 -29 0.920 10.000 1.000 BONNET DISH [7] B -23 -38 -29 0.738 12.000 1.000 BONNET SHELL [8] B -29 -32 -29 0.949 10.000 1.000 SHELL [8] B -29 -29 -29 0.999 10.000 1.000 DISHED END [10] B -29 -31 -29 0.968 10.000 1.000 DISHED END [7] B -23 -35 -29 0.777 12.000 1.000 N1 [1] B -29 -38 -29 0.835 10.000 1.000 Nozzle Flg [4] -29 -48 0.351 N2 [1] B -29 -38 -29 0.834 10.000 1.000 Nozzle Flg [4] -29 -48 0.350 N8 [1] B -29 -104 0.061 7.957 1.000 Nozzle Flg [4] -29 -104 0.061 N3 [1] B -29 -104 0.053 8.334 1.000 Nozzle Flg [4] -29 -104 0.053 N6 [1] B -29 -104 0.049 7.645 1.000 Nozzle Flg [4] -29 -104 0.049 N9 [1] B -29 -104 0.049 7.645 1.000 Nozzle Flg [4] -29 -104 0.049 N7 [1] B -29 -104 0.020 7.957 1.000 Nozzle Flg [4] -29 -104 0.020 N5 [1] B -29 -104 0.058 6.245 1.000 Nozzle Flg [4] -29 -104 0.058 N4 [1] B -29 -104 0.058 6.245 1.000 Nozzle Flg [4] -29 -104 0.058 ----------------------------------------------------------------------------

Page 278: 003-Heat Exchanger.docx

Required Minimum Design Metal Temperature 0 C Warmest Computed Minimum Design Metal Temperature -29 C Notes: [ ! ] - This was an impact tested material. [ 1] - Governing Nozzle Weld. [ 4] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(c). [ 5] - ANSI Flange MDMT Calcs; Thickness ratio per UCS-66(b)(1)(b). [ 6] - MDMT Calculations at the Shell/Head Joint. [ 7] - MDMT Calculations for the Straight Flange. [ 8] - Cylinder/Cone/Flange Junction MDMT. [ 9] - Calculations in the Spherical Portion of the Head. [10] - Calculations in the Knuckle Portion of the Head. [11] - Calculated (Body Flange) Flange MDMT. [12] - Calculated Flat Head MDMT per UCS-66(3) UG-84(b)(2) was not considered. UCS-66(g) was not considered. UCS-66(i) was not considered. Notes:

Page 279: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 152 MDMT Summary : Step: 27 11:15p Sep 5,2012 Impact test temps were not entered in and not considered in the analysis. UCS-66(i) applies to impact tested materials not by specification and UCS-66(g) applies to materials impact tested per UG-84.1 General Note (c). The Basic MDMT includes the (30F) PWHT credit if applicable. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 280: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 153 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Input Echo, Tubesheet Number 1, Description: TUBE SHEET Shell Data: Main Shell Description: SHELL Shell Design Pressure Ps 11.00 bar Shell Thickness ts 10.0000 mm Shell Corrosion Allowance cas 3.0000 mm Inside Diameter of Shell Ds 475.000 mm Shell Temperature for Internal Pressure Ts 215.00 C Shell Material SA-516 70 Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps. Make sure that material properties at this temperature are not time-dependent for Material: SA-516 70 Shell Material UNS Number K02700 Shell Allowable Stress at Temperature Ss 20000.00 psi Shell Allowable Stress at Ambient 20000.00 psi Channel Description: BONNET SHELL Channel Type: Cylinder Channel Design Pressure Pt 33.00 bar Channel Thickness tc 10.0000 mm Channel Corrosion Allowance cac 3.0000 mm Inside Diameter of Channel Dc 475.000 mm Channel Design Temperature TEMPC 185.00 C Channel Material SA-516 70 Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps. Make sure that material properties at this temperature are not time-dependent for Material: SA-516 70 Channel Material UNS Number K02700 Channel Allowable Stress at Temperature Sc 20000.00 psi Channel Allowable Stress at Ambient 20000.00 psi Tube Data: Number of Tube Holes Nt 70 Tube Wall Thickness et 2.1100 mm Tube Outside Diameter D 25.4000 mm Total Straight Tube Length Lt 2785.00 mm Straight Tube Length (bet. inner tubsht faces) L 2711.00 mm Design Temperature of the Tubes 215.00 C Tube Material SA-179 Tube Material UNS Number K01200 Is this a Welded Tube No Tube Material Specification used Smls. tube Tube Allowable Stress at Temperature 13400.00 psi Tube Allowable Stress At Ambient 13400.00 psi

