Top Banner
1 ニニニニニニニニ ニニニニニ 年年 年年 年 年 2002116 年年年年年年年 年年年年年年年年年年年年 年年年 年 西一 1. What do we know today? Solar Neutrino results (SK & SNO) First direct observation of oscill ation in solar Atmospheric neutrino results Atmospheric deficiency LSND and KARMEN More than 3 neutrinos? Present status of K2K 2. What should be (shall be) done next 3. Conclusion
60

ニュートリノ物理 発展と動向

Jan 31, 2016

Download

Documents

archer

ニュートリノ物理 発展と動向. What do we know today? Solar Neutrino results (SK & SNO) First direct observation of oscillation in solar n Atmospheric neutrino results Atmospheric n deficiency : n m n t LSND and KARMEN More than 3 neutrinos? Present status of K2K What should be (shall be) done next - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ニュートリノ物理 発展と動向

1

ニュートリノ物理発展と動向 2002年1月16日

@国際高等研究所京都大学大学院理学研究科

西川公一郎

1. What do we know today?

• Solar Neutrino results (SK & SNO)

– First direct observation of oscillation   in solar

• Atmospheric neutrino results

– Atmospheric deficiency

• LSND and KARMEN

• More than 3 neutrinos?

• Present status of K2K

2. What should be (shall be) done next

3. Conclusion

Page 2: ニュートリノ物理 発展と動向

2

3 Generations MNS matrix

• 3 angles and 1 phase

e2i

3

2

1

321

321

3e2e1ee

E2

m

UUU

UUU

UUU

2323

2323i

13i

13

1313

1212

1212

cossin0

sincos0

001

ecos0esin

010

sin0cos

100

0cossin

0sincos

U

propagation

23223

213

24212 eV10m)m()eV10(m

solar e : m2 <10-4eV2           no

reactor e : (Chooze, Pal-Verde) Ue3 ~ small

atm. m2 >10-3eV2 and

Page 3: ニュートリノ物理 発展と動向

3

Measurements at m2>10-3eV2 (L/E ~ several 100 (km/GeV))

m223~m2

13>>m212

E

Lmsin2sincos

2232

232

134

E

Lmsin2sincos

2232

132

232

e

E

Lmsin2sin1

2232

132

ee

Three generation ?mixing anglemass difference

Page 4: ニュートリノ物理 発展と動向

4

Solar neutrinoe =

1. Standard Solar Model (SSM) and experiments

2. New SNO results

3. Super-Kamiokande update to 1286 days

4. Summary of the status

Page 5: ニュートリノ物理 発展と動向

5

Sources of Solar Neutrinos

http://www.sns.ias.edu/~jnb/

SNO

Each experiment  is seeing different sources

Standard Solar Model relates different kinds of experiments

Page 6: ニュートリノ物理 発展と動向

Target Data / SSM(BP2000)

・ Homestake 37Cl 0.32±0.03

・ Kamiokande e- (water) 0.54±0.07

・ SAGE 71Ga 0.58±0.06

・ GALLEX+GNO 71Ga 0.57±0.05

・ SK e- (water) 0.465±0.015

74 ±775 +8-7

GaH2O37Cl SuperK Kamioka SAGE GALLEX(+GNO)

0.47±0.020.54±0.07

Homestake

2.56 ±0.23

8.1 +1.4-1.1 SNU 129 +9

-7 SNU1.0

Theory7Be8B

pp, pepCNO

Experiments

+0.20-0.16

Be 0

B 0.5

then….no need of osc.

Solar Neutrino Experiments (as of 2000)

Page 7: ニュートリノ物理 発展と動向

7

Page 8: ニュートリノ物理 発展と動向

8

Measurement of 8B (SK and SNO)

• SK e + e e + e CC : NC =6:1 (1)– forward peaked

• SNO e + d e + p + p CC (2)

       e + e e + e CC : NC =6:1•(1)-(2) NC event rate due to 8B

•should be constant for oscillation among active neutrinos

–8B Flux measurement with neutral current interaction

•Confirm SSM (Be, B pp chain = solar   luminescence)

•Flux (deduced from NC) – Flux (deduced from CC)

= Non e components

•SSM independent evidence of oscillation

Page 9: ニュートリノ物理 発展と動向

9

New SNO results• Teff=6.75 Mev

• No large spectrum distortion

• Charged current :

   ( Q=1.44MeV)

e + D p + p + e (CC)

• electron scattering :

+ e e + (ES)

