Top Banner

of 83

Οι χώροι James και James Tree

Feb 19, 2018

Download

Documents

ilmois
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/23/2019 James James Tree

    1/83

    James James Tree

    :

    I

    :

    2014

  • 7/23/2019 James James Tree

    2/83

    2

  • 7/23/2019 James James Tree

    3/83

    . .

    . - , , . . . -. . . .E .

    . - . . , .

    , . .

    A 2014

    3

  • 7/23/2019 James James Tree

    4/83

    4

  • 7/23/2019 James James Tree

    5/83

    A ,

    5

  • 7/23/2019 James James Tree

    6/83

    6

  • 7/23/2019 James James Tree

    7/83

    ........................................................................................................................9

    1. X anach Schauder

    1.1 ..............................................................................................111.2 B ...............................................................................................191.3 I ........................................................................................221.4 lock ...................................................................................................271.5 I shrinking boundedly complete ......................................31

    2. O James

    2.1 O J

    .................................................................412.2 ........................................................................452.3 .....................................................................492.4 O J 2-saturated...........................................................................................53

    3. O James Tree

    3.1 O J T ..............................................................573.2 O1 J T......................................................633.3 ................................................69

    3.4 J T 2-saturated........................................................................................74B.......................................................................................................................83

    7

  • 7/23/2019 James James Tree

    8/83

    8

  • 7/23/2019 James James Tree

    9/83

    James James Tree. -

    Banach . James R.C.James 1954 - , . James Tree R.C.James 20 -, anach 1. - .

    Schauder Banach . Schauder

    . Hamel , , Schauder -. Schauder, - .

    , R.C.James, J. J - 1 c0. James, J .

    J - . J . o J, J, 2-saturated 2. J J .

    James Tree, J T. , J T 1974 R.C.James Banach - 1. - (tree basis)

    . J J T.E J T James. A J T J James. HoBanach anach .

    9

  • 7/23/2019 James James Tree

    10/83

    10

  • 7/23/2019 James James Tree

    11/83

    1

    Banach Schauder

    1.1 , Banach , -

    . , .

    (1.1.1)

    X Banach {en}nN . {en}nN Schauder x X {n}nN R

    x=n=1

    nen

    (1.1.2)

    {en}nN. {en:n N} - en= 0 n N.

    A

    , o . k1, k2,...,kn N ik1, k2,...,kn R , , k1ek1 +k2ek2 +...+kneknn = 0. 0.

    11

  • 7/23/2019 James James Tree

    12/83

    - Banach Schauder. P.Eno [2].

    (1.1.3)

    {en}nN. .

    D=

    n

    i=1riei:{ri}ni=1 Q, n N

    ToD . A D -

    X. x =n=1

    nen X. T > 0N N {ri}iN Q

    ||ni=1

    nen x||< 2

    n > N |i ri|||ei||< 2i+1

    i N

    n > N

    ||ni=1

    riei x|| ni=1

    |i ri|||ei|| + ||ni=1

    iei x||

    0 ||x|| |||x||| K||x|| xX

    ||x|| = limn

    ||Pn(x)|| |||x|||. , (X,

    ||||||) Banach.

    || || ||| |||. y(k)kN

    Cauchy (X, ||| |||). > 0k0 N

    |||y(i) y(j)|||< i, j > k0 ||Pn(y(i)) Pn(y(j))||< i, j > k0, n N

    Pn(y(k))kN

    Caychy

    < e1,...,en >. Pn(y(k))kN n N. zn= lim

    kPn(y(k)). T {zn}nN |||| -

    . , >0k, N N

    ||Pn(y(k)) Pn(y(j))||< 3

    j > k, n N ||Pn(y(k)) zn||< 3

    n N ||Pn(y(k)) Pm(y(k))||<

    3 n, m > N

    13

  • 7/23/2019 James James Tree

    14/83

    n, m > N o

    ||zn zm|| ||zn Pn(y(k))|| + ||Pn(y(k)) Pm(y(k))|| + ||Pm(y(k)) zm||< {zn}nN ||||-Cauchy. (X, || ||) Banach, {zn}nN . z

    ||||= lim

    nzn. m > n N

    Pn(zm) = Pn(limk

    Pm(y(k))) = lim

    kPn(Pm(y

    (k))) = limk

    Pn(y(k))) = zn. -

    Pn - < e1,...,en >.

    {i}iN zn =ni=1

    aiei n N. , z1 < e1 > 1 R z1 = 1e1. P1(z2) = z1 {en}nN , 2

    R z2=1e1+2e2. ,

    1, ...n, n+1 .

    z= limn

    zn, Pn(z) =ni=1

    iei = zn n N. >0. k0 N k > k0

    sup||zn Pn(y(k))||: n N < sup ||Pn(z) Pn(y(k))||: n N <

    |||z y(k)|||< limk

    y(k) =z

    E (X, ||||||) Banach .

    (1.1.5)

    .

    n N x X. ||Pn(x)|| |||x||| K||x|| .

    ,

    supnN

    ||Pn||

  • 7/23/2019 James James Tree

    15/83

    n . 1 . n

    N en : X

    R

    en(x) =en(

    k=1

    kek) =n

    x =n=1

    en(x)en. T o

    (1.1.6)

    {en}nN .

    n N x =n=1

    nenX.

    |en(x)| =||en(x)en||

    ||en|| =||

    ni=1

    iei n1i=1

    iei||

    ||en|| 2|||x|||||en||

    2K

    ||en|| ||x||

    .

    T {en}nN {en}nN. , . .

    (1.1.7)

    Banach {en}nNX. :i) {

    en}nN Schauder Xii) :

    en= 0 n N [en: n N] =X [en:n N] =< en:n N > K >0 m > n N 1,...,m R

    ||ni=1

    iei|| K||mi=1

    iei||

    15

  • 7/23/2019 James James Tree

    16/83

    A

    i)ii)m > n N 1,...,m R. T

    ||ni=1

    iei|| =||Pn(x)||=||Pn(Pm(x))|| ||Pn||||Pm(x)|| bc({en}nN)||mi=1

    iei||

    ii)i)A {en:n N} . -, , n N 1,...,n R 1e1+...+nen = 0. T

    |i|||ei||=||i

    j=1jej

    i1

    j=1jej2K||

    n

    i=1iei||= 0i= 0 i= 1,...,n

    n N

    pn:< en:n N >< en: n N > pn(mi=1

    iei) =

    min{n,m}i=1

    iei

    Opn {en : n N} -

    . , ||pn(m

    i=1iei)||=||

    min{n,m}

    i=1iei|| K||

    m

    i=1iei||

    pn ||pn|| K n N. < en : n N > X, pn

    pn : X< en : n N >||pn|| K n N. E m > nx X pn(x) = pn(pm(x)). - (1.1.4) x X - {i}iN pn(x) =

    ni=1

    iei n N.

    limn

    pn(x) =x. , >0. z=k

    i=1iei< en:n N >

    ||x z||<

    K+ 1 . m > kpm(z) =z.

    ||x pm(x)| | | |x z|| + ||zpm(z)|| + ||pm(z) pm(x)|| (1 + ||pm||)||x z||<

    E .

    16

  • 7/23/2019 James James Tree

    17/83

    (1.1.8)

    1 < p n N 1,...,m R

    ||ni=1

    iei||= (ni=1

    |i|p)1/p (mi=1

    |i|p)1/p =||mi=1

    iei||

    . c0 .

    (1.1.9)

    Banach {en}nN -K0 m > n N 1,...,m R

    ||ni=1

    iei|| K||mi=1

    iei||

    .

    K o (1.1.7) , bc({en}nN), . - . , K. x X||x|| 1 n N||Pn(x)|| K||Pm(x)|| m > n. n ||Pn(x)|| K||x|| K .

    17

  • 7/23/2019 James James Tree

    18/83

    , - .

    (1.1.10)

    . x X, x= 0 {xn}nNX sup

    nN

    ||xn||= M 0. N, n0 N

    ||sN x||< 3 max {M, ||x||} |x

    n(sN) x(sN)|0 m > n N 1,...,m R

    ||ni=1

    ixi|| K||mi=1

    ixi||

    (1.2.3)

    Banach {en}nN . T - *. E x [en : n N] x =

    n=1

    x(en)en.

    m > n N 1,...,m R. x X||x|| 1.

