Top Banner
1 明明 明明明明明明 明明 RCNP Tensor optimized shell model using bare interaction for light nuclei 明明明明明 明明 明明 RCNP 明明 明明 明明 RCNP 明明明 明明明明明明明明明明明明明明明明明 「」 @RCNP 2008.12.23-25
31

明 孝之  大阪工業大学       阪大 RCNP

Jan 09, 2016

Download

Documents

huyen

Tensor optimized shell model using bare interaction for light nuclei. 明 孝之  大阪工業大学       阪大 RCNP. 共同研究者 土岐 博   阪大 RCNP 池田 清美  理研. 1. RCNP 研究会「少数粒子系物理の現状と今後の展望」 @RCNP 2008.12.23-25. Outline. Tensor Optimized Shell Model (TOSM) Unitary Correlation Operator Method (UCOM) - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 明 孝之  大阪工業大学       阪大 RCNP

11

明 孝之  大阪工業大学      阪大 RCNP

Tensor optimized shell model using bare interaction

for light nuclei

共同研究者 土岐 博   阪大 RCNP 池田 清美  理研

RCNP 研究会「少数粒子系物理の現状と今後の展望」 @RCNP 2008.12.23-25

Page 2: 明 孝之  大阪工業大学       阪大 RCNP

Outline

2

Tensor Optimized Shell Model (TOSM)

Unitary Correlation Operator Method (UCOM)

TOSM + UCOM with bare interaction

• Application of TOSM to Li isotopes

• Halo formation of 11Li

• TM, K.Kato, H.Toki, K.Ikeda,        PRC76(2007)024305

• TM, K.Kato, K.Ikeda, PRC76(2007)054309• TM, Sugimoto, Kato, Toki, Ikeda, PTP117(2007)257• TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda, PTP119(2008)561• TM, H. Toki, K. Ikeda, Submited to PTP

Page 3: 明 孝之  大阪工業大学       阪大 RCNP

3

Motivation for tensor force

tensor centralV V

• Structures of light nuclei with bare interaction

tensor correlation + short-range correlation

• Tensor force (Vtensor) plays a significant role in the nuclear structure.

– In 4He,

– ~ 80% (GFMC)V

VNN

R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001)

• We would like to understand the role of Vtensor in the nuclear structure by describing tensor correlation explicitly.

model wave function (shell model and cluster model) He, Li isotopes (LS splitting, halo formation, level inversion)

Page 4: 明 孝之  大阪工業大学       阪大 RCNP

4

Tensor & Short-range correlations

4

• Tensor correlation in TOSM (long and intermediate)

– 2p2h mixing optimizing the particle states (radial & high-L)

12 2 1 2 2 0ˆ( ),[ , ] 2S Y L Sr

• Short-range correlation– Short-range repulsion

in the bare NN force

– Unitary Correlation

Operator Method (UCOM)

S

D

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

T. Neff, H. Feldmeier, NPA713(2003)311

Page 5: 明 孝之  大阪工業大学       阪大 RCNP

5

Property of the tensor force

5

Long and intermediate ranges

• Centrifugal potential ([email protected]) pushes away the L=2 wave function.

Page 6: 明 孝之  大阪工業大学       阪大 RCNP

6

Tensor-optimized shell model (TOSM)

6

• Tensor correlation in the shell model type approach.

• Configuration mixingwithin 2p2h excitationswith high-L orbit TM et al., PTP113(2005) TM et al., PTP117(2007) T.Terasawa, PTP22(’59))

• Length parameters such as are determined independently and variationally.

– Describe high momentum component from Vtensor CPP-HF by Sugimoto et al,(NPA740) / Akaishi (NPA738)CPP-RMF by Ogawa et al.(PRC73), CPP-AMD by Dote et al.(PTP115)

{ }b 0 0 1/2, ,...s pb b

4He

TM, Sugimoto, Kato, Toki, IkedaPTP117(2007)257

Page 7: 明 孝之  大阪工業大学       阪大 RCNP

7

Hamiltonian and variational equations in TOSM

0k

H E

C

7

1

,A A

i G iji i j

H t T v

: central+tensor+LS+Coulombijv

k kk

C : shell model type configurationk

0H

0,H E

b

• Effective interaction : Akaishi force (NPA738)

– G-matrix from AV8’ with kQ=2.8 fm-1

– Long and intermediate ranges of Vtensor survive.

– Adjust Vcentral to reproduce B.E. and radius of 4He

TM, Sugimoto, Kato, Toki, Ikeda, PTP117(’07)257

Page 8: 明 孝之  大阪工業大学       阪大 RCNP

8

4He in TOSM

Orbit bparticle/bhole

0p1/2 0.65

0p3/2 0.58

1s1/2 0.63

0d3/2 0.58

0d5/2 0.53

0f5/2 0.66

0f7/2 0.55

8

Length parameters

good convergence Higher shell effect 16 Lmax

Shrink

0 1 2 3 4 5 6

vnn: G-matrix

Cf. K. Shimizu, M. Ichimura and A. Arima, NPA226(1973)282.( ) in q V

Page 9: 明 孝之  大阪工業大学       阪大 RCNP

9

Configuration of 4He in TOSM

(0s1/2)4 85.0 %

(0s1/2)2JT(0p1/2)2

JT JT=10 5.0

JT=01 0.3

(0s1/2)210(1s1/2)(0d3/2)10 2.4

(0s1/2)210(0p3/2)(0f5/2)10 2.0

P[D] 9.69

Energy (MeV) 28.0

51.0tensorV

• 0 of pion nature.