12612.0

01.0scm10)07.075.1(

12616.0

14.0scm10)34.039.2(

Page 10: ニュートリノ物理 発展と動向

10

SK

CC = e

ES = e +0.154 ,

SNO CC = 1.750.15SK ES = 2.320.09

, = 3.691.13

X = 5.440.99 (total active 8B neutrino flux)(SSM = 5.05+1.01/-0.81)

[x106/cm2/s]

SK + SNO combined

Page 11: ニュートリノ物理 発展と動向

11

Super KamiokandeSuper Kamiokande

41.4m

39.3m

50kton stainless steel tank

Outer detector 1867 of 8” PMT

Inner detector11146 of 20” PMT

Ikeno-yamaKamioka, Gifu

Mozumi Atotsu

3km 2km

1km(2700mwe)

Page 12: ニュートリノ物理 発展と動向

12

May 31, 1996 - Oct.6, 2000 1258 days

e-

sun

COSsun

Ee = 5.0 - 20 MeV

~18500 solar events

(14.7 events/day)

+0.016-0.013

8B flux : 2.32 0.03 [x 106 /cm2/sec] Data

SSM(BP2000) = 0.451 0.005

+0.08-0.07

(using Ortiz et al. spectrum shape(nucl-ex/0003006))

Direction to the Sun

Page 13: ニュートリノ物理 発展と動向

13

e→()

99% C.L.

Oscillation parameters based on flux of Homestake, GALLEX, SAGE and SK

122

2

12212

122

m12

2

2sin2cosm

EV2

2sin2sin

VE2

m2cosV

21212

c

e

c

only e has e CC

Page 14: ニュートリノ物理 発展と動向

14

Small Mixing angle solution

Seasonal effect, spectral distortion

P( e

e)

Large Mixing solution

Low

Just-so

solar neutrino spectrum

Day

Night

Spectral shape distortion

Day/night difference

oscillation in solar neutrino

Day/night in pp

Day/night, spectrum with higher precision

Page 15: ニュートリノ物理 発展と動向

15

Earth density: =5g/cm2 (average),13(at core) Affect to oscillations for m2 = 10-6 - 10-4 eV2

(Night-Day)

(Night+Day)/2

e

1%2%

10%

80%

slight negative

Day/Night Effectregeneration through the earth

N-D = 0.033 0.022(stat.) (N+D)/2

0.0130.012 (sys.)

Page 16: ニュートリノ物理 発展と動向

16

(6.310-3, 510-6eV2) SMA

(0.75, 6.310-11eV2) Justso

(0.8, 3.210-5eV2) LMA

Bad fit for SMA and Just-so solutions.

Spectrum shape comparison

uncertainties of absolute energy scale, energy resolution, 8B spectrum shape

Page 17: ニュートリノ物理 発展と動向

17

Excluded by SK zenith angle spectrum at 95%C.L.Allowed by global fit (Cl + Ga + SK flux) at 95%C.L.

95%CL

m2(e

V2)

sin22

e e sterile

. e

2. LMA prefered

Page 18: ニュートリノ物理 発展と動向

18Fogli et.al. hep-ph/0106247

Page 19: ニュートリノ物理 発展と動向

19

2 for eccentricity: 3.9 / 7 d.o.f. (79% C.L.)

2 for flat: 8.1 / 7 d.o.f. (32% C.L.) )

Sunspot #

Time variation of the flux, seasonal

No magnetic field dep.No distance dep. (Just-so)

Page 20: ニュートリノ物理 発展と動向

20

Kamioka Liquid scintillator Anti-Neutrino Detector

http://www.awa.tohoku.ac.jp/KamLANDKamLANDKamLAND

1000m3 liquid scintillator3000m3 oil+water shield1300 17-inch PMTs +600 20-inch PMTsAnti-e from reactors (L~170km)Detect e+ from e + p e+ + n (Eth = 1.8 MeV)

Page 21: ニュートリノ物理 発展と動向

21

From K.Inoue (Tohoku Univ.)

KamLAND: sensitivityKamLAND: sensitivityWhat(3)

Page 22: ニュートリノ物理 発展と動向

22

Conclusion on solar neutrinos

• There is non-electron neutrinos in solar neutrino oscillation!• SSM is OK within 20%• Just-so, LOW, and SMA are disfavored

– 93 % C.L. by SK zenith-spectrum analysis for e→ oscillations.

• Sterile is disfavored with 95% C.L. by zenith-spectrum.

• Energy spectrum is consistent with flat.

