Top Banner
1 0-1 Knapsack problem Dr. Ying Lu [email protected] CSCE 310 Data Structures & Algorithms
59
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 0-1-knapsack(3)

1

0-1 Knapsack problem

Dr. Ying [email protected]

CSCE 310Data Structures & Algorithms

Page 2: 0-1-knapsack(3)

2

Giving credit where credit is due:» Most of slides for this lecture are based on slides

created by Dr. David Luebke, University of Virginia.» Some slides are based on lecture notes created by Dr.

Chuck Cusack, Hope College.» I have modified them and added new slides.

CSCE 310Data Structures & Algorithms

Page 3: 0-1-knapsack(3)

3

Summarizing the Concept of Dynamic Programming

Basic idea: » Optimal substructure: optimal solution to problem

consists of optimal solutions to subproblems» Overlapping subproblems: few subproblems in total,

many recurring instances of each» Solve bottom-up, building a table of solved

subproblems that are used to solve larger ones Variations:

» “Table” could be 3-dimensional, triangular, a tree, etc.

Page 4: 0-1-knapsack(3)

4

Floyd’s Algorithm for All-Pairs Shortest-Paths Problem

i jVk-1

pVk

kp1 p2p

dij(k)=min (dij

(k-1), dik(k-1)+ dkj

(k-1)) for k≥1

solutions for smaller subproblems solution for a larger subproblem

Page 5: 0-1-knapsack(3)

5

Floyd’s Algorithm for All-Pairs Shortest-Paths Problem

i jVk-1

pVk

kp1 p2

dij(k)=min (dij

(k-1), dik(k-1)+ dkj

(k-1)) for k≥1dil

(k)=min (dil(k-1), dik

(k-1)+ dkl(k-1)) for k≥1

solution for a smaller subproblem is used for getting solutions for multiple bigger subproblems

l

p3

Page 6: 0-1-knapsack(3)

6

Given some items, pack the knapsack to get the maximum total value. Each item has some weight and some value. Total weight that we can carry is no more than some fixed number W.So we must consider weights of items as well as their values.

Item # Weight Value 1 1 8 2 3 6 3 5 5

Knapsack problem

Page 7: 0-1-knapsack(3)

7

Knapsack problem

There are two versions of the problem:1. “0-1 knapsack problem” and2. “Fractional knapsack problem”

1. Items are indivisible; you either take an item or not. Some special instances can be solved with dynamic programming

2. Items are divisible: you can take any fraction of an item. Solved with a greedy algorithm

We will see this version at a later time

Page 8: 0-1-knapsack(3)

8

Given a knapsack with maximum capacity W, and a set S consisting of n items

Each item i has some weight wi and benefit value bi (all wi and W are integer values)

Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem

Page 9: 0-1-knapsack(3)

9

W = 20

wi bi

109

85

54

4332

Weight Benefit value

This is a knapsackMax weight: W = 20

Items

0-1 Knapsack problem: a picture

Page 10: 0-1-knapsack(3)

10

Problem, in other words, is to find

Ti

iTi

i Wwb subject to max

0-1 Knapsack problem

The problem is called a “0-1” problem, because each item must be entirely accepted or rejected.

Page 11: 0-1-knapsack(3)

11

Let’s first solve this problem with a straightforward algorithm

Since there are n items, there are 2n possible combinations of items.

We go through all combinations and find the one with maximum value and with total weight less or equal to W

Running time will be O(2n)

0-1 Knapsack problem: brute-force approach

Page 12: 0-1-knapsack(3)

12

We can do better with an algorithm based on dynamic programming

We need to carefully identify the subproblems

Let’s try this:If items are labeled 1..n, then a subproblem would be to find an optimal solution for Sk = {items labeled 1, 2, .. k}

0-1 Knapsack problem: brute-force approach

Page 13: 0-1-knapsack(3)

13

If items are labeled 1..n, then a subproblem would be to find an optimal solution for Sk = {items labeled

1, 2, .. k}

This is a reasonable subproblem definition. The question is: can we describe the final solution

(Sn ) in terms of subproblems (Sk)? Unfortunately, we can’t do that.