• deuteron correlation with (J,T)=(1,0)

4 Gaussians instead of HO

central

71.2 MeV

V 48.6 MeV

T

c.m. excitation = 0.6 MeV

Cf. R.Schiavilla et al. (GFMC) PRL98(’07)132501

Page 10: 明 孝之  大阪工業大学       阪大 RCNP

10

Tensor & Short-range correlations

10

• Tensor correlation in TOSM (long and intermediate)

– 2p2h mixing optimizing the particle states (radial & high-L)

12 2 1 2 2 0ˆ( ),[ , ] 2S Y L Sr

• Short-range correlation– Short-range repulsion

in the bare NN force

– Unitary Correlation

Operator Method (UCOM)

S

D

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

T. Neff, H. Feldmeier NPA713(2003)311

TOSM+UCOM

Page 11: 明 孝之  大阪工業大学       阪大 RCNP

11

Unitary Correlation Operator Method

11H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

corr. uncorr.C

12

( ) ( )exp( ), r ij ij rij iji j

p s r s r pC i g g

short-range correlator

† H E C HC H E

(

( )(

)( ))

R rR r

s

s r

† 1 (Unitary trans.)C C

rp p p

Bare HamiltonianShift operator depending on the relative distance r

( ) ( )R r r s r

TOSM

2-body cluster expansionof Hamiltonian

Page 12: 明 孝之  大阪工業大学       阪大 RCNP

12

Short-range correlator : C (or Cr)

: ( ) for Hamiltonian C r R r †

( )C r C R r

C lC l

AV8’ : Central+LS+Tensor

3GeV repulsion Originalr2

C

†C sC s

Vc

1E

3E

1O3O

Page 13: 明 孝之  大阪工業大学       阪大 RCNP

13

4He in UCOM (Afnan-Tang, Vc only)

13

C

Page 14: 明 孝之  大阪工業大学       阪大 RCNP

14

4He with AV8’ in TOSM+UCOM

Kamada et al.PRC64 (Jacobi)

AV8’ : Central+LS+Tensor

exact

• Gaussian expansion for particle states (6 Gaussians)• Two-body cluster expansion of Hamiltonian

Page 15: 明 孝之  大阪工業大学       阪大 RCNP

15

Extension of UCOM : S-wave UCOM

, ( )SsC R r

15

for only relative S-wave wave function

– minimal effect of UCOM†

central central

LS LS

rel relrel reltensor tensor

for s-wave

for s-wave

N

ˆ( ) ( )

( ) ( )

( ) ( )

o change

S D S S D

s s

s s

s s

C TC T T

C V r C V r

C V r C V r

V r V rC

SD coupling

tensorV 5 MeV gain

Page 16: 明 孝之  大阪工業大学       阪大 RCNP

16

Different effects of correlation function

16

S

D

rel 0 at 0S r

rel 0 at 0D r due to Centrifugal Barrier

• D-wave

• S-wave

No Centrifugal Barrier

Short-range repulsion

Page 17: 明 孝之  大阪工業大学       阪大 RCNP

17

Saturation of 4He in UCOM

17

T. Neff, H. Feldmeier

NPA713(2003)311Short tensor

Long tensor

TOSM+UCOM

Benchmark cal. Kamada et al. PRC64

UCOM: short-range + tensor

corr. uncorr.rC C

En

erg

y

Page 18: 明 孝之  大阪工業大学       阪大 RCNP

18

4He in TOSM + S-wave UCOM

T

VT

VLS

VC

E

(exact)Kamada et al.PRC64 (Jacobi)

Remaining effect :

3-body cluster term

in UCOM

Page 19: 明 孝之  大阪工業大学       阪大 RCNP

19

Summary• Tensor and short-range correlations

– Tensor-optimized shell model (TOSM)

• He & Li isotopes (LS splitting, Halo formation)

– Unitary Correlation Operator Method (UCOM)

• Extended UCOM : S-wave UCOM

• In TOSM+UCOM, we can study the nuclear structure starting from the bare interaction.

– Spectroscopy of light nuclei (p-shell, sd-shell)

19

Page 20: 明 孝之  大阪工業大学       阪大 RCNP

2020

Pion exchange interaction vs. Vtensor

Delta interaction

Yukawa interaction

Involve largemomentum

2 2 2

1 2 1 2 122 2 2 2 2 2

2 2 2 2

1 2 122 2 2 2 2 2

ˆ ˆ3( )( ) ( )

( )

q q qq q S

m q m q m q

m q m qS

m q m q m q

12 1 2 1 2ˆ ˆ3( )( ) ( )S q q

Tensor operator

- Vtensor produces the high momentum component.