Page 281: 003-Heat Exchanger.docx

Tube Yield Stress At design Temperature Syt 22010.34 psi Tube Pitch (Center to Center Spacing) P 31.7500 mm Tube Layout Pattern Triangular

Page 282: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 154 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Fillet Weld Leg af 2.0000 mm Groove Weld Leg ag 2.0000 mm Tube-Tubesheet Joint Weld Type Seal/No Weld Method for Tube-Tubesheet Jt. Allow. App. A Tube-Tubesheet Joint Classification f Is Tube-Tubesheet Joint Tested No ASME Tube Joint Reliability Factor fr 0.75 Radius to Outermost Tube Hole Center ro 222.500 mm Largest Center-to-Center Tube Distance Ul 80.0000 mm Length of Expanded Portion of Tube ltx 71.0000 mm Tube-side pass partition groove depth hg 5.0000 mm Tubesheet Data: Tubesheet TYPE: U-tube, Gasketed both Sides, Conf. d Tubesheet Design Metal Temperature T 215.00 C Tubesheet Material Specification SA-516 70 Note: Using 2 * Yield for Discontinuity Stress Allowable (UG-23(e)), Sps. Make sure that material properties at this temperature are not time-dependent for Material: SA-516 70 Tubesheet Material UNS Number K02700 Tubesheet Allowable Stress at Temperature S 20000.00 psi Tubesheet Allowable Stress at Ambient Tt 20000.00 psi Thickness of Tubesheet h 74.0000 mm Tubesheet Corr. Allowance (Shell side) Cats 1.6000 mm Tubesheet Corr. Allowance (Channel side) Catc 1.6000 mm Tubesheet Outside Diameter A 535.000 mm Dimension G for the Channel Side Gc 505.000 mm Area of the Untubed Lanes AL 0.0 mm² Junction Stress Reduction option Increase Tubesheet thickness Perform Differential Pressure Design NO Run Multiple Load Cases YES Shell Side Vacuum Pressure Pexts 1.0342 bar Channel Side Vacuum Pressure Pextc 1.0342 bar Additional Data for Gasketed Tubesheets: Tubesheet Gasket on which Side Both Flange Outside Diameter A 625.000 mm Flange Inside Diameter B 475.000 mm Flange Face Outside Diameter Fod 538.000 mm Flange Face Inside Diameter Fid 475.000 mm Gasket Outside Diameter Go 515.000 mm Gasket Inside Diameter Gi 495.000 mm

Page 283: 003-Heat Exchanger.docx

Small end Hub thk. g0 10.0000 mm Large end Hub thk. g1 20.0000 mm Gasket Factor, m 2.50 Gasket Design Seating Stress y 10000.00 psi