    19

  • 7/23/2019 James James Tree

    20/83

    |ni=1

    iei (x)| =|

    mi=1

    iei (Pn(x))|=|Pn(

    mi=1

    iei )(x)| ||Pn ||||

    mi=1

    iei || K||

    mi=1

    iei ||

    ||ni=1

    iei || K||

    mi=1

    iei ||

    {en}nN , x [en : n N] - {n}nN x =

    n=1

    nen x

    (en) = n n N. .

    Schauder . . Banach . Mazur.

    (1.2.4) (S.azur)

    F - . >0 xX ||x||= 1

    ||y|| (1 +)||y+mx|| yF m R

    A F , SF | | | | k N y1,...,ykSF SF

    ki=1

    S(yi,

    2). S(y, )

    y . Hahn-Banach, j {1,...,k}yi

    SX y

    i (yi) =

    ||yi

    || = 1. O

    k

    i=1

    Ker(yi ) -

    1. X xX ||x||= 1 yi (x) = 0 i= 1,...,k. ySF 0<

  • 7/23/2019 James James Tree

    21/83

    m R

    ||y+mx

    || ||yj+ mx

    | || |y

    yj

    || yj (yj+ mx)

    2

    = yj (yj)

    2

    =

    ||yj

    ||

    2= 1

    2 1

    1 + 0 < 0, ySF m R xSX(1 + )||y + mx|| 1. yFy= 0. T >0m R xSX

    1(1 +) y||y|| + mx||y||

    ||y|| (1 +)||y+mx||

    T .

    (1.2.5) (S.Banach)

    Banach . - Banach .

    A

    >

    0. A - {n}nN ln(1 +n)

    ln(1 +)

    2n n N.

    ni=1

    ln(1 +n)ln(1 +) n N n=1

    (1 +n)1 +

    H .x1 X ||x1|| = 1. F1 =< x1 >. A Mazur x2X ||x2||= 1 ||y|| (1 +2)||y+mx2|| yF1, m RF2 =< x1, x2 >. A Mazur x3 X ||x3|| = 1

    ||y||

    (1 +3)||

    y+mx3||

    y

    F2,

    m

    R. Fn =< x1, x2,...,xn > xn+1 X||xn+1|| = 1||y|| (1 +n+1)||y +mxn+1|| y Fn, m R. {xn}nN X. 1 +. , m > n N 1,...,m R.

    yk =ki=1

    ieiFk k N

    21

  • 7/23/2019 James James Tree

    22/83

    T

    ||ni=1

    iei|| = ||yn|| (1 +n+1)||yn+n+1xn+1||= (1 +n+1)||yn+1|| (1 +n+1)(1 +n+2)||yn+1+n+2xn+2||= (1 +n+1)(1 +n+2)||yn+3||

    m

    i=n+1

    (1 +i)||ym|| (1 +)||mi=1

    iei||

    {xn}nN 1 +.

    1.3

    (1.3.1)

    , Banach {xn}nN X, {yn}nN Y . O{xn}nN {yn}nN c, C>0 n N 1,...,n R

    c||ni=1

    nxn|| ||ni=1

    nyn|| C||ni=1

    nxn||

    (1.3.2)

    , Banach {xn}nNX, {yn}nNY . . :i)O{xn}nN {yn}nN .ii) {n}nNR

    n=1

    nxn , n=1

    nyn

    .iii) T : [xn:n N][yn:n N] T(xn) =yn n N.

    i)ii) {n}nN n=1

    nxn . o ni=1

    iyi

    nN

    Cauchy. , > 0N N

    22

  • 7/23/2019 James James Tree

    23/83

    m > n > N

    ||m

    i=n+1ixi|| Tn(i=1

    ixi) =ni=1

    iyi

    Fn:< x1,...,xn >< y1,...,yn > Fn(ni=1

    ixi) =ni=1

    iyi

    T nN Tn =Fn PnPn - (yn)nN. Tn Fn Pn -. , Banach-Steinhauss, T T(x) = lim

    nTn(x) xX

    T 1-1 y =n=1

    nynx =n=1

    nxn

    T(x) =y . T.

    iii) i) c = 1

    ||T1|| C=||T||.

    (1.3.3)

    Banach {xn}nN Banach. A {yn}nN c, C>0 n N 1,...,n R

    23

  • 7/23/2019 James James Tree

    24/83

    c||n

    i=1

    nxn|| ||n

    i=1

    nyn|| C||n

    i=1

    nxn||

    .

    A

    {yn}nN , . , m > n N 1, ...m R.T

    ||ni=1

    iyi|| C K||mi=1

    ixi|| CKc ||

    mi=1

    iyi||

    - . - .

    (1.3.4)

    Banach T : X X . (0, 1) xX ||xT(x)|| ||x||, T .

    T . ,

    ||T(x)| || |x|| ||x| | | |T(x)|| (1 +)||x||

    ||x| || |T(x)|| ||x|| (1 )||x|| ||T(x)||

    T , , , T(X) X.E T , T(X) . , Hahn-Banach, x0 SX x0(x) = 0 x T(X). 0 < < 1, x0X ||x0||= 1x0(x0)> . E

    ||x0 T(x0)|| = sup {x(x0 T(x0)) :||x||= 1} ||x0 T(x0)|| x0(x0 T(x0)) =x0(x0)> =||x0||

    24

  • 7/23/2019 James James Tree

    25/83

    .

    .

    (1.3.5)(Small Perturbation Lemma)

    Banach {xn}nN , {yn}nN {xn}nN K =inf{||xn||: n N}> 0.

    n=i

    ||xn yn||< 3K

    {yn}nN {xn}nN

    A

    o T : X XT(xn) = yn. {yn}nN {xn}nN. m > n1,...,m R

    |ni=1

    iyi|| ||T|||ni=1

    ixi|| ||T||K||mi=1

    ixi|| ||T||K||T1||mi=1

    iyi||

    {yn

    }nN . H

    n N 1, ...n R 1

    ||T1|| ||ni=1

    ixi|| ||ni=1

    iyi|| ||T||||ni=1

    ixi||

    n N. T x[xn:n N]

    |xn(x)|||xn||=||ni=1

    xi (x)ei n1i=1

    xi (x)ei||||xn|| 2K||x|| ||xn|| 2K

    n N o, Hahn-Banach, xnX - . xX

    n=1

    xn(x)(ynxn) X Banach . ,

    n=1

    |xn(x)|||yn xn|| 2K

    ||x||

    n=1

    ||yn xn||< 23||x||

    25

  • 7/23/2019 James James Tree

    26/83

    Oo

    T :X

    X T(x) =x +

    n=1

    xn(x)(yn

    xn)

    T oT , T(xn) =yn n N

    ||x T(x)||=||n=1

    xn(x)(yn xn)|| ||x||n=1

    ||xn||||yn xn||0

    n N k, m N :n < k < m ||sk sm|| () () {pn}nN N

    ||sp2n sp2n1|| n N

    un=sp2nsp2n1 un w0 ||un|| n N. {zn}nNzn =

    un

    ||un|| Y.

    1.4 Block block -

    . block .

    O (1.4.1)

    Banach {en}nN. {un}nN block {i}iN

    {ni

    }iN k

    N

    uk =

    nk+1i=nk+1

    iei

    (1.4.2)

    Banach {en}nN. . T block .

    {un}nNblock . Tun= 0 n N m > k N1,...,m R

    27

  • 7/23/2019 James James Tree

    28/83

    ||k

    j=1

    juj|| = ||k

    j=1

    j

    nj+1i=nj+1

    iei||=||k

    j=1

    nj+1i=nj+1

    jiei||

    K||mj=1

    nj+1i=nj+1

    jiei|| K||mj=1

    juj||

    {un}nN K.