• day/night difference is 3.3±2.2 +1.3/-1.2 %.

• Large angle solution : testable in KAMLAND• Also by Borexino

Page 23: ニュートリノ物理 発展と動向

23

Interaction in the rock

FC + PC

through-going muons

stopping muons

Initial neutrino energy spectrum

FC

Through-going muons

Stopping muons

Event topologyPC

Page 24: ニュートリノ物理 発展と動向

24

Zenith angle distribution (Soudan 2)

cos log(L/E)

HiRes events (106.3±14.7 nm, 132.8±13.4 ne)

Decay excluded by 2

Page 25: ニュートリノ物理 発展と動向

25

Zenith angle distribution

No oscillation

Δm2=2.5x10-3

sin22θ=1.0(best fit)

Page 26: ニュートリノ物理 発展と動向

26

allowed region

FC + PC + up-through +up-stop +Multi-ring

χ2min=142.1/152dof

@(Δm2,sin22θ)=(2.5x10-3,1.0)

Page 27: ニュートリノ物理 発展と動向

27

v.s. s

     C.C. N.C. X ○s       X    X  

•NC in the earth ( matter effect ) PC, up through μ(high energy) FC (low energy)

CC interaction in SK detector appearance

Page 28: ニュートリノ物理 発展と動向

28

matter effect in the earthsin22θm =

sin22θ( -cos2θ)2+sin22θ2VEν

Δm2

sin22θ~ 1, Eν>20GeV sin22θm 1≪

PC, Evis>5GeV<Eν> ~ 25GeVup/down ratio

up through going μ<Eν>~ 100GeVvertical/horizontal ratio

νμ ー ντ

νμ ー νs

νμ ー νs

νμ ー ντ

Page 29: ニュートリノ物理 発展と動向

29

v.s. s

high energy PC up/down ratio

up through μ vertical/horizontal ratio

NC enrigh multi ringevent up/down ratio

νμ ー νs

νμ ー ντ

νμ ー ντνμ ー ντ

νμ ー νs

νμ ー νsdata

Page 30: ニュートリノ物理 発展と動向

30

ντ + N → τ + N’ +π+π..., e, +hadrons(,....)

appearance study

CC interaction

Many hadrons are produced.

Optimized by using onlydownward going events.

compare upward going data and MC.

enriched sample

νμ-ντ

with ντCC

νμ-ντ

w/o ντCC

# of obs. τ efficiency# of τ (eff. corrected)

43±1742%103±41

+8- 11

+18- 26

• ~ 2σ excess of τ-like events.• Data are consistent with νμ-ντ oscillation with ντCC.

Page 31: ニュートリノ物理 発展と動向

31

Summary of atmospheric neutrino observation

• Oscillation parameters for : m2 = 1.6 ~ 3.6 x 10-3 eV2, sin22 > 0.90 (90%CL)

• Decay scenario is disfavored with > 2for dcy>>osc and dcy<<osc

s is strongly disfavored

• Excess from leptons: 1.5 ~ 2• Future

– Implement 3D flux calculations

– Study more on -lepton production

– Study on the mixed final state +s

Page 32: ニュートリノ物理 発展と動向

32

LSND and KARMEN

Stopping onlydecayabsorbed in nuclei

componentno

,,

e

e

e+p→e++n n+A→A’+

Page 33: ニュートリノ物理 発展と動向

33

LSND-Karmen-Nomad comparison

Small m2

region remains

Page 34: ニュートリノ物理 発展と動向

34

Page 35: ニュートリノ物理 発展と動向

35

mass - oscillationsallowed regions

LSND, if true, more than 3 neutrinos ?No sign in solar and atmospheric neutrino obs.

Page 36: ニュートリノ物理 発展と動向

36

K2K( Testing atmospheric observation with accelerator neutrino beam)

• Distance and direction fixed

neutrino energy (E• Neutrino beam just after birth• 99% decay volume)

)E

Lm27.1(sin2sin.prob

222

L=250km

Page 37: ニュートリノ物理 発展と動向

37

Bird’s Eye Neutrino Beam Line

Page 38: ニュートリノ物理 発展と動向

38

Spectrum Distortion at Off axis(4 mrad) (MC)

1 06

1 07

1 08

1 09

0 1 2 3 4 5P (G e V /c )

O n a x i s f l u x

O f f a x i s f l u x

mradian accuracy is more than enough

Page 39: ニュートリノ物理 発展と動向

39

stability monitor

200m1ch=5c

m  =0.2

5 mrad.