Page 284: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 155 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Flange Facing Sketch Code Sketch 1a Column for Gasket Seating Code Column II Gasket Thickness tg 4.5000 mm Full face Gasket Flange Option Program Selects Bolting Information: Diameter of Bolt Circle C 570.000 mm Nominal Bolt Diameter dB 22.0000 mm Type of Thread Series TEMA Metric Thread Number of Bolts n 20 Bolt Material SA-193 B7 Bolt Allowable Stress At Temperature Sb 25000.00 psi Bolt Allowable Stress At Ambient Sa 25000.00 psi Weld between Flange and Shell/Channel 0.0000 mm Alternate Flange Operating Bolt Load, Wm1 91245.60 kgf Alternate Flange Seating Bolt Load, Wm2 92685.40 kgf Alternate Flange Design Bolt Load, W 94225.04 kgf Tubesheet Integral with None Tubesheet Extended as Flange No Notes/Error Messages/Warnings for Tubesheet number 1 Warning - Method (App. A) selected for computing Tube-Tubesheet Jt. allow. is not valid for U-tube tubesheets, use UHX method if it is a welded joint. ASME TubeSheet Results per Part UHX, 2010, 2011a Elasticity/Expansion Material Properties : Shell - TM-1 Carbon Steels with C<= 0.3% ----------------------------------------------------------------- Elastic Mod. at Design Temperature 215.0 C 0.19536E+07 kgf/cm² Elastic Mod. at Ambient Temperature 21.1 C 0.20670E+07 kgf/cm² Channel - TM-1 Carbon Steels with C<= 0.3% ----------------------------------------------------------------- Elastic Mod. at Design Temperature 185.0 C 0.19714E+07 kgf/cm² Elastic Mod. at Ambient Temperature 21.1 C 0.20670E+07 kgf/cm² Tubes - TM-1 Carbon Steels with C<= 0.3% ----------------------------------------------------------------- Elastic Mod. at Tubsht. Design Temp. 215.0 C 0.19536E+07 kgf/cm² Elastic Mod. at Ambient Temperature 21.1 C 0.20670E+07 kgf/cm²

Page 285: 003-Heat Exchanger.docx

TubeSheet - TM-1 Carbon Steels with C<= 0.3% ----------------------------------------------------------------- Elastic Mod. at Design Temperature 215.0 C 0.19536E+07 kgf/cm² Elastic Mod. at Ambient Temperature 21.1 C 0.20670E+07 kgf/cm²

Page 286: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 156 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Tube Required Thickness under Internal Pressure (Tubeside pressure) : Thickness Due to Internal Pressure: = (P*(D/2-CAE)) / (S*E+0.4*P) per Appendix 1-1 (a)(1) = (34.03*(25.4000/2-0.000)/(13400.00*1.00+0.4*34.03) = 0.4610 + 0.0000 = 0.4610 mm Tube Required Thickness under External Pressure (Shellside pressure) : External Pressure Chart CS-1 at 215.00 C Elastic Modulus for Material 1955261.25 kgf/cm² Results for Max. Allowable External Pressure (Emawp): TCA ODCA SLEN D/T L/D Factor A B 2.1100 25.40 2933.50 12.04 50.0000 0.0075908 12731.09 EMAWP = (4*B)/(3*(D/T)) = ( 4 *12731.0918 )/( 3 *12.0379 ) = 97.2243 bar Results for Reqd Thickness for Ext. Pressure (Tca): TCA ODCA SLEN D/T L/D Factor A B 0.5196 25.40 2933.50 48.89 50.0000 0.0004602 6399.79 EMAWP = (4*B)/(3*(D/T)) = ( 4 *6399.7900 )/( 3 *48.8879 ) = 12.0344 bar Summary of Tube Required Thickness Results: Total Required Thickness including Corrosion all. 0.5196 mm Allowable Internal Pressure at Corroded thickness 164.43 bar Required Internal Design Pressure 34.03 bar Allowable External Pressure at Corroded thickness 97.22 bar Required External Design Pressure 12.03 bar Required Thickness due to Shell Side pressure 0.5196 mm ----------------------------------------------------------------- Detailed Results for load Case 3 un-corr. (Ps + Pt) ----------------------------------------------------------------- Intermediate Calculations For Gasketed Tubesheets: ASME Code, Section VIII, Div. 1, 2010, 2011a Gasket Contact Width, N = (Goc-Gic) / 2 10.000 mm Basic Gasket Width, b0 = N / 2.0 5.000 mm Effective Gasket Width, b = b0 5.000 mm Gasket Reaction Diameter, G = (Go+Gi) / 2.0 505.000 mm Flange Design Bolt Load, Seating Condition W : 94225.04 kgf Flange Design Bolt Load, Operating Condition Wm1: 26915.69 kgf Results for ASME U-tube Tubesheet Calculations for Configuration d, Per Edition 2010, 2011a, Original Thickness :