Page 21: 明 孝之  大阪工業大学       阪大 RCNP

21

Characteristics of Li-isotopes

21

Breaking of magicity N=8• 10-11Li, 11-12Be• 11Li … (1s)2 ~ 50%. (Expt by Simon et al.,PRL83)

• Mechanism is unclear

Halo structure

11Li

Page 22: 明 孝之  大阪工業大学       阪大 RCNP

2222Pairing-blocking :    K.Kato,T.Yamada,K.Ikeda,PTP101(‘99)119,   Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

Page 23: 明 孝之  大阪工業大学       阪大 RCNP

23

11Li in coupled 9Li+n+n model• System is solved based on RGM

9 11 9

1

( Li) ( Li) ( Li) ( ) 0N

j i ii

H E nn

A

23

11 9( Li) ( Li) nnH H H 11 9

1

( Li) ( Li) ( )N

i ii

nn

A

9 shell model type configu( Li) rat: on ii

• Orthogonality Condition Model (OCM) is applied.

91 2 1 2 12

1

( Li) ( ) ( ) ( )N

ij c c ij j ii

H T T V V V nn E nn

9 99( Li) : Hamilt ( Li onian for ) Liij i jH H

9 Orthogonality to the Pauli0 -, forbidden { Li} : st t s a ei

1 2 2 neutrons with Gaussian expa( ) nsion me: od th nn A{

TOSM

Page 24: 明 孝之  大阪工業大学       阪大 RCNP

24

11Li G.S. properties (S2n=0.31 MeV)

Tensor+Pairing

Simon et al.

P(s2)

Rm

E(s2)-E(p2) 2.1 1.4 0.5 -0.1 [MeV]

Pairing correlation couples (0p)2 and (1s)2 for last 2n

Page 25: 明 孝之  大阪工業大学       阪大 RCNP

2525

2n correlation density in 11Li

nDi-neutron type config.

9Li

Cigar type config.

n

s2=4% s2=47%

K. Hagino and H. Sagawa, PRC72(2005)044321

9Li

H.Esbensen and G.F.Bertsch, NPA542(1992)310

Page 26: 明 孝之  大阪工業大学       阪大 RCNP

26

Short-range correlator : C (or Cr)

: ( ) for hamiltonian,

( ) for relative wave function

C r R r

r R r

† 1 1

( ) ( )r rC p C p

R r R r

†C lC l

† ( )C r C R r †12 12C S C S †C sC s

corr. uncorr.( ) ( )r C r

†( ) i cm iji i j

H T V t T v r C HC H T V

2, ij

i j

T T T T u

( ( ))iji j

V v R r

2-body approximation in the cluster expansion of operator

( ( ))R R r r

Hamiltonian in UCOM

†C tC t

Page 27: 明 孝之  大阪工業大学       阪大 RCNP

27

LS splitting in 5He with tensor corr.

5 4( He) ( He) relH H H 5 4

1

( He) ( He) ( )

N

i ii

nA

27

44H

1

( He) ( ) ( ) ( )N

ij rel e n ij j ii

H T V n E n

4Orthogonarity to the Pauli-forbidden states 0 : { ; He}i

• Orthogonarity Condition Model (OCM) is applied.

•T. Terasawa,PTP22(’59)

•S. Nagata, T. Sasakawa, T. Sawada R. Tamagaki,    PTP22(’59)

• K. Ando, H. Bando PTP66(’81)

• TM, K.Kato, K.Ikeda PTP113(’05)

Page 28: 明 孝之  大阪工業大学       阪大 RCNP

28

Phase shifts of 4He-n scattering

28

Page 29: 明 孝之  大阪工業大学       阪大 RCNP

29

6He in coupled 4He+n+n model• System is solved based on RGM

6 4( He) ( He) nnH H H 6 4

1

( He) ( He) ( )N

i ii

nn

A

4 6 4

1

( He) ( He) ( He) ( ) 0N

j i ii

H E nn

A

4 shell model type configu( He) rat: on ii

• Orthogonality Condition Model (OCM) is applied.

41 2 1 2 12

1

( He) ( ) ( ) ( )N

ij c c ij j ii

H T T V V V nn E nn

4 44( He) : Hamilt ( He onian for ) Heij i jH H

4 Orthogonality to the Pauli0 -, forbidden { He} : st t s a ei

1 2 2 neutrons with Gaussian expa( ) nsion me: od th nn A{

TOSM

Page 30: 明 孝之  大阪工業大学       阪大 RCNP

30

Tensor correlation in 6He

30

Ground state Excited state

TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681

Page 31: 明 孝之  大阪工業大学       阪大 RCNP

3131

Theory

With Tensor

6He results in coupled 4He+n+n model

• (0p3/2)2 can be described in Naive 4He+n+n model

• (0p1/2)2 loses the energy Tensor suppression in 0+2

complex scaling for resonances