Top Banner
<date/time> = ≀ = = ( Using Lagrange Identity Algebraic method Using mathematical induction Using arithmetic- geometric means Geometric proof Using convex function and Jensen’s inequality Some methods of proof For all complex numbers 1 , 2 ,…, and 1 , 2 ,…, there is an inequality =1 2 ≀ 2 =1 2 =1 . Consider sequences of complex numbers { } =1 and =1 , where = 2βˆ’1 + 2 , = 2βˆ’1 + 2 . Notice, that =1 2 = Re =1 2 + Im =1 2 = = Re 2βˆ’1 + 2 2βˆ’1 βˆ’ 2 =1 2 + Im 2βˆ’1 + 2 2βˆ’1 βˆ’ 2 =1 2 = = 2βˆ’1 2βˆ’1 + 2 2 =1 2 + 2 2βˆ’1 βˆ’ 2βˆ’1 2 =1 2 = 2 =1 2 + + 2 2βˆ’1 βˆ’ 2βˆ’1 2 =1 2 . 2 =1 2 =1 = ( 2βˆ’1 2 + 2 2 ) =1 ( 2βˆ’1 2 + 2 2 ) =1 = 2 2 =1 2 2 =1 . Hence, the Cauchy-Bunyakovsky inequality has the form: 2 2 =1 2 2 =1 βˆ’ 2 2βˆ’1 βˆ’ 2βˆ’1 2 =1 2 β‰₯ 2 =1 2 = = βˆ’ βˆ’ βˆ’ βˆ’ = β‰₯ = If 1 ,…, and 1 ,…, are quaternion, then the Cauchy-Bunyakovsky inequality has a form: =1 2 ≀ 2 =1 2 =1 . Denote = 4βˆ’3 + 4βˆ’2 + 4βˆ’1 + 4 , = 4βˆ’3 + 4βˆ’2 + 4βˆ’1 + 4 . Then 2 = 4βˆ’3 2 + 4βˆ’2 2 + 4βˆ’1 2 + 4 2 , 2 = 4βˆ’3 2 + 4βˆ’2 2 + 4βˆ’1 2 + 4 2 , 2 =1 = 4βˆ’3 2 + 4βˆ’2 2 + 4βˆ’1 2 + 4 2 =1 = 2 4 =1 , 2 =1 = 4βˆ’3 2 + 4βˆ’2 2 + 4βˆ’1 2 + 4 2 =1 = 2 4 =1 . = + βˆ’ βˆ’ βˆ’ = + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ = + + βˆ’ βˆ’ βˆ’ βˆ’ βˆ’ + βˆ’ βˆ’ βˆ’ = ≀ = β‹… = . = + + + , 2 = 2 = 2 = βˆ’1
1

𝑛 · 𝑛 𝑛 π’Œ π’Œ 𝒏 π’Œ= ≀ π’Œ 𝒏 π’Œ= π’Œ 𝒏 π’Œ= (Using Lagrange Identity Algebraic method Using mathematical

Jul 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: <footer> 𝑛 · <date/time> <footer> 𝑛 𝑛 π’Œ π’Œ 𝒏 π’Œ= ≀ π’Œ 𝒏 π’Œ= π’Œ 𝒏 π’Œ= (Using Lagrange Identity Algebraic method Using mathematical

<date/time> <footer>

𝑛

𝑛

π’‚π’Œπ’ƒπ’Œ

𝒏

π’Œ=𝟏

𝟐

≀ π’‚π’ŒπŸ

𝒏

π’Œ=𝟏

π’ƒπ’ŒπŸ

𝒏

π’Œ=𝟏

(

Using Lagrange Identity

Algebraic method

Using mathematical

induction

Using arithmetic-geometric

means

Geometric proof

Using convex function and

Jensen’s inequality

Some methods of proof

For all complex numbers π‘Ž1, π‘Ž2, … , π‘Žπ‘› and 𝑏1, 𝑏2, … , 𝑏𝑛

there is an inequality

π‘Žπ‘˜π‘ π‘˜

𝑛

π‘˜=1

2

≀ π‘Žπ‘˜2

𝑛

π‘˜=1

π‘π‘˜2

𝑛

π‘˜=1

.

Consider sequences of complex numbers {π‘’π‘˜}π‘˜=1𝑛 and π‘£π‘˜ π‘˜=1

𝑛 , where π‘’π‘˜ = π‘Ž2π‘˜βˆ’1 + π‘–π‘Ž2π‘˜ , π‘£π‘˜ = 𝑏2π‘˜βˆ’1 + 𝑖𝑏2π‘˜ .

Notice, that

π‘’π‘˜π‘£ π‘˜

𝑛

π‘˜=1

2

= Re π‘’π‘˜π‘£ π‘˜

𝑛

π‘˜=1

2

+ Im π‘’π‘˜π‘£ π‘˜

𝑛

π‘˜=1

2

=

= Re π‘Ž2π‘˜βˆ’1 + π‘–π‘Ž2π‘˜ 𝑏2π‘˜βˆ’1 βˆ’ 𝑖𝑏2π‘˜

𝑛

π‘˜=1

2

+ Im π‘Ž2π‘˜βˆ’1 + π‘–π‘Ž2π‘˜ 𝑏2π‘˜βˆ’1 βˆ’ 𝑖𝑏2π‘˜

𝑛

π‘˜=1

2

=

= π‘Ž2π‘˜βˆ’1𝑏2π‘˜βˆ’1 + π‘Ž2π‘˜π‘2π‘˜

𝑛

π‘˜=1

2

+ π‘Ž2π‘˜π‘2π‘˜βˆ’1 βˆ’ π‘Ž2π‘˜βˆ’1𝑏2π‘˜

𝑛

π‘˜=1

2

= π‘Žπ‘˜π‘π‘˜

2𝑛

π‘˜=1

2

+

+ π‘Ž2π‘˜π‘2π‘˜βˆ’1 βˆ’ π‘Ž2π‘˜βˆ’1𝑏2π‘˜

𝑛

π‘˜=1

2

.