Page 287: 003-Heat Exchanger.docx

Minimum Required Thickness for Shear [HreqS]: = 1/(4 * Mu) * (Do/(0.8 * S)) * |Ps - Pt| + Cats + Catc = 1/(4 * 0.200 ) * (470.40 /(0.8 * 20000.00 )) * |11.00 - 33.00 | + 0.000

Page 288: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 157 ASME TS Calc : Case: 1 11:15p Sep 5,2012 = 11.7262 mm UHX-12.5.1 Step 1: Compute the Equivalent Outer Tube Limit Circle Diameter [Do]: = 2 * ro + dt = 2 * 222.5000 + 25.4000 = 470.400 mm Determine the Basic Ligament Efficiency for Shear [mu]: = (p - dt) / p = (31.750 - 25.400 ) / 31.750 = 0.200 UHX-12.5.2 Step 2 : Compute the Ratio [Rhos]: = Gs / Do (Configurations d, e, f) = 505.0000 / 470.4000 = 1.0736 Compute the Ratio [Rhoc]: = Gc / Do (Configurations d) = 505.0000 / 470.4000 = 1.0736 Moment on Tubesheet due to Pressures (Ps, Pt) [Mts]: = Do²/16 * [(Rhos-1)*(Rhos²+1)* Ps - (Rhoc-1) * (Rhoc²+1) * Pt ] = 470.400²/16 * [ (1.074 - 1) * (1.074² + 1) * 11.000 - (1.074 - 1) * (1.074² + 1) * 33.000 ] = -48171.8125 bar*mm² UHX-12.5.3 Step 3, Determination of Effective Elastic Properties : Compute the Ratio [rho]: = ltx / h = 71.0000 / 74.0000 = 0.9595 ( must be 0 <= rho <= 1 ) Compute the Effective Tube Hole Diameter [d*]: = max( dt - 2tt*( Et/E )( St/S )( rho ), dt - 2tt) = max( 25.4000 -2*2.1100 *(1953564 /1953564 )* ( 13400 /20000 )*(0.959 ), 25.4000 -2*2.1100 ) = 22.6872 mm Compute the Effective Tube Pitch [p*]: = p / sqrt( 1 - 4 * min( AL * CNV_factor, 4*Do*p)/(Pi * Do²) ) = 31.7500 / sqrt( 1 - 4 * min( 0.00 *1.000 , 4*470.400 *31.750 ) (3.141* 470.400²) ) = 31.7500 mm Compute the Effective Ligament Efficiency for Bending [mu*]: = (p* - d*) / p* = (31.7500 - 22.6872 ) / 31.7500 = 0.28544 E*/E and nu* for Triangular pattern from Fig. UHX-11.3. h/p = 2.330709 ; mu* = 0.285442

Page 289: 003-Heat Exchanger.docx

E*/E = 0.262137 ; nu* = 0.364478 ; E* = 512101. kgf/cm² Note: As h/p (2.331) is > 2, data values for h/p = 2 were used.

Page 290: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 158 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Skip Step 4 for Configuration d : UHX-12.5.5 Step 5: Diameter ratio [K]: = A / Do = 535.0000 / 470.4000 = 1.1373 Determine Coefficient [F]: = (1 - nu*)/E* * ( E * ln(K) ) = (1 - 0.36 )/512100 * ( 1953564 * ln(1.14 ) ) = 0.3120 UHX-12.5.6 Step 6: Moment Acting on Unperforated Tubesheet Rim [M*] = Mts + W* * (Gc - Gs)/(2 * pi * Do) = -48171.8 + 84280.4 * (505.000 - 505.000 )/(2 * pi * 470.400 ) = -48171.8125 bar*mm² Note: W* is the maximum of the bolt loads between the shell and channel sides. UHX-12.5.7 Step 7: Maximum Bending Moment acting on Periphery of Tubesheet [Mp]: = ((M*) - Do²/32 * F * (Ps - Pt) ) / (1 + F) = ((-48171.81 ) - 470.400²/32 * 0.312 * (11.00 - 33.00 ) ) / (1 + 0.31 ) = -542.1605 bar*mm² Maximum Bending Moment acting on Center of Tubesheet [Mo]: = Mp + Do²/64 * (3 + rnu*)(Ps - Pt) = -542.16 + 470.400²/64 * (3 + 0.364 )(11.00 - 33.00 ) = -256456.7344 bar*mm² Maximum Bending Moment acting on Tubesheet [M]: = Max( |Mp|, |Mo| ) = Max( |-542.160 |, | -0.3E+06| ) = 256456.7344 bar*mm² UHX-12.5.8 Results for Step 8: Tubesheet Bending Stress at Original Thickness: = 6 * M / ( (mu*) * ( h - hg')² ) = 6 * 256456.734 / ( (0.2854 ) * ( 74.0000 - 5.0000 )² ) = 16422.0703 psi The Allowable Tubesheet Bending Stress [SigmaAll]: = 2 * S = 2 * 20000.00 = 40000.00 psi