    (1.4.3) (Sliding hump argument )

    Banach {en}nN {xn}nN

    = infnN ||xn||

    >0 limn

    ek(

    xn) = 0

    kN

    . >

    0 -

    {xn}nN block{un}nN{en}nN n=1

    ||xnun||2 < 2.

    ||xn|| = 1 n N

    x

    n

    nN

    block {bn}nN {en}nNn=1

    ||xn bn||2 < 2

    o limn

    Pk(yn) = 0

    k

    N. , k

    N >0.

    N N i= 1,...,k |ei (xn)|||ei|| N

    n > N

    ||Pk(xn)||=||ki=1

    ei (xn)ei|| ki=1

    |ei (xn)|||ei||< ()

    o 0< < . () o .k1= 1n1 = 0. xk1 =

    i=1

    (1)

    i

    ei n2

    N n2 > n1

    ||

    n=n2+1

    (1)n en|| <

    2

    ||n=1

    (1)n en n2n=1

    (1)n en|| <

    2

    28

  • 7/23/2019 James James Tree

    29/83

    u1 =n2

    n=n1+1

    (1)n en ||xk1 u1||2 k1

    xk2 =

    i=1

    (2)i ei

    ||n2i=1

    (2)i ei|| n2

    ||

    i=n3+1

    (2)i ei|| 0

    {xn}nN block {un}nN {en}nNn=1

    ||xn un||< . -

    =

    3K , K {en}nN, {xn}nN

    block {un}nN .

    A

    -

    . =

    3K, Small

    Perturbation Lemma, {xn}nN .

    30

  • 7/23/2019 James James Tree

    31/83

    (1.4.5)

    Banach {xn}nN 1. T block {xn}nN 1. block .

    A 1 X, {yn)}nN X 1. m, M >0 m ||yn|| M n N. k N |xk(yn)| ||xk||M n N {xk(yn)}nN k N. - {yn}nN {yn}nN {xk(yn)}nN k

    N. zn = yn+1

    yn. k

    N

    limn

    xk(zn) = 0. E c, C > 0 m N 1,...,m R

    c

    mi=1

    |i| ||mi=1

    izi|| Cmi=1

    |i| infnN

    {||zn||}> 0

    E {zn}nN . sliding hump argument - {zn}nN block{un}nN {xn}nN -. {un}nN 1.

    1.5 I shrinking boundedly complete

    O (1.5.1)

    X Banach {en}nN. H shrinking X = [en:n N]. X Banach {xn}nN X. {xn}nN boundedly complete {n}nN

    supnN ||ni=1

    ixi||

  • 7/23/2019 James James Tree

    32/83

    i) ii) block{un}nN||un|| = 1 n N. un w 0. x X x =

    n=1

    nen. T >0k0

    k > k0 :

    ||

    n=k+1

    nen||< |

    n=k+1

    nen(x)|< ||x|| 1 ()

    uk =

    nk+1i=nk+1

    iei m N nm > k0, k > m

    nk > k0 (

    )

    |x(uk)|=|i=1

    iei (uk)|=|

    i=nk+1

    iei (uk)|< uk w0

    ii)i) {en}nN shrinking. Tx / [en : n N] ||x|| = 1. Pn(x) =

    ni=1

    x(ei)ei

    {Pn(x)}nN x. E > 0 {mk}kN

    ||x Pmk(x)|| 2 k N ()

    n1 = m1. () x1 =n=1

    (1)n en X, ||x1|| = 1

    |x(

    i=n1+1

    (1)i ei)| 2. o k2 Nmk2 > n1

    n2=mk2

    ||x

    ||||

    i=n1+1

    (1i )ei

    n2

    i=n1+1

    (1)i ei

    ||<

    |x(

    i=n1+1

    (1)i ei)

    |

    32

  • 7/23/2019 James James Tree

    33/83

    ()x2 =n=1

    (2)n en X ||x2||= 1, |x(

    i=n2+1

    (1)i ei)| 2.

    k3N

    mk3 > n2 n3=mk3

    ||x||||

    i=n2+1

    (2)i ei

    n3i=n2+1

    (2)i ei||< |x(

    i=n1+1

    (1)i ei)|

    block{uk}kN |x(uk)| > k N.H {uk}kN . {uk}kN ||uk||=||Pnk+1(xk)Pnk(xk)|| 2K||xk||= 2K, . zn=

    un

    ||un|| , .

    (1.5.3)

    Banach shrinking {en}nN . -x X

    1

    KsupnN

    ||ni=1

    x(ei )ei|| ||x|| supnN

    ||ni=1

    x(ei )ei||

    ||x||= limn

    ||ni=1

    x(ei )ei||.

    A

    n N. T ||n

    i=1

    x(ei )ei||= sup|n

    i=1

    x(ei )y(ei)|: y BX

    y BX . shrinking y =n=1

    y(en)en.

    |ni=1

    x(ei )y(ei)| = |x(

    ni=1

    y(ei)ei )| ||x||||

    ni=1

    y(ei)ei )|| K||x||||y|| K||x||

    33

  • 7/23/2019 James James Tree

    34/83

    ||ni=1

    x

    (e

    i )ei|| K||x

    || n N 1

    KsupnN ||ni=1

    x

    (e

    i )ei|| ||x

    ||

    x BX x =n=1

    x(en)en. T

    |x(x)| = |n=1

    x(en)x(en)|= lim

    n|ni=1

    x(ei)x(ei )| sup

    nN

    |x(ni=1

    x(ei )ei)|

    supnN

    ||n

    i=1

    x(ei )ei|| ||x|| supnN

    ||n

    i=1

    x(ei )ei||

    .

    (1.5.4)

    c0 boundedly complete.

    A

    {enk

    }kN c0.

    {enk

    }kN -

    . supkN

    || ki=1

    eni|| = 1 0 ||zn|| M n N. E en

    w 0, zn w 0 sliding humpargument block{un}nN X {znk}kN {zn}nN . {un}nN boundedly

    34

  • 7/23/2019 James James Tree

    35/83

    complete {xnk}kN . T {enk}kN boundedly complete .

    (1.5.6)

    Banach boundedly complete {en}nN . Y = [en, nN].E .

    A

    OJ : X Y J(x)(y) = y(x) y Y J . J ., xX. T

    |J(x)(y)|=|y(x)| ||x| | | |y|| yY ||J(x)|| ||x||

    o J .

    ox =n=1

    nen. xn =nn=1

    nen x= limn

    xn.

    ||

    xn||

    K

    ||J(xn)

    || n

    N J

    . , n N. .Hahn-Banach x X ||x|| = 1 |x(xn)| =||xn||. x Pn< e1,...,en > Y xn=Pn(xn)

    ||xn||=|(x Pn)(xn)|=|J(xn)(x Pn)| ||x| | | |Pn| | | |J(xn)|| K||J(xn)||

    E - ||J(x)|| =||x|| x X. M J . y Y. o

    n

    i=1y(ei )ei

    nN

    X.

    K2||y||. , n N

    ||ni=1

    y(ei )ei|| K||J(ni=1

    y(ei )ei)||= K||ni=1

    y(ei )J(ei)||

    35

  • 7/23/2019 James James Tree

    36/83

    A o ||ni=1

    y(ei )J(ei)|| K||y||. , y =n=1

    y(en)enY

    ||y||

    1,

    |ni=1

    y(ei )J(ei)(y)| = |y(ni=1

    y(ei)ei )| ||y||||

    ni=1

    y(ei)ei || ||y||K||y|| K||y||

    E boundedly complete i=1

    y(ei )ei . A

    x=n=1

    y(en)en y =J(x) .

    (1.5.7)(R.C.James)

    Banach {en}nN . -:i)H{en}nN shrinking boundedly complete.ii) .

    i)

    ii) shrinking X = [en, n

    N]. A

    , , J , X X .ii) i) shrinking. x X. T Pn(x

    ) =ni=1

    x(ei)ei

    w x n . X w- w- X

    Pn(x)

    wx X =< en, n N >w

    =< en, n N >||.||

    Mazur. shrinking.

    boundedly complete. {n}nN R sup

    nN

    ||

    ni=1

    iei||

    =M. n=1

    nen. A

    xn =ni=1

    iei E X , MBX w. ,

    36

  • 7/23/2019 James James Tree

    37/83

    X , x MBX {xnk}kN {xn}nNx = w lim

    kxnk . E i N ei w

    ei (x) =ei (w limk

    xnk) = limk

    ei (xnk) =i i N

    Ex=n=1

    en(x)en =n=1

    nen .