Defining a Subproblem

Page 14: 0-1-knapsack(3)

14

Max weight: W = 20For S4:Total weight: 14Maximum benefit: 20

w1 =2b1 =3

w2 =4b2 =5

w3 =5b3 =8

w4 =3b4 =4 wi bi

10

85

54

43

32

Weight Benefit

9

Item#

4

3

2

1

5

S4

S5

w1 =2b1 =3

w2 =4b2 =5

w3 =5b3 =8

w5 =9b5 =10

For S5:Total weight: 20Maximum benefit: 26

Solution for S4 is not part of the solution for S5!!!

?

Defining a Subproblem

Page 15: 0-1-knapsack(3)

15

As we have seen, the solution for S4 is not part of the solution for S5

So our definition of a subproblem is flawed and we need another one!

Let’s add another parameter: w, which will represent the maximum weight for each subset of items

The subproblem then will be to compute V[k,w], i.e., to find an optimal solution for Sk = {items labeled 1, 2, .. k} in a knapsack of size w

Defining a Subproblem (continued)

Page 16: 0-1-knapsack(3)

16

The subproblem then will be to compute V[k,w], i.e., to find an optimal solution for Sk = {items labeled 1, 2, .. k} in a knapsack of size w

Assuming knowing V[i, j], where i=0,1, 2, … k-1, j=0,1,2, …w, how to derive V[k,w]?

Recursive Formula for subproblems

Page 17: 0-1-knapsack(3)

17

It means, that the best subset of Sk that has total weight w is:1) the best subset of Sk-1 that has total weight w, or2) the best subset of Sk-1 that has total weight w-wk plus

the item k

else }],1[],,1[max{

if ],1[],[

kk

kbwwkVwkV

wwwkVwkV

Recursive formula for subproblems:

Recursive Formula for subproblems (continued)

Page 18: 0-1-knapsack(3)

18

Recursive Formula

The best subset of Sk that has the total weight w, either contains item k or not.

First case: wk>w. Item k can’t be part of the solution, since if it was, the total weight would be > w, which is unacceptable.

Second case: wk w. Then the item k can be in the solution, and we choose the case with greater value.

else }],1[],,1[max{

if ],1[],[

kk

kbwwkVwkV

wwwkVwkV

Page 19: 0-1-knapsack(3)

19

for w = 0 to WV[0,w] = 0

for i = 1 to nV[i,0] = 0

for i = 1 to nfor w = 0 to Wif wi <= w // item i can be part of the solution

if bi + V[i-1,w-wi] > V[i-1,w]

V[i,w] = bi + V[i-1,w- wi]

elseV[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

0-1 Knapsack Algorithm

Page 20: 0-1-knapsack(3)

20

for w = 0 to WV[0,w] = 0

for i = 1 to nV[i,0] = 0

for i = 1 to nfor w = 0 to W

< the rest of the code >

What is the running time of this algorithm?

O(W)

O(W)Repeat n times

O(n*W)Remember that the brute-force algorithm

takes O(2n)

Running time

Page 21: 0-1-knapsack(3)

21

Let’s run our algorithm on the following data:

n = 4 (# of elements)W = 5 (max weight)Elements (weight, benefit):(2,3), (3,4), (4,5), (5,6)

Example

Page 22: 0-1-knapsack(3)

22

for w = 0 to WV[0,w] = 0

0 0 0 0 000123

4 50 1 2 3

4

i\W

Example (2)

Page 23: 0-1-knapsack(3)

23

for i = 1 to nV[i,0] = 0

0000

0 0 0 0 000123

4 50 1 2 3

4

i\W

Example (3)

Page 24: 0-1-knapsack(3)

24

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

0

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

0

i=1bi=3wi=2w=1w-wi =-1

0 0 0 0 000123

4 50 1 2 3

4

i\W

000

Example (4)

Page 25: 0-1-knapsack(3)

25

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

300000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=1bi=3wi=2w=2w-wi =0

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

Example (5)

Page 26: 0-1-knapsack(3)

26

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

300000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=1bi=3wi=2w=3w-wi =1

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

3

Example (6)

Page 27: 0-1-knapsack(3)