Page 291: 003-Heat Exchanger.docx

Tubesheet Bending Stress at Final Thickness [Sigma]: = 6 * M / ( (mu*) * ( h - hg')² = 6 * 256611.516 / ( (0.2891 ) * ( 48.9498 - 5.0000 )² = 39995.8828 psi

Page 292: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 159 ASME TS Calc : Case: 1 11:15p Sep 5,2012 Required Tubesheet Thickness, for Bending Stress [HreqB]: = H + CATS + CATC = 48.9498 + 0.0000 + 0.0000 = 48.9498 mm Required Tubesheet Thickness for Given Loadings (includes CA) [Hreq]: = Max( HreqB, HreqS ) = Max( 48.9498 , 11.7262 ) = 48.9498 mm UHX-12.5.9 Step 9: |Ps - Pt| = |11.00 - 33.00 | = 22.000 bar Shear Stress check [Tau_limit]: = 3.2 * S * MU * h / Do = 3.2 * 20000.00 * 0.200 * 74.000 / 470.40 = 138.83 bar Average Shear Stress at the Outer Edge of Perforated Region [Tau]: = 1/(4* Mu) * (Do/h) * |Ps - Pt| = 1/(4*0.200)*(470.40/74.00)*|11.00-33.00|psi = 2535.40 psi Note: Analysis Completed for Tubesheet Configuration d. Tube Weld Size Results per UW-20: Warning: Seal weld cannot be checked per UW-20. Stress/Force summary for loadcase 3 un-corr. (Ps + Pt): ------------------------------------------------------------------------ Stress Description Actual Allowable Pass/Fail ------------------------------------------------------------------------ Tubesheet bend. stress 16422.1 <= 40000.0 psi Ok Tubesheet shear stress 2535.4 <= 16000.0 psi Ok ------------------------------------------------------------------------ Thickness results for loadcase 3 un-corr. (Ps + Pt): ---------------------------------------------------------------------------- Thickness (mm) Required Actual P/F ---------------------------------------------------------------------------- Tubesheet Thickness : 48.950 74.000 Ok Tube-Tubesheet Fillet Weld Leg : 0.000 2.000 Ok Tube-Tubesheet Groove Weld Leg : 0.000 2.000 Ok ----------------------------------------------------------------------------

Page 293: 003-Heat Exchanger.docx

U-Tube Tubesheet results per ASME UHX-12 2010, 2011a Results for 6 Load Cases: --Reqd. Thk. + CA -------- Tubesheet Stresses Case Pass/ Case# Tbsht Extnsn Bend Allwd Shear Allwd Type Fail ---------------------------------------------------------------------------- 1uc 59.736 ... 25405 40000 3922 16000 Fvs+Pt Ok 2uc 37.502 ... 8983 40000 1387 16000 Ps+Fvt Ok