    , - Banach boundedly complete . - .

    (1.5.8)

    X X .

    T :X Y Y =T[X] X. E Y =X X =T[X] X.

    oT : X Y T(x)(y) =y(x) y Y . H . .

    ||T(x)

    || = sup

    {|T(x)(y)

    |: y

    BY

    }= sup

    {|y(x)

    |: y

    BY

    } sup

    {|x(x)

    |: x

    BX

    }= sup {|x(x)|: xBX}=||x||E

    ||T(x)||= sup {|y(x)|: yBY} sup {|x(x)|: x BX}=||x|| T . T[X] - Y. , X Banach T[X] Banach Y. Q: Y X Q(y) =y , : X X X X. H Q . P : Y

    Y P = T

    Q. HP -

    . . , Q T = IY IY o Y. ,(Q T)(x)(x) =T(x)(x) = x(x) =x(x) xX. P2 =T Q T Q=T Q = P. M P[Y] = T[X]. A Q.

    , x X. T y = xY

    Y. TQ(y) = x. E- T[X] Y Y =T[X] KerP.

    37

  • 7/23/2019 James James Tree

    38/83

    KerP = X. y X P(y)(y) = T(Q(y) = T(y )(y) = y(y ) = 0 y Y X

    KerP. , y

    KerP T(y

    ) = 0 T

    11 y = 0 y X KerP X. T Y = T[X] X. To Y =X

    (1.5.9)

    Banach . o (X/Y) - Y.

    A

    oT : (X/Y) Y T(x)(x) = x(x+Y). xY T(x)(x) = x(Y) = 0. xX |T(x)(x)|=|x(x + Y)| ||x||||x + Y|| ||x||||x|| T . . T . x Y. x :X/Y R x(x+Y) =x(x). T xX

    |x(x+Y)| = |x(x)|=|x(x y)| yY ||x| | | |x y|| yY |x(x+Y)| ||x| | | |x+Y||

    x (X/Y). T T(x) =x . x (X/Y).

    ||T(x)|| = sup {|T(x)(x)|: xBX} sup|T(x)(x)|: x+YBX/Y

    = sup|x(x+Y)|: x+YBX/Y =||x||

    xX ||x+Y|| 1. T |x(x+Y)| = |T(x)(x)|=|T(x)(x y)| yY ||T(x)| | | |x y|| yY

    |x

    (x+Y)| ||T(x

    )| | | |x +Y|| ||T(x

    )||

    E ||T(x)||=||x|| T .

    Banach boundedly complete .

    38

  • 7/23/2019 James James Tree

    39/83

    (1.5.10)

    nach boundedly complete Y = [en, n N]. X

    = X Y

    . dim(X

    /X) =dimY

    =dim(X

    /Y)

    .

    Y = T[Y] Y. - Y = J[X] Y = J[X]. J[X] =T[Y] J[Y] = Y.OX = X Y. (X/X)=Y (X/Y) dim(X/X) =dimY =dim(X/Y).

    39

  • 7/23/2019 James James Tree

    40/83

    40

  • 7/23/2019 James James Tree

    41/83

    2

    James

    2.1 J n, m N n m [n, m] ={k N :nkm}. T

    , , . n N [n, ) ={k N :nk}. T .

    J =

    x={xn}nN R :sup m

    i=1|nIi

    xn|2

  • 7/23/2019 James James Tree

    42/83

    T

    (m

    i=1 |

    nIi

    (xn

    +yn

    )|2)1/2 = [(

    nI1

    xn

    + nI1

    yn

    )2 +...+ (nIm

    xn

    + nIm

    yn

    )2]1/2

    (mi=1

    |nIi

    xn|2)1/2 + (mi=1

    |nIi

    yn|2)1/2 ||x|| + ||y|| ||x+y|| ||x|| + ||y||

    inkowski. Banach.

    x(n)nN

    Cauchy J. T > 0N m > n > N ||x(m) x(n)|| < . i N Ii ={i} |x(m)i x(n)i |< m > n > N.

    x

    (n)

    inN i N. xi = limn x

    (n)

    i . x ={xi}iN. o x J x = lim

    nx(n). > 0 M N

    m > n M ||xn xm|| < 2 . o {Ii}ki=1

    (ki=1

    |jIi

    (x(m)j x(n)j )|2)1/2 nM m

    (k

    i=1

    |jIi

    (x(n)j xj)|2)1/2

    2 < nM ()

    n = M () x(M) x J x J x= lim

    nx(n)

    , n N, en =X{n}

    (2.1.2)

    x J

    . k

    N sk =k

    i=1

    xiei.

    ||sk||2 + ||x sk||2 ||x||2

    42

  • 7/23/2019 James James Tree

    43/83

    A

    {Ii}mi=1 l {1,...,m 1} Ii[1, n] i= 1,...,lIi[n+ 1, +) i= l + 1,...,m. T

    li=1

    |nIi

    sn|2 +m

    i=l+1

    |nIi

    (x sn)|2 =mi=1

    |nIi

    xn|2 ||x||2

    ||sk||2 + ||x sk||2 ||x||2

    (2.1.3)H{en}nN= (X{n})nN Schauder J.

    A

    en = 0 n N||en|| = 1 n N. J = [en : n N]. x ={xn}nN J. sn =

    ni=1

    xiei.

    x = limn

    sn., > 0. T

    {Ii

    }m

    i=1

    mi=1

    |nIi

    xn|2 >||x||2 2 ()

    n0 = max

    n: n

    mi=1

    Ii

    ()

    ||x||2 ||sn||2 < 2 nn0 nn0 ||xsn||2 =||xsn||2+||sn||2||sn||2 ||x||2||sn||2 < 2 . x = lim

    n

    sn.T k, nN

    k > n1,...,k R o {Ii}mi=1Ii[1, n] i= 1,...,m.

    (mi=1

    |jIi

    j|2))1/2 ||ki=1

    iei|| ||ni=1

    iei|| ||ki=1

    iei||

    43

  • 7/23/2019 James James Tree

    44/83

    (2.1.4)

    H J boundedly complete. c0 - J.

    {n}nN supnN

    ||ni=1

    iei|| 0

    n0 N m > n > n0 ||mi=1

    iei||2 ||ni=1

    iei||2 < 2 E (2.1.2)

    ||m

    i=n+1

    iei||

    ||mi=1

    iei||2 ||ni=1

    iei||2 <

    J Banach, n=1

    nen.

    (2.1.5)

    A J < c00(N) > c00(N) Banach Hamel . E J < c00(N)> . J.

    (2.1.6)

    I . I =nI

    en. I J.

    I. x J > 0 n0 N m > n > n0 |

    mi=n+1

    ei (x)| < .

    44

  • 7/23/2019 James James Tree

    45/83

    K nI

    en(x) x J. I :J R

    I(x) = nI

    en(x)

    x

    J, I

    Banach-Steinhauss I J. I w=nI

    en||I|| = 1

    I. s w

    =n=1

    en.

    E s / [en : n N]. , s

    ||.||=

    n=1

    en 0 <

  • 7/23/2019 James James Tree

    46/83

    (2.2.1)

    {dn}nN J d1=e1dn=en en1, n >1. {dn}nN Schauder J.A

    < dn, n N >=< en, n N > [dn, n N] =J.nN 1,...,n, n+1 R. {Ii}mi=1[1, n]. An /

    mi=1

    Ii

    (m

    i=1 |

    Ii(n

    i=1

    idi)

    |2)1/2 = (

    m

    i=1 |

    Ii(n+1

    i=1

    idi)

    |2)1/2

    ||

    n+1

    i=1

    idi|| ||

    n

    i=1

    idi|| ||

    n+1

    i=1

    idi||

    Im = [i, n] -in.