π‘’π‘˜2

𝑛

π‘˜=1

π‘£π‘˜2

𝑛

π‘˜=1

= (π‘Ž2π‘˜βˆ’12 + π‘Ž2π‘˜

2 )

𝑛

π‘˜=1

(𝑏2π‘˜βˆ’12 + 𝑏2π‘˜

2 )

𝑛

π‘˜=1

= π‘Žπ‘˜2

2𝑛

π‘˜=1

π‘π‘˜2

2𝑛

π‘˜=1

.

Hence, the Cauchy-Bunyakovsky inequality has the form:

π‘Žπ‘˜2

2𝑛

π‘˜=1

π‘π‘˜2

2𝑛

π‘˜=1

βˆ’ π‘Ž2π‘˜π‘2π‘˜βˆ’1 βˆ’ π‘Ž2π‘˜βˆ’1𝑏2π‘˜

𝑛

π‘˜=1

2

β‰₯ π‘Žπ‘˜π‘π‘˜

2𝑛

π‘˜=1

2

π’‚π’ŒπŸ

πŸπ’

π’Œ=𝟏

π’ƒπ’ŒπŸ

πŸπ’

π’Œ=𝟏

βˆ’ π’‚πŸπ’Œπ’ƒπŸπ’Œβˆ’πŸ βˆ’ π’‚πŸπ’Œβˆ’πŸπ’ƒπŸπ’Œ

𝒏

π’Œ=𝟏

𝟐

β‰₯ π’‚π’Œπ’ƒπ’Œ

πŸπ’

π’Œ=𝟏

𝟐

𝒏

If 𝑒1, … , 𝑒𝑛 and 𝑣1, … , 𝑣𝑛 are quaternion, then the

Cauchy-Bunyakovsky inequality has a form:

𝑒𝑑𝑣 𝑑

𝑛

𝑑=1

2

≀ 𝑒𝑑2

𝑛

𝑑=1

𝑣𝑑2

𝑛

𝑑=1

.

Denote 𝑒𝑑 = π‘Ž4π‘‘βˆ’3 + π‘–π‘Ž4π‘‘βˆ’2 + π‘—π‘Ž4π‘‘βˆ’1 + π‘˜π‘Ž4𝑑 , 𝑣𝑑 = 𝑏4π‘‘βˆ’3 + 𝑖𝑏4π‘‘βˆ’2 + 𝑗𝑏4π‘‘βˆ’1 + π‘˜π‘4𝑑.

Then 𝑒𝑑2 = π‘Ž4π‘‘βˆ’3

2 + π‘Ž4π‘‘βˆ’22 + π‘Ž4π‘‘βˆ’1

2 + π‘Ž4𝑑2 ,

𝑣𝑑2 = 𝑏4π‘‘βˆ’3

2 + 𝑏4π‘‘βˆ’22 + 𝑏4π‘‘βˆ’1

2 + 𝑏4𝑑2 ,

𝑒𝑑2

𝑛

𝑑=1

= π‘Ž4π‘‘βˆ’32 + π‘Ž4π‘‘βˆ’2

2 + π‘Ž4π‘‘βˆ’12 + π‘Ž4𝑑

2

𝑛

𝑑=1

= π‘Žπ‘‘2

4𝑛

𝑑=1

,

𝑣𝑑2

𝑛

𝑑=1

= 𝑏4π‘‘βˆ’32 + 𝑏4π‘‘βˆ’2

2 + 𝑏4π‘‘βˆ’12 + 𝑏4𝑑

2

𝑛

𝑑=1

= 𝑏𝑑2

4𝑛

𝑑=1

.

𝒂𝒕𝒃𝒕

πŸ’π’

𝒕=𝟏

𝟐

+ π’‚πŸπ’•π’ƒπŸπ’•βˆ’πŸ βˆ’ π’‚πŸπ’•βˆ’πŸπ’ƒπŸπ’•

πŸπ’

𝒕=𝟏

𝟐

+

+ π’‚πŸ’π’•βˆ’πŸπ’ƒπŸ’π’•βˆ’πŸ‘ βˆ’ π’‚πŸ’π’•βˆ’πŸ‘π’ƒπŸ’π’•βˆ’πŸ + π’‚πŸ’π’•βˆ’πŸπ’ƒπŸ’π’• βˆ’ π’‚πŸ’π’•π’ƒπŸ’π’•βˆ’πŸ

𝒏

𝒕=𝟏

𝟐

+

+ π’‚πŸ’π’•βˆ’πŸπ’ƒπŸ’π’•βˆ’πŸ βˆ’ π’‚πŸ’π’•βˆ’πŸπ’ƒπŸ’π’•βˆ’πŸ + π’‚πŸ’π’•π’ƒπŸ’π’•βˆ’πŸ‘ βˆ’ π’‚πŸ’π’•βˆ’πŸ‘π’ƒπŸ’π’•

𝒏

𝒕=𝟏

𝟐

≀ π’‚π’•πŸ

πŸ’π’

𝒕=𝟏

β‹… π’ƒπ’•πŸ

πŸ’π’

𝒕=𝟏

.

πŸ’π’

π‘ž = π‘Ž + 𝑖𝑏 + 𝑗𝑐 + π‘˜π‘‘, 𝑖2 = 𝑗2 = π‘˜2 = βˆ’1