27

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

300000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=1bi=3wi=2w=4w-wi =2

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

3 3

Example (7)

Page 28: 0-1-knapsack(3)

28

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

300000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=1bi=3wi=2w=5w-wi =3

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

3 3 3

Example (8)

Page 29: 0-1-knapsack(3)

29

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2bi=4wi=3w=1w-wi =-2

3 3 3 30

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

Example (9)

Page 30: 0-1-knapsack(3)

30

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2bi=4wi=3w=2w-wi =-1

3 3 3 33

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

0

Example (10)

Page 31: 0-1-knapsack(3)

31

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2bi=4wi=3w=3w-wi =0

3 3 3 30

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

43

Example (11)

Page 32: 0-1-knapsack(3)

32

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2bi=4wi=3w=4w-wi =1

3 3 3 30

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

43 4

Example (12)

Page 33: 0-1-knapsack(3)

33

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2bi=4wi=3w=5w-wi =2

3 3 3 30

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

73 4 4

Example (13)

Page 34: 0-1-knapsack(3)

34

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=3bi=5wi=4w= 1..3

3 3 3 30 3 4 4

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

73 40

Example (14)

Page 35: 0-1-knapsack(3)

35

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=3bi=5wi=4w= 4w- wi=0

3 3 3 30 3 4 4 70 3 4 5

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

Example (15)

Page 36: 0-1-knapsack(3)

36

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=3bi=5wi=4w= 5w- wi=1

3 3 3 30 3 4 4 70 3 4

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

5 7

Example (16)

Page 37: 0-1-knapsack(3)

37

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=4bi=6wi=5w= 1..4

3 3 3 30 3 4 4

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

7

3 4070 3 4 5

5

Example (17)

Page 38: 0-1-knapsack(3)

38

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=4bi=6wi=5w= 5w- wi=0

3 3 3 30 3 4 4 70 3 4

if wi <= w // item i can be part of the solution if bi + V[i-1,w-wi] > V[i-1,w] V[i,w] = bi + V[i-1,w- wi] else V[i,w] = V[i-1,w]else V[i,w] = V[i-1,w] // wi > w

577

0 3 4 5

Example (18)

Page 39: 0-1-knapsack(3)

39

Exercise P303 8.4.1 (a).

How to find out which items are in the optimal subset?

Page 40: 0-1-knapsack(3)

40

Comments This algorithm only finds the max possible value

that can be carried in the knapsack» i.e., the value in V[n,W]

To know the items that make this maximum value, an addition to this algorithm is necessary

Page 41: 0-1-knapsack(3)

41

All of the information we need is in the table. V[n,W] is the maximal value of items that can be

placed in the Knapsack. Let i=n and k=W

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1 // Assume the ith item is not in the knapsack

// Could it be in the optimally packed knapsack?

How to find actual Knapsack Items

Page 42: 0-1-knapsack(3)

42

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=4k= 5bi=6wi=5V[i,k] = 7V[i1,k] =7

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

Finding the Items

Page 43: 0-1-knapsack(3)

43

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=4k= 5bi=6wi=5V[i,k] = 7V[i1,k] =7

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

Finding the Items (2)

Page 44: 0-1-knapsack(3)

44

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=3k= 5bi=5wi=4V[i,k] = 7V[i1,k] =7

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

Finding the Items (3)

Page 45: 0-1-knapsack(3)

45

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=2k= 5bi=4wi=3V[i,k] = 7V[i1,k] =3k wi=2

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

7

Finding the Items (4)

Page 46: 0-1-knapsack(3)

46

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W i=1k= 2bi=3wi=2V[i,k] = 3V[i1,k] =0k wi=0

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the ith item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

3

Finding the Items (5)

Page 47: 0-1-knapsack(3)

47

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the nth item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

i=0k= 0

The optimal knapsack should contain {1, 2}

Finding the Items (6)

Page 48: 0-1-knapsack(3)

48

Items:1: (2,3)2: (3,4)3: (4,5) 4: (5,6)