    (mi=1

    |Ii(ni=1

    idi)|2)1/2 = (m1i=1

    |Ii(ni=1

    idi)|2 + |Im(ni=1

    idi)|2)1/2

    = (m1

    i=1|Ii(

    n+1

    i=1idi)|2 +2i )1/2 ||

    n+1

    i=1idi|| ||

    n

    i=1idi|| ||

    n+1

    i=1idi||

    ||ni=1

    idi|| ||n+1i=1

    idi|| {dn}nN- .

    (2.2.2)

    H{dn}nN shrinking. .

    I A{un}nN block {dn}nN M = supnN

    ||un|| n=1

    un

    n .

    A

    46

  • 7/23/2019 James James Tree

    47/83

    m > k N ||mi=k

    ui

    i||2 5M2

    mi=k

    1

    i2 -

    J

    Banach. A

    uk =

    nk+1i=nk+1

    idi,

    mi=k

    ui

    i = nk+1

    k enk +

    nk+1 nk+2k

    enk+1+...+nk+11 nk+1

    k enk+11+

    + (nk+1

    k nk+1+1

    k+ 1 )enk+1+

    nk+1+1 nk+1+2k+ 1

    enk+1+1+

    + ...+

    + (nm1

    m 1nm+1

    m

    )enm+ ...+nm+11 nm+1

    m

    enm+11+nm+1

    m

    enm+1

    {Ij}j=1. To{1,...,}- .

    Fk = {j {1,...,}: Ij[nk, nk+1 1]}Fs = {j {1,...,}: Ij[ns+ 1, ns+1 1]} , s= k + 1,...,m 1

    Fm = {j {1,...,}: Ij[nm+ 1, nm+1]}

    F =m

    i=kFi

    U = {j {1,...,}:s1 < s2 {k+ 1,...,m}: Ij supp(us1)=, Ij supp(us2)=}

    F, U {1, ...}. s= k, k+ 1,...,mFs=,

    jFs

    |Ij (mi=k

    ui

    i)|2 = 1

    s2

    jFs

    |Ij (us)|2 M2

    s2

    jF

    |Ij (mi=k

    ui

    i)|2 M2

    mi=k

    1

    i2

    A jU, sj,1 = min

    {i

    {1,...,m

    }: Ij

    supp(ui)

    =

    }sj,2 = max {i {1,...,m}: Ij supp(ui)=}

    |Ij (mi=k

    ui

    i)|2 = |Ij (

    usj,1sj,1

    +usj,2

    sj,2)|2 2M

    2

    s2j,1+

    2M2

    s2j,2 4M

    2

    s2j,1

    47

  • 7/23/2019 James James Tree

    48/83

    E |U| m k+ 1

    jU

    |I

    j (

    mi=k

    ui

    i )|2

    4M2mi=k

    1

    i2

    ||mi=k

    ui

    i||2 5M2

    mi=k

    1

    i2.

    n=1

    un

    n. A x =

    n=1

    un

    n.

    A

    A (dn)nN shrinking, (1.5.2) x X, > 0 (un)nN block (dn)nNx(un) >

    n N. Tx(x) =n=1

    x(un)

    n >

    n=1

    1

    n = +, .

    (2.2.3)

    J = [en, n N] < s >. J 1 J.

    A

    < dn

    , n

    N >=< en

    , n

    N >

    < s >.

    J = [dn, n N] =< en, n N >< s > [en, n N]< s >= [en, n N]< s >

    dim < s >= 1< +. J = [en, n N]< s >

    (2.2.4)

    T 1 c0 J. , J , unconditional (.[7]unconditional ).

    48

  • 7/23/2019 James James Tree

    49/83

    2.3

    J .

    - J. J J R.C.James - . J .

    (2.3.1)

    Ye J \ J en we [en, n N] = [e]

    A

    o {en}nNw-Cauchy. , x J. A (2.2.3) x =

    n=1

    nen+s

    .

    x(en) =n+n

    nn 0. anach-Steinhauss e J en w

    e - e /

    J. , e w

    e(s) =n=1

    e(en) = 0. e(s) = lim

    ns(en) = 1. T -

    [en, n N] = [e]. x =n=1

    nen [en, n N]. T

    e(n=1

    nen) =

    n=1

    ne(en) = 0< e >[en:n N]

    A, x [en: n N] x J.

    y [en:n N] R :x =y +s x(x) = x(s) =x(s)e(x)x = x(s)e

    [enn: N] < e >. [en, n N] =< e >

    49

  • 7/23/2019 James James Tree

    50/83

    (2.3.2)

    J = J [e]. A - J quasi-reexive -1dim(J/J) = 1

    A

    {en}nN boundedly complete , (1.5.10) .

    O James, J | | | |1 | | | |2. ,

    J (

    J,|| ||

    1) (J

    ,|| ||

    2) . J . O

    J ={xn} c0 : sup (xp1 xp2)2 + (xp2 xp3)2 +...+ (xpm1 xpm)2

  • 7/23/2019 James James Tree

    51/83

    A

    (1.3.2) o n N 1,...,nR ||

    ni=1

    idi|| = ||ni=1

    iei||1. , m N 1 p1 p1 < p2 p2 < . . . < pm pm n. Ij = [pj, p

    j ] j = 1,...,m n+1 = 0

    mj=1

    |Ij (ni=1

    idi)|2 = (p1 p1+1)2 + (p2 p2+1)2 +...+ (pm pm+1)2

    ||n+1

    i=1iei)||21 = ||

    n

    i=1iei)||21 ||

    n

    i=1idi)|| ||

    n

    i=1iei)||1

    mN p1 < ... < pmn + 1, Ij = [pj , pj+1 1], j= 1,...,m

    (p1 p2)2 +...+ (pm1 pm)2 =mj=1

    |Ij (ni=1

    idi)|2 ||ni=1

    idi||2

    ||ni=1

    iei||1 ||ni=1

    idi||

    .

    (2.3.4)

    {en}nN shrinking (J, | | | |1) (J, | | | |2).

    A

    A ||n

    i=1 idi|| =||n

    i=1 iei||1 1,...,n R, n N || ||1 || ||2 o (2.2.2) {un}nN block {en}nN

    n=1

    un

    n

    . (2.2.2).

    51

  • 7/23/2019 James James Tree

    52/83

    (2.3.5)

    x J {x(en)}nN.

    A

    x J. ||||1. {en}nN - shrinking, (1.5.3) ||x||1= lim

    n||

    ni=1

    x(ei )ei||1

    n N xn=ni=1

    x(ei )ei. T N N

    ||x||21 ||xN||21 < 2 ()E k N p1 < ... < pkN+1 ||xN||1=[x(ep1) x(ep2)]2 +...+ [x(epk1) x(epk)]2.T m > nN+ 2 |x(em) x(en)|< , (x(en))nN Cauchy . m N ||xm||1 >||x||1 ||x||1 =sup

    nN||

    ni=1

    x(ei )ei||1.

    (2.3.6)

    O(J, | | | |2) .

    o :J J (x) = (, x(e1) , x(e2) , ...) =limn

    x(en), (2.3.5).

    . 1=,...,n=x(en1) (x) =

    n=1

    nen

    ||(x)||2 =||n=1

    nen||2 = supnN

    ||ni=1

    iei||2=supnN

    ||ni=1

    x(ei )ei||2 =||x||2

    {en}nN shrinking (J, | | | |2). . x={xn}nN J.TsupnN

    ||ni=1

    (xi+1 x1)ei||2

  • 7/23/2019 James James Tree

    53/83

    J , x J {yn}nN {yn}nN yn wx x(en) =xn+1x1 n N.E (x) =x.

    (2.3.7)

    J (J, | | | |2)o J - (J, | | | |2) .