Page 294: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 160 ASME TS Calc : Case: 1 11:15p Sep 5,2012 3uc 48.950 ... 16422 40000 2535 16000 Ps+Pt Ok 1c 61.311 ... 26321 40000 4100 16000 Fvs+Pt-Ca Ok 2c 39.093 ... 9307 40000 1450 16000 Ps+Fvt-Ca Ok 3c 50.637 ... 17014 40000 2650 16000 Ps+Pt-Ca Ok ---------------------------------------------------------------------------- Max: 61.3107 ... mm 0.658 0.256 (Str. Ratio) Load Case Definitions: Fvs,Fvt - User-defined Shell-side and Tube-side vacuum pressures or 0.0. Ps, Pt - Shell-side and Tube-side Design Pressures. Ca - With or Without Corrosion Allowance. Summary of Thickness Comparisons for 6 Load Cases: ---------------------------------------------------------------------------- Thickness (mm) Required Actual P/F ---------------------------------------------------------------------------- Tubesheet Thickness : 61.311 74.000 Ok Tube Thickness : 0.520 2.110 Ok Tube-Tubesheet Fillet Weld Leg : 0.000 2.000 Ok Tube-Tubesheet Groove Weld Leg : 0.000 2.000 Ok ---------------------------------------------------------------------------- Tubesheet MAWP used to Compute Hydrotest Pressure: Stress / Force | Tubeside (0 shellside) | Shellside (0 tubeside) | Condition | MAWP |Stress Rat.| MAWP |Stress Rat.| ------------------------------------------------------------------------------ Tubesheet Bending Stress | 51.720 | 1.000 | 51.720 | 1.000 | Tubesheet Shear Stress | 132.829 | 1.000 | 132.829 | 1.000 |

Page 295: 003-Heat Exchanger.docx

Tube Pressure Stress | 164.425 | 1.000 | 97.223 | 1.000 | ------------------------------------------------------------------------------ Minimum MAWP | 51.720 | | 51.720 | | Tubesheet MAPnc used to Compute Hydrotest Pressure: Stress / Force | Tubeside (0 shellside) | Shellside (0 tubeside) | Condition | MAPnc |Stress Rat.| MAPnc |Stress Rat.| ------------------------------------------------------------------------------ Tubesheet Bending Stress | 53.585 | 1.000 | 53.585 | 1.000 | Tubesheet Shear Stress | 138.833 | 1.000 | 138.833 | 1.000 | Tube Pressure Stress | 164.425 | 1.000 | 106.123 | 1.000 | ------------------------------------------------------------------------------ Minimum MAPnc | 53.585 | | 53.585 | | PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 296: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 161 Vessel Design Summary : Step: 28 11:15p Sep 5,2012 Design Code: ASME Code Section VIII Division 1, 2010, 2011a Diameter Spec : 475.000 mm ID Vessel Design Length, Tangent to Tangent 3790.00 mm Specified Datum Line Distance 0.00 mm Shell Material Specification SA-516 70 Nozzle Material Specification SA-106 B Re-Pad Material Specification SA-516 70 Shell Side Design Temperature 215 C Channel Side Design Temperature 185 C Shell Side Design Pressure 11.000 bar Channel Side Design Pressure 33.000 bar Shell Side Hydrostatic Test Pressure 14.300 bar Channel Side Hydrostatic Test Pressure 42.900 bar Required Minimum Design Metal Temperature 0 C Warmest Computed Minimum Design Metal Temperature -29 C Wind Design Code IS-875 Earthquake Design Code IS-1893 SCM Element Pressures and MAWP: bar Element Desc | Design Pres. | External | M.A.W.P | Corrosion | + Stat. head | Pressure | | Allowance --------------------------------------------------------------------- BONNET DISH 33.047 1.034 40.635 3.0000 BONNET SHELL 33.047 1.034 39.400 3.0000 BONNET FLANGE 33.047 1.034 34.636 3.0000 SHELL FLANGE 11.047 1.034 No Calc 3.0000 SHELL 11.047 1.034 39.400 3.0000 DISHED END 11.047 1.034 40.635 3.0000 Liquid Level: 475.00 mm Dens.: 999.552 kgm/m³ Sp. Gr.: 1.000 Element "To" Elev Length Element Thk R e q d T h k Joint Eff Type mm mm mm Int. Ext. Long Circ ----------------------------------------------------------------------- Ellipse 40.0 40.0 12.0 8.7 4.5 1.00 1.00 Cylinder 670.0 630.0 10.0 8.8 4.9 1.00 1.00 Body Flg 670.0 90.0 80.0 67.2 62.0 1.00 1.00 Body Flg 834.0 90.0 80.0 65.7 65.7 1.00 1.00 Cylinder 3750.0 3006.0 10.0 4.9 6.5 1.00 1.00 Ellipse 3790.0 40.0 12.0 4.9 4.5 1.00 1.00

