Top Banner
C. NONAKA 相相相相相 相相相相相相相 相相相相相相相相相 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto RHIC-LHC 高高高高高高高高高高高高高高高高高----- QGP 高高高高高高 高高高高 -----
43

相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

Jan 12, 2016

Download

Documents

Cathleen Shaw
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

相対論的流体模型を軸にした重イオン衝突の理解

Kobayashi-Maskawa Institute Department of Physics, Nagoya University

Chiho NONAKA

June 23, 2013@Matsumoto「 RHIC-LHC 高エネルギー原子核反応の物理研究会」

----- QGP の物理研究会 信州合宿 -----

Page 2: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Hydrodynamic Model• One of successful models for description of dynamics of

QGP: thermalization hydro hadronization freezeoutcollisions

strong elliptic flow @RHICobservables

hydrodynamic model

Page 3: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscosity in HydrodynamicsSong et al, PRL106,192301(2011)Elliptic Flow

0.08 < h/s < 0.24Reaction plane

x

z

y

Elliptic Flow

RHIC Au+Au GeV

Page 4: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Ridge Structure

Long correlation in longitudinal direction

1+1 d viscous hydrodynamics

Page 5: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

1+1 d relativistic viscous hydrodynamicsFukuda

Page 6: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Perturvative calculationFukuda

Page 7: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Perturbative Solution• F(1) の解:グリーン関数で構成される

Fukuda

Page 8: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

ResultsFukuda

Page 9: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscosity in HydrodynamicsSong et al, PRL106,192301(2011)Elliptic Flow

0.08 < h/s < 0.24Reaction plane

x

z

y

Elliptic Flow

RHIC Au+Au GeV

Page 10: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Higher Harmonics• Higher harmonics and Ridge structure

Mach-Cone-Like structure, Ridge structure

State-of-the-art numerical algorithm •Shock-wave treatment •Less numerical dissipation

Challenge to relativistic hydrodynamic modelViscosity effect from initial en to final vn Longitudinal structure (3+1) dimensionalHigher harmonics high accuracy calculations

Page 11: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Hydrodynamic Model• One of successful models for description of dynamics of

QGP: thermalization hydro hadronization freezeoutcollisions

strong elliptic flow @RHIC particle yields:PT distribution

higher harmonics observables

modelhydrodynamic model

final state interactions:hadron base event generators

fluctuating initial conditions Viscosity, Shock wave

Page 12: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Current Status of HydroIdeal

Page 13: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscous Hydrodynamic Model• Relativistic viscous hydrodynamic equation

– First order in gradient: acausality – Second order in gradient: • Israel-Stewart• Ottinger and Grmela• AdS/CFT• Grad’s 14-momentum expansion• Renomarization group

• Numerical scheme– Shock-wave capturing schemes– Less numerical dissipation

Page 14: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Numerical Scheme • Lessons from wave equation– First order accuracy: large dissipation– Second order accuracy : numerical oscillation -> artificial viscosity, flux limiter

• Hydrodynamic equation– Shock-wave capturing schemes: Riemann problem • Godunov scheme: analytical solution of Riemann

problem, Our scheme • SHASTA: the first version of Flux Corrected Transport

algorithm, Song, Heinz, Chaudhuri • Kurganov-Tadmor (KT) scheme, McGill

Page 15: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Our Approach • Israel-Stewart Theory

Takamoto and Inutsuka, arXiv:1106.1732

1. dissipative fluid dynamics = advection + dissipation

2. relaxation equation = advection + stiff equation

Riemann solver: Godunov method

(ideal hydro)

Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)

Two shock approximation

exact solution for Riemann problem

Rarefaction waveShock wave

Contact discontinuitytt

Rarefaction wave shock wave

Akamatsu, Inutsuka, C.N., Takamoto,arXiv:1302.1665

t

(COGNAC)

Page 16: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Riemann Problem• Discretization

Riemann problemEnergy distribution

shock wave: discontinuity surface

Page 17: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Riemann Problem• Discretization

Riemann problemEnergy distribution

shock wave: discontinuity surface

Initial Condition

example

shock wave

Page 18: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Riemann Problem• Discretization

Riemann problemEnergy distribution

shock wave: discontinuity surface

example

Initial Condition

Page 19: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Riemann Problem• Discretization

Riemann problemEnergy distribution

shock wave: discontinuity surface

example

Initial Condition

Page 20: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Riemann Problem• Discretization

Riemann problemEnergy distribution

shock wave: discontinuity surface

example

shock wave

shock wave

rarefactionwave

contact discontinuity

Page 21: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

COGNAC COGite Numerical Analysis of heavy-ion Collisions

• Israel-Stewart TheoryTakamoto and Inutsuka, arXiv:1106.1732

1. dissipative fluid dynamics = advection + dissipation

2. relaxation equation = advection + stiff equation

Riemann solver: Godunov method

(ideal hydro)