    2.4 J 2-saturated J 2-saturated -

    2. J .

    (2.4.1)

    {un}nN block {en}nN. m N 1,...,m R

    (m

    i=1

    2i

    )1/2

    ||

    m

    i=1

    i

    ui||

    A

    X m N 1,...,m R mi=1

    2i = 1. 1 ||mi=1

    iui||., ||ui|| = 1 i = 1,...,m {un}nN block {Ij}j=1 1 < 1 < ... < m1 < 0= 1m =

    {Ij

    }i

    j=i1 supp(ui)

    i= 1,...,m

    ij=i1

    |Ij (ui)|2 = 1 i= 1,...,m

    j=1

    |Ij (mi=1

    iui)|2 =mi=1

    2i = 11 ||mi=1

    iui||

    53

  • 7/23/2019 James James Tree

    54/83

    (2.4.2)

    {un}nN block {en}nN limn

    s(un) = 0. T >0

    {un}nN m N 1, ...m R

    (1 2

    )(mi=1

    2i )1/2 ||

    mi=1

    iui|| (

    5 +

    2)(

    mi=1

    2i )1/2

    A

    A uk =

    nk+1i=nk+1

    iei, yk = uk s(uk)enk+1.

    ||yk

    || 1 +

    |s(uk)

    | k

    N lim

    k ||uk

    yk

    || = 0, -

    {yn}nN (yn)nN {un}nN {un}nN

    k=1

    ||uk yk||2 < 2

    16 ||yk||< 1 +

    2

    128 k N

    m N 1,...,m R mi=1

    2i = 1. T

    1 2

  • 7/23/2019 James James Tree

    55/83

    sj,2 =max {i {1,...,m}: Ij supp(yi)=}.T

    jU

    |Ij (mi=1

    iyi)|2 =

    jU

    |Ij(sj,1ysj,1) +Ij(sj,2ysj,2)|2

    jU

    (22sj,1 |Ij(ysj,1)|2 + 22sj,2|Ij(ysj,2)|2)4 + 2

    32

    X F, U {1,...,},

    ||mi=1

    iy

    i||< 5 + 2

    16 < 5 +

    4

    ||mi=1

    iui||

    mi=1

    |i|||ui yi|| + ||mi=1

    iyi|| (

    mi=1

    ||ui yi||2)1/2 +

    5 +

    4

    5 +

    2

    (2.4.3)O J 2-saturated. E J

    {xn}nN > 0 {xn}nN{xn}nN m N 1,...,m R

    (1 )(mi=1

    2i )1/2 ||

    mi=1

    ixi|| (

    5 +)(

    mi=1

    2i )1/2

    A

    J 1 (1.3.7) {xn}nN J . sliding hump argument block{un}nN {xn}nN {xn}nN

    n=1

    ||xn un||2 < 2

    4

    55

  • 7/23/2019 James James Tree

    56/83

    m N 1,...,m R mi=1

    2i = 1

    ||mi=1

    ixi||

    mi=1

    |i|||xi ui|| + ||mi=1

    iui||

    5 +

    ||mi=1

    iui|| mi=1

    |i|||xi ui|| ||mi=1

    ixi|| 1 ||

    mi=1

    ixi||

    To (1.3.3).

    56

  • 7/23/2019 James James Tree

    57/83

    3

    O James Tree

    3.1 O J T Cantor

    o . O - . J T - . J , 2.

    O (3.1.1)

    O2

  • 7/23/2019 James James Tree

    58/83

    i= j. - 1,...,n.

    I

    2

  • 7/23/2019 James James Tree

    59/83

    sup {Ii}mi=1. J T - .

    x J T o||x|| = sup mi=1

    |tIi

    x(t)|2

    1/2

    , sup

    - {Ii}mi=1

    (3.1.3)

    O(J T, | | | |) Banach.

    H (2.1.1).

    . || || . . x, y J T {Ii}mi=1 . T

    (mi=1

    |tIi

    (x(t) +y(t))|2)1/2 = [(tI1

    x(t) +tI1

    y(t))2 +...+ (tIm

    x(t) +nIm

    y(t))2]1/2

    (

    m

    i=1 |tIi

    x(t)

    |2)1/2 + (

    m

    i=1 |tIi

    y(t)

    |2)1/2

    ||x

    ||+

    ||y

    || ||x+y

    || ||x

    ||+

    ||y

    || inkowski. Banach.

    {xn}nN Cauchy J. T > 0N m > n N ||xm xn|| < . t 2 n > N. {xn(t)}nN t2 n M ||xnxm|| < 2

    .

    o {Ii}k

    i=1

    (ki=1

    |tIi

    |xm(t) xn(t))|2)1/2 < 2

    m > nM m

    (ki=1

    |tIi

    |xn(t) x||2)1/2 2

    < nM ()

    59

  • 7/23/2019 James James Tree

    60/83

    n = M() xM x J T x J T x= lim

    nxn

    (3.1.4)

    x JT. k N sk =ki=1

    xiei.

    ||sk||2 + ||x sk||2 ||x||2

    (2.1.2)

    (3.1.5)H{en}nN Schauder J T.

    A

    en = 0 n N ||en|| = 1 n N. o J T = [en :nN]. x J T. sn =

    ni=1

    x(ti)ei.

    x = limn

    sn., > 0. T

    {Ii

    }m

    i=1 ,

    mi=1

    |tIi

    x(t)|2 >||x||2 2 ()

    n0 = max

    |t|: t

    mi=1

    Ii

    ()

    ||x||2 ||sn||2 < 2 n2n0+1 n2n0+1 ||xsn||2 =||xsn||2 + ||sn||2||sn||2 =||x||2||sn||2 < 2 . x= lim

    nsn. T n N

    1,...,n, n+1 R o {Ii}mi=1tn+1 /

    mi=1

    Ii.

    (mi=1

    |tjIi

    j|2))1/2 ||n+1i=1

    iei|| ||ni=1

    iei|| ||n+1i=1

    iei||

    60

  • 7/23/2019 James James Tree

    61/83

    .

    (3.1.6)H{en}nN boundedly complete . c0 -

    J T.

    (2.1.4).

    (3.1.7)

    J T < c00(2 .

    (3.1.8)

    K (2.1.6), I ,

    I =sI

    es JT. A, I , I w

    =sI

    es JT.

    ||I|| = 1 I.E, 2N

    w

    =n=1

    e|n. I /[en : n N], I, {en}nN shrinking J T . , x

    J T,

    ||x||= sup mi=1

    |Ii(x)|21/2

    {Ii}mi=1 , , .

    (3.1.9)

    2N

    o[e|n

    , n

    N] J.

    T :< e|n, n N > J T(ni=1

    ie|i) = (1,...,n, 0,...). H T -

    . N, I1= [n1, n1], ...Im=

    61

  • 7/23/2019 James James Tree

    62/83

    [nm, nm] 2

    0

    N N m > n > N ||m

    i=n+1

    ie|i||=||m

    i=n+1

    iei||<

    E

    n=1

    ne|n T(

    n=1

    ne|n) =

    n=1

    nen. E

    .

    (3.1.10)

    O J T .

    A

    :2N 1-. 1=2 s2

  • 7/23/2019 James James Tree

    63/83

    (e|k)kNwCauchy. x J T x

    [e|n :

    nN]

    [e|n :n N] k N

    x(e|k) =n=1

    nen(T(e|k))+s

    (T(e|k)) =n=1

    nen(ek)+s

    (ek) =k+ k

    kk 0. JT =w lim

    ke|k.

    / J T.I () = limn

    (e|n) = 1. A o

    J T w () =

    n=1(e|n) = 0

    . .

    3.2 O 1 J T 1 J T.-

    J J -, J T .

    {In}nN 2

  • 7/23/2019 James James Tree

    64/83

    x J T. K BJT sup {k(x) :k K} ||x||. n N xn=

    ni=1

    ei (x)ei. T

    {Ii}mi=1 ||xn|| 1n < (mi=1

    |Ii(xn)|2)1/2.

    i= Ii(xn)

    (mi=1

    |Ii(xn)|2)1/2 k =

    mi=1

    iIiKk(xn) = (

    mi=1

    |Ii(xn)|2)1/2

    o ||xn|| 1n < k(xn)sup {k(xn) :k K}n ||x|| sup {k(x) :k K}

    . H .

    (3.2.2)

    To K w- J T

    A

    J T , (BX, w) , K . kn = w

    n=1i,nI

    i,n

    K. n N|i+1,n| |i,n| i N . .

    {In}nN . T {Ikn}nN IIkn

    wI. {Ikn}nN

    Ikn(es)

    nN

    s

    2

  • 7/23/2019 James James Tree

    65/83

    M [N], {i}iNB2i,n

    nM i i N {Ii}iN Ii = w limnM

    Ii,n. {Ii}iN

    . k = w n=1

    iIi K.

    k = w limnM

    kn. s 2 0. N N

    (

    i=N+1

    2i )1/2

    limsupnL

    L2(un)+liminf

    nLL

    2(un)>2

    2 () k N k

    2

    4 > M2.