00000

0 0 0 0 000123

4 50 1 2 3

4

i\W

3 3 3 30 3 4 4 70 3 4

i=n, k=Wwhile i,k > 0

if V[i,k] V[i1,k] then mark the nth item as in the knapsacki = i1, k = k-wi

else i = i1

5 70 3 4 5 7

The optimal knapsack should contain {1, 2}

73

Finding the Items (7)

Page 49: 0-1-knapsack(3)

49

Memorization (Memory Function Method) Goal:

» Solve only subproblems that are necessary and solve it only once Memorization is another way to deal with overlapping subproblems

in dynamic programming With memorization, we implement the algorithm recursively:

» If we encounter a new subproblem, we compute and store the solution.» If we encounter a subproblem we have seen, we look up the answer

Most useful when the algorithm is easiest to implement recursively» Especially if we do not need solutions to all subproblems.

Page 50: 0-1-knapsack(3)

50

for i = 1 to nfor w = 1 to WV[i,w] = -1

for w = 0 to WV[0,w] = 0

for i = 1 to nV[i,0] = 0

MFKnapsack(i, w)if V[i,w] < 0

if w < wi

value = MFKnapsack(i-1, w)

else value = max(MFKnapsack(i-1, w),

bi + MFKnapsack(i-1, w-wi))

V[i,w] = value

return V[i,w]

0-1 Knapsack Memory Function Algorithm

Page 51: 0-1-knapsack(3)

51

Dynamic programming is a useful technique of solving certain kind of problems

When the solution can be recursively described in terms of partial solutions, we can store these partial solutions and re-use them as necessary (memorization)

Running time of dynamic programming algorithm vs. naïve algorithm:» 0-1 Knapsack problem: O(W*n) vs. O(2n)

Conclusion

Page 52: 0-1-knapsack(3)

52

In-Class Exercise 8.4.9

Design a dynamic programming algorithm for the change-making problem: given an amount n and unlimited quantities of coins of each of the denominations d1, d2, d3, …, dm. find the smallest number of coins that add up to n or indicate that the problem does not have a solution.

For instance, n = 10, d1=1, d2=5, d3=7; n = 6, d1=5, d2=7.

Page 53: 0-1-knapsack(3)

53

The Fractional Knapsack Problem Fractional knapsack problem: you can take

any fraction of an item.

Problem, in other words, is to find

where 0 fi 1.

Ti

iiii Wwfbf subject to maxn

1i

Page 54: 0-1-knapsack(3)

54

W = 20

wi bi

109

85

54

4332

Weight Benefit

This is a knapsackMax weight: W = 20

Items

Knapsack problem: a pictureRatiobi/wi

1.11

1.6

1.25

1.331.5

Page 55: 0-1-knapsack(3)

55

Solving the Fractional Knapsack Problem

The optimal solution to the fractional knapsack problem can be found with a greedy algorithm» Greedy strategy: take in order of dollars/pound

The optimal solution to the 0-1 problem cannot be found with the same greedy strategy» Example: 3 items weighing 10, 20, and 30 pounds, with

values 80, 100, and 90 dollars, knapsack can hold 50 pounds

Page 56: 0-1-knapsack(3)

56

The Knapsack Problem: Greedy Vs. Dynamic

The fractional problem can be solved greedily

For the 0-1 problem, some special instances (i.e., where all wi and W are integer values) can be solved with a dynamic programming approach

Page 57: 0-1-knapsack(3)

57

57

In-Class Exercises

Given an array a0 a1 ... an-1, where a0 < a1 < a2 < a3 < … < an-1 , design an efficient algorithm to tell if there are three items in the array such that ax + ay = az , what is the time efficiency of your algorithm?

Algorithm time complexity should be O(n2) Hint: given a value s, how to determine if

there are two items in the array such that ax+ay=s in O(n) time?

Page 58: 0-1-knapsack(3)

58

In-Class Exercises How to sort 9000 MB data using only 100 MB of

RAM?

Page 59: 0-1-knapsack(3)

59

In-Class Exercises You have an integer array like

ar[]={1,3,2,4,5,4,2}. You need to create another array ar_low[] such that ar_low[i] = number of elements lower than or equal to ar[i]. So the output of above should be {1,4,3,6,7,6,3}.

Algorithm time complexity should be O(n) and use of extra space is allowed.