Mignone, Plewa and Bodo, Astrophys. J. S160, 199 (2005)

Two shock approximation

exact solution for Riemann problem

Rarefaction waveShock wave

Contact discontinuitytt

Rarefaction wave shock wave

Akamatsu, Inutsuka, C.N., Takamoto,arXiv:1302.1665

t

Page 22: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Numerical Scheme • Israel-Stewart Theory Takamoto and Inutsuka, arXiv:1106.1732

1. Dissipative fluid equation

2. Relaxation equation

I: second order terms

+

advection stiff equation

Page 23: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Relaxation Equation• Numerical scheme

+

advection stiff equation

up wind method

Piecewise exact solution

~constant• during Dt

Takamoto and Inutsuka, arXiv:1106.1732

fast numerical scheme

Page 24: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Comparison • Shock Tube Test : Molnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010)

T=0.4 GeVv=0

T=0.2 GeVv=0

0 10

Nx=100, dx=0.1

•Analytical solution

•Numerical schemes SHASTA, KT, NT Our scheme

EoS: ideal gas

Page 25: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Energy Density

analytic

t=4.0 fm dt=0.04, 100 steps

COGNAC

Page 26: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Velocity

analytic

t=4.0 fm dt=0.04, 100 steps

COGNAC

Page 27: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

q

analytic

t=4.0 fm dt=0.04, 100 steps

COGNAC COGNAC

Page 28: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Artificial and Physical ViscositiesMolnar, Niemi, Rischke, Eur.Phys.J.C65,615(2010)

Antidiffusion terms : artificial viscosity stability

Page 29: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Numerical Dissipation• Sound wave propagation

1000

0 2-2fm

fm-4

dp=0.1 fm-4

periodic boundary condition

Cs0:sound velocity

l=2 fm

After one cycle: t= /l cs0

Vs(x,t)=Vinit(x-cs0t)

If numerical dissipation does not exist

p

Vs(x,t)≠Vinit(x-cs0t)

With finite numerical dissipation

L1 norm

after one cycle

Page 30: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Convergence Speed

Space and time discretizationSecond order accuracy

Page 31: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Numerical Dissipation

1000 1

•numerical dissipation:

• from fit of calculated data

Page 32: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

hnum vs Grid Size

Numerical dissipation:Deviation from linear analyses (Llin)

Ex. Heavy Ion Collisions

l ~ 10 fm

0.1< /h s<1

T=500 MeV

Dx << 0.8 – 2.6 fm

Fluctuating initial condition

l ~ 1 fmDx << 0.25 – 0.82 fm

Page 33: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscosity in HydrodynamicsSong et al, PRL106,192301(2011)Elliptic Flow

0.08 < h/s < 0.24physical viscosity = input of hydro

RHIC Au+Au GeV

Page 34: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscosity in HydrodynamicsSong et al, PRL106,192301(2011)Elliptic Flow

0.08 < h/s < 0.24

RHIC Au+Au GeV

physical viscosity ≠ input of hydroWith finite numerical dissipation

physical viscosity = input of hydro + numerical dissipation

Checking grid size dependence is important.

?

Page 35: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

To Multi Dimension• Operational split and directional split

Operational split (C, S)

Page 36: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

To Multi Dimension• Operational split and directional split

Operational split (C, S)

Li : operation in i direction

2d

3d

Page 37: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Blast Wave Problems• Initial conditions

Pressure distributionVelocity: |v|=0.9

(0.2*vx, 0.2*vy)

1

fm-4

Page 38: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Blast Wave Problems

Page 39: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Higher Harmonics• Initial conditions– Gluaber model

smoothed fluctuating

Page 40: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Higher Harmonics• Initial conditions at mid rapidity– Gluaber model

smoothed fluctuating

t=10 fm t=10 fm

Page 41: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscosity Effect Pressure distribution

Viscosity

Ideal

initial

t~5 fm t~10 fm t~15 fm7 1 1

0.250.97

14fm-4

Page 42: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Viscous Effectinitial Pressure distribution

Ideal t~5 fm t~10 fm t~15 fm

Viscosity

9 1.2 0.25

0.31.29

20

fm-4

fm-4

Page 43: 相対論的流体模型を軸にした 重イオン衝突の理解 Kobayashi-Maskawa Institute Department of Physics, Nagoya University Chiho NONAKA June 23, 2013@Matsumoto 「 RHIC-LHC

C. NONAKA

Summary• We develop a state-of-the-art numerical scheme, COGNAC

– Viscosity effect– Shock wave capturing scheme: Godunov method

– Less numerical dissipation: crucial for viscosity analyses – Fast numerical scheme

• Numerical dissipation– How to evaluate numerical dissipation– Physical viscosity grid size

• Work in progress– Analyses of high energy heavy ion collisions– Realistic Initial Conditions + COGNAC + UrQMD

COGNAC

with Duke and Texas A&M