    L0 [M]1 2N (). T lim sup

    nL0

    12(un) lim inf

    nL01

    2(un) 2

    4.

    L1[L0] limnL1

    12(un)>

    2

    4 22N (). -

    1

    =2. Lk

    Lk1

    , ...,

    L1

    N

    1,...,k2N limnLi

    i2(un) >

    2

    4

    i = 1,...,k limnLk

    i2(un) >

    2

    4 i = 1,...,k. E N Lk

    i = 1,...,k i2(un) >

    2

    4 n Lk : n NE 1,...,k

    {un}nN block

    n0 Lk n0 N ||un0||2 ki=1

    i2(un0) > k

    2

    4 > M2

    , .

    (3.2.7)

    K J T wCauchy .

    68

  • 7/23/2019 James James Tree

    69/83

    1 J T 1- Rosenthal.

    (3.2.8)

    J T 1c0. unconditional.

    3.3

    J T . - . R.Haydon - .(.[3])

    (3.3.1)(R.Haydon)

    Banach 1. T ow-

    KX convw

    (K) =conv||.||(K)

    M J T.

    (3.3.2)

    J T = [I :I 2

  • 7/23/2019 James James Tree

    70/83

    .

    2(2N) =

    f : 2N R :supF

    |f()|2 :F 2N =sup

    F

    f()g() :F 2N 1/2

    2(2N) Hilbert. - Riesz Hilbert S : 2(2

    N) 2(2N)S(f)(g) =< f, g > g2(2N) .

    (3.3.3)

    f 2(2N). T {n}nN 2 {n}nN 2N f=

    n=1

    nX{n}

    A

    suppf =n=1

    2N :|f()|> 1

    n

    . suppf

    .

    2N :|f()|> 1

    n

    n

    N. n

    N k N 1,...,k 2N |f(i)| > 1n i = 1,...,k.

    k

    n2 m1. y2Ym2 . , ykYmk mk+1N yk+1Ymk+1, -mk+1 =max

    mk, m

    k+1

    + 1. E {mk}kN

    . dist(x, Ymk) d(x, yk) k N limm

    dist(x, Ym) =

    limk

    dist(x, Ymk) limk

    d(x, yk) = d(x, y) limm

    dist(x, Ym) dist(x, Y). - dist(x, Y) = lim

    mdist(x, Ym).

    Y = [es :s N]. -Q:J T J T/Y Q(x) =x +Y . E

    J T/Y = Q[J T] =Q(< I :I >Q[< I :I >]= [I +Y :I ]

    J T/Y = [I +Y :I ].

    (3.3.5)O J T/Y 2(2N).

    A < I + Y :I 2 . E I , S

    71

  • 7/23/2019 James James Tree

    72/83

    I + Y =S + Y (I) =(S) I S Y . E- U :< I +Y : I 2 2(2N)

    U(

    ni=1

    iIi + Y) =

    ni=1

    iX{(Ii)}. HU . . X , I1,...,In

    1,...,n Rni=1

    2i = 1.A ||ni=1

    iIi+Y||= 1.

    T

    |ni=1

    iIi(x)| (

    ni=1

    2i )1/2(

    ni=1

    Ii2(x))1/2 ||x|| x J T

    ||

    n

    i=1

    iIi || 1 ||

    n

    i=1

    iIi +

    Y|| 1

    , N I1,...,In.

    Ym =< es :|s| m >. T Y =

    m=1

    Ym. m N,

    xm=ni=1

    ie(Ii)|m+1 . ||xm||= 1 mN.T mNy Ym

    |ni=1

    iI

    i(xm) y

    (xm)|=|ni=1

    iI

    i(xm)|= 11 ||ni=1

    iI

    i y

    || y

    Ym

    1dist(ni=1

    iIi, Ym) mN ||

    ni=1

    iIi +Y||= dist(

    ni=1

    iIi, Y) =

    = limm

    dist(ni=1

    iIi, Ym)1 (3.3.4)

    K U J T/Y U. M . f=

    n=1

    nX{n}= limk

    U(kn=1

    nn+Y).

    E f U[J T/Y]. E J T/Y Banach, U[J T/Y] Banach . U[J T/Y] 2(2N)f U[J T/Y]. U .

    J.

    72

  • 7/23/2019 James James Tree

    73/83

    (3.3.6)

    J T quasi-reexive J T/ J T .

    J T boundedly complete (1.5.10) dim(J T/ J T) =dim((J T/Y)) =dim(2(2N)) =dim(2(2N)) = +

    (3.3.7)

    J T = J T [ : 2N]. E, x JT x = x +

    n=1

    nn x J T, {n}nN2

    {n}nN2N.

    A

    , (3.1.11), J T [ :2N] ={0}. J T boundedly complete (1.5.10) y Y y =

    n=1

    nn {n}nN2

    {n}nN 2N. TU (1.5.9) (3.4.5) S 2(2N) . A L = T US : 2(2N) Y L . L L(X{}) = 2N. 2N I 2

  • 7/23/2019 James James Tree

    74/83

    (3.3.8)

    O J T w J T x J T {xn}nN J T x =w limn xn.

    A

    x = x+j=1

    jj . x1 = x. n > 1kn

    1,...,n. xn= x +n

    j=1

    jej |kn . {xn}nN

    {n}nN 2. E, (1.1.10) I(xn) n

    j=1

    jj (I) I. ,

    I. A i N (I) = i n n0 I(xn) = i =

    n=1

    nn (I

    ). I(xn) = 0 =j=1

    jj (I

    ) n N.

    I I(xn)n

    j=1

    jj (I

    )

    .

    3.4 O J T 2-saturated J T 2saturated,

    2. - [1].

    . - Banach. , M , M(2) =

    {(n, m) :n, m

    M, n < m

    } [M]

    M.

    74

  • 7/23/2019 James James Tree

    75/83

    (3.4.1) (.Ramsey)

    A1,...,Ak N N(2)

    =

    ki=1 A

    i. T M [N] i {1,...,k} M(2) Ai.

    L [N]n N {n}(2)L ={n, m) :mL,n < m}. M1= N m1M1. M2[M1] i1 {1,...,k} {m1}(2)M2 Ai1 .m2 M2 m2 > m1. T M3 [M2] i2 {1,...,k} {m2}(2)M3 Ai2 . , -

    {mn

    }nN

    N,

    {Mn

    }nN

    [N]

    {in

    }nN

    {1,...,k} mp Mn p n{mn}(2)Mn+1 Ain n N.

    N =ki=1

    n N :{mn}(2)Mn+1 Ai

    . i {1,...,k}

    L =

    n N :{mn}(2)Mn+1 Ai

    .

    M ={mn : nL} [N]. T mn, mp M mn < mp n < p.Omp Mn+1 (mn, mp) Ai. M(2) Ai .

    Ramsey , .

    (3.4.2)

    {xn}nN block J T limn

    I(xn) = 0

    I. T > 0 {xn}nM S, in(S) =, |S(xn)| nM, n(S)M, S.

    > 0. Y K = supnN

    {||xn||}. n N n = min {supp(xn)}. Qn =

    t2 Stin(S) =t

    75

  • 7/23/2019 James James Tree

    76/83

    T n N

    2

    |Qn|< tQn |S

    t(xn)|2

    ||xn||2

    K2

    |Qn| K2

    2 n N

    N {0} L [N]|Qn| = n L. A = 0 (xn)nL, Qn = n L. 1. nL Qn ={ti,n: 1i}. i, j {1,...,}

    Ai,j ={n, mL : n < m S ti,n tj,m, |S(xn)|> }

    A A = N(2)

    \ 1i,j

    Ai,j . N(2)

    = A 1i,j

    Ai,j . ,

    Ramsey M [N]M(2) AM(2) Ai,j i, j {1,...,}. , i, j {1,...,} M(2) Ai,j . n, kM n + 1< k, (n, k), (n + 1, k)M(2). ti,nti,n+1. , S1 ti,n S2 ti,n+1 tj,k, |S1(xn)| > |S2(xn+1)| > . , - ti,n+1 S1. Sn,n+1 ti,n ti,n+1.

    |Sn,n+1(xn)

    |=

    |S1(xn)

    |> . I=

    n=1

    Sn,n+1. E

    I |I(xn)|=|Sn,n+1(xn)|> nM, lim

    nI(xn) = 0. M(2) A.