Page 297: 003-Heat Exchanger.docx

Element thicknesses are shown as Nominal if specified, otherwise are Minimum Saddle Parameters:

Page 298: 003-Heat Exchanger.docx

PV Elite 2012 Licensee: PROCESS SYSTEM ENGINEERS (I) PVT. LTD FileName : 003-Heat Exchanger # (HX-0401)-HE01-----R1-------- Page 162 Vessel Design Summary : Step: 28 11:15p Sep 5,2012 Saddle Width 133.000 mm Saddle Bearing Angle 120.000 deg. Centerline Dimension 498.000 mm Wear Pad Width 200.000 mm Wear Pad Thickness 10.000 mm Wear Pad Bearing Angle 131.000 deg. Distance from Saddle to Tangent 630.000 mm Baseplate Length 451.250 mm Baseplate Thickness 25.400 mm Baseplate Width 200.000 mm Number of Ribs (including outside ribs) 2 Rib Thickness 8.000 mm Web Thickness 8.000 mm Height of Center Web 228.000 mm Summary of Maximum Saddle Loads, Operating Case : Maximum Vertical Saddle Load 1746.04 kgf Maximum Transverse Saddle Shear Load 139.03 kgf Maximum Longitudinal Saddle Shear Load 364.06 kgf Summary of Maximum Saddle Loads, Hydrotest Case : Maximum Vertical Saddle Load 1542.86 kgf Maximum Transverse Saddle Shear Load 45.88 kgf Maximum Longitudinal Saddle Shear Load 13.12 kgf Weights: Fabricated - Bare W/O Removable Internals 1288.0 kg. Shop Test - Fabricated + Water ( Full ) 1939.7 kg. Shipping - Fab. + Rem. Intls.+ Shipping App. 1288.0 kg. Erected - Fab. + Rem. Intls.+ Insul. (etc) 1288.0 kg. Empty - Fab. + Intls. + Details + Wghts. 1288.0 kg. Operating - Empty + Operating Liquid (No CA) 1860.9 kg. Field Test - Empty Weight + Water (Full) 1807.4 kg. PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2012

Page 299: 003-Heat Exchanger.docx

Table of Contents

Cover Sheet Title Page Warnings and Errors : ......... 1 Input Echo : ......... 2 XY Coordinate Calculations : ......... 11 Flg Calc [Int P] : FLANGE ......... 12 Flg Calc [Int P] : FLANGE ......... 18 Internal Pressure Calculations : ......... 24 External Pressure Calculations : ......... 30 Element and Detail Weights : ......... 34 Nozzle Flange MAWP : ......... 37 Wind Load Calculation : ......... 38 Earthquake Load Calculation : ......... 40 Center of Gravity Calculation : ......... 41 Lifting Lug Calcs : Left Side ......... 43 Lifting Lug Calcs : Right Side ......... 48 Horizontal Vessel Analysis (Ope.) : ......... 53 Horizontal Vessel Analysis (Test) : ......... 64 Nozzle Calcs. : N1 ......... 74 Nozzle Calcs. : N2 ......... 83 Nozzle Calcs. : N8 ......... 92 Nozzle Calcs. : N3 ......... 100 Nozzle Calcs. : N6 ......... 108 Nozzle Calcs. : N9 ......... 116 Nozzle Calcs. : N7 ......... 124 Nozzle Calcs. : N5 ......... 132 Nozzle Calcs. : N4 ......... 140 Nozzle Schedule : ......... 148 Nozzle Summary : ......... 150 MDMT Summary : ......... 151 Tubesheet, ......... 153 Vessel Design Summary : ......... 161