    (xn)nM . , -S in(S) = n, m Mn < m |S(xn)| > |S(xm)| > . t1 S |t1|= n t2 S |t2|= m, QnQm, oi, j {1,...,} t1 = ti,nt2 = tj,m.(n, m)Ai,j , A

    1i,j

    Ai,j =.

    block (xn)nN

    J T, > 0, -

    M [N] S in(S) = |S(xn)| nM n(S), .

    (3.4.3)

    block {yn}nN J T limn

    I(xn) = 0

    I. T > 0, {yn}nN n N

    76

  • 7/23/2019 James James Tree

    77/83

    1,...,n R

    (

    ni=1

    2

    i )1/2

    ||ni=1

    iy

    i|| 2(1 +)(ni=1

    2

    i )1/2

    > 0. {k}kN R. , {Mk}kN [N] {yn}nMk k k N. k N S in(S) =, |S(yn)| k n Mk n(S) Mk. n N, n = min {supp(xn)} mn = 2n . - {pn}nN {kn}nN

    pnMkn n N n=1

    mn(

    l=n+1

    2kl)< 2

    k1= 1 p1Mk1 . En n 0L1[N]rL1

    2r < 2

    2m1

    k2 L1 k2 L1 p2 Mk2 p2 > p1. En nL1 0L2[L1]

    rL2

    2r < 2

    22m2

    k3 L2 k3 > k2 p3 Mk3 p3 > p2. {kn}nN {pn}nN, pn Mkn n N, {Ln}nN [N] kn Ln

    rLn2r n}. AA(S)=, (S) = minA(S)., (S) = +.

    n=(S)

    |S(yn)|2 ni(S)

    2n

    A(S) =

    {n1 < n2 < ... < nj < nj+1 < ...

    }. E

    (S) = n1 i(S) n1. j N (yn)nnj nj |S(ynj)|> nj |S(ynj+1| nj . E n=(S)

    |S(yn)|2 =

    ni(S):n=n1

    |S(yn)|2 =j=2

    |S(ynj )|2 +

    ni(S):n/A(S)

    |S(yn)|2

    j=1

    2nj+

    ni(S):n/A(S)

    2n=ni(S)

    2n

    nN 1,...,n

    R

    n

    i=1

    2i = 1. M

    (2.4.1) 1 ||ni=1

    iyi||.

    , U . S U, S=S0 S,

    S0 =

    tS :|t|< bi(S)

    S =

    tS :bi(S) |t|

    . , , , . S0, S S . S =S1 S

    S1 =

    tS:bi(S) |t|< bi(S)+1

    S

    =

    tS:bi(S)+1 |t|

    78

  • 7/23/2019 James James Tree

    79/83

    ToS

    S

    =S

    1 S2 S3

    S

    1 = tS:bi(S)+1 |t|< b(S)S

    2 =

    tS:b(S) |t|< b(S)+1

    S

    3 =

    tS:b(S)+1 |t|

    N (S

    ) = + b(S) = +. S = S0 S1 S1 S2 S3 . x=

    n

    i=1iy

    i

    SU

    |S(x)|2 =SU

    |S0(x) +S1(x) +S1 (x) +S

    2 (x) +S

    3 (x)|2

    4SU

    (|S0(x)|2 + |S1(x)|2 + |S2 (x)|2)) + 4

    SU

    |S1 (x) +S3 (x)|2

    R S0, S1, S

    2 , R(x) = iR(yi)

    i {1,...,n}. |R(x)|2 =ni=1

    2i |R(yi)|2. E

    SU

    (|S0(x)|2 + |S1(x)|2 + |S2 (x)|2)) =

    SU

    ni=1

    (2i (|S0(yi)|2 + |S1(yi)|2 + |S2 (y

    i)|2))

    =ni=1

    2i (SU

    (|S0(yi)|2 + |S1(yi)|2 + |S2 (y

    i)|2))

    ni=1

    2i ||yi||=ni=1

    2i = 1

    E S U,

    |S1 (x) +S

    3 (x)

    |2 =

    |

    n

    i=1,i=(S

    )

    iS(yi)

    |2

    (

    n

    i=1,i=(S

    )

    2i )(n

    i=1,i=(S

    ) |

    S(yi)

    |2)

    n=(S)

    |S(yn)|2

    ni(S)

    2n

    k N Uk ={S U :i(S) =k}. S Uk i(S) = k + 1

    79

  • 7/23/2019 James James Tree

    80/83

    SU|

    S

    1 (x) +S

    3 (x)

    |2 =

    k=1

    SUk |

    S

    1 (x) +S

    3 (x)

    |

    =k=1

    SUk

    ni(S)

    2n =k=1

    SUk

    nk+1)

    2nk=1

    mk(

    n=k+1

    2n)< 2

    , U

    SU|S(x)|2 < 4 + 42 0 {xn}nN n N 1,...,n R

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi || (2 + 3)(

    ni=1

    2i )1/2

    A

    Y JT. A 1 - J T, (1.3.7), {xn}nN Y . > 0. slidinghump argument {xn}nN block (yn)nN

    n=1

    ||xn yn||2 < 2 ()

    80

  • 7/23/2019 James James Tree

    81/83

    I(xn) n 0 () ||xn yn|| n 0.

    I

    |I(yn)| |I(xn)| + ||I||||xn yn|| n N lim

    nI(yn) = 0

    E, , > 0 - {yn}nN n N 1,...,n R

    (ni=1

    2i )1/2 ||

    ni=1

    iyi|| 2(1 +)(

    ni=1

    2i )1/2

    {xn

    }nN

    {xn

    }nN. n

    N 1,...,n R,

    ||ni=1

    ixi ||

    ni=1

    |i|||xi yi|| + ||ni=1

    iyi||

    (ni=1

    2i )1/2(

    ni=1

    ||xi yi||2)1/2 + 2(1 +)(ni=1

    2i )1/2

    (2 + 3)(ni=1

    2i )1/2

    ||ni=1

    iyi||

    ni=1

    |i|||xi yi| | | |ni=1

    ixi ||

    (ni=1

    2i )1/2 (

    ni=1

    2i )1/2(

    ni=1

    ||xi yi||2)1/2 ||ni=1

    ixi ||

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi ||

    (1 )(ni=1

    2i )1/2 ||

    ni=1

    ixi || (2 + 3)(

    ni=1

    2i )1/2

    (1.3.3).

    81

  • 7/23/2019 James James Tree

    82/83

    82

  • 7/23/2019 James James Tree

    83/83

    [1] I.Amemiya, T.Ito, Weakly null sequences in James spaces on trees, KodaiMathematical Journal 4, 3, 418425, 1981.

    [2] P.Eno,A counterexapmle to the approximation property in Banach spaces, Acta

    Math, 130, 309-317, 1973.

    [3] R. Haydon, Some more characterizations of Banach spaces containing l1,Mathematical Proceedings of the Cambridge Philosophical Society, 80, 269-276, 1976.

    [4] R.C. James,A non-reexive space isometric with its second conjugate space, Proc. Nat.Acad. Sci. U.S.A. 174-177, 1951

    [5] R.C. James,A separable somewhat reexive Banach space with non-separable dual,Bull. Amer. Math. Soc., 80, 738-743, 1974.

    [6] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain 1and whose duals are non separable, Studia Math., 54, 81-105, 1975.

    [7] J. Lindenstrauss and L. Tzafriri,Classical Banach spaces I and II, Springer, 1996.

    [8] W.Rudin,Real and Complex Analysis, McGraw-Hill, New York, 1966.