<1mrad.

-1mrad.

+1mrad.

Page 40: ニュートリノ物理 発展と動向

40

Near neutrino detector

Fine Grained Detector

300m from target

Page 41: ニュートリノ物理 発展と動向

41

Neutrino Beam Direction  (MRD  profile)

Fitted centerx: 1±5cmy: - 10±4cmCentered within sys. err. of 20cm

SK direction(0.7mrad).

x, x

標的

near det.

300m

400cm

Page 42: ニュートリノ物理 発展と動向

42

Stability of Spectrum

Muon Energy of MRD events

Muon Energy of 1kton events

Page 43: ニュートリノ物理 発展と動向

43

K2K Results(June ‘99 – July ‘01)

1. Number of events• 1 kton water Chrenkov detector

SK almost counting experiment

– NC/CC, spectrum shape, interaction model

errors almost cancell

2. Spectrum distortion• non-QE , NC must be subtracted

Page 44: ニュートリノ物理 発展と動向

44

SK EventsTspill TSK

GPS

No Decay-eHE Trig.Evis cut (30MeV)

No act. in OD(fully contained)

Exp’edAtm BG <10-3 in1.5s window

56 in fid. vol.

-0.2<TSK-TSpill-TOF<1.3sec

TOF~1msec

1sec

Page 45: ニュートリノ物理 発展と動向

45

Dominant Systematic Errors •uncertainty of far-near ratio (~7%) and •uncertainty of 1kt fiducial volume (~4%).

Page 46: ニュートリノ物理 発展と動向

46

Reconstructed E and muon directionFully contained 1-ring -like (22.5kt)

Need to estimate syst. err. Note: m2=310-3 eV2 corresponds to 600 MeV E

MC w/o osc.

Page 47: ニュートリノ物理 発展と動向

47

Summary of K2K• Accumulated 4.5x1019POT @ SK from Jun ’99 to July

’01. (1.0 1020 protons in 2004)

• Neutrino beam is well under control Can extrapolate spectrum and flux from Near to Far

• # of fully contained events in fiducial volume @ SKObserved: 56, Expected with null oscillation 80

Probability of null oscillation < 3%

• Spectrum analysis, especially improving low energy region, just started– Pion production measurements @ CERN (HARP)– Upgrade in summer 2003

+7.3-8.0

Page 48: ニュートリノ物理 発展と動向

48

• Atmospheric neutrinos– Where ( m2 =1.6·10-3 ~ 4·10-3 eV2 , sin22.– Most likely

• Solar neutrinos– LMA likely Large 12 ,m2

12 ~10-5 : CPV asym. can be large

• Reactor neutrinos– sin2213<0.1 for atmospheric m2 region

• K2K – Decrease over 250km of ~1GeV neutrino– Spectrum distortion

• Minos, MiniBooNE, CGN, Kamland– Oscillation pattern, appearance, LSND, LMA

• What is the best bet for the next step ?

Page 49: ニュートリノ物理 発展と動向

49

Final goal (my own view)• Our own existence ?

– (near) GUTs scale physics• Mass-Interaction : mixing (or

?)• Small neutrino mass

– Existence of CP-violation in lepton sector (lepto-genesis)

– Baryon number non-conservation• Very massive detector

Page 50: ニュートリノ物理 発展と動向

50

• CPV in Kaon system was discovered just below Adair’s measurement

• CP phase is large in K,B (Jarlskog factor is small)

• No theorist predicted large mixing 23

• No strict prediction on 13 , • 14 order of magnitude extrapolation for proton dec

ay prediction

• One order of magnitude improvements are worth the effort !

• Major discoveries may be around the corner

Page 51: ニュートリノ物理 発展と動向

51

CP Violation in Lepton Sector (Why e)

=0 for appearance exp!

e

Current limit

E2

L)mm(sin)UUUUIm(2

E4

L)mm(sin)UUUURe(4P

2i

2j

ij

*jji

*i

2i

2j2*

jjiij

*i

Page 52: ニュートリノ物理 発展と動向

52

CP Violation(difference of particle and anti-particle)

sinsin

2sin

E

Lm

PP

PPA

13

12212

CP

Solar 10-4~10-5 eV2 0.8 for LMA

Reactor experiments (CHOOZ)ex at atmospheric m2 region<0.16

remain to be discovered) : first step : second step

E

Lmsin2sincos

2232

132

232

e

Page 53: ニュートリノ物理 発展と動向

53

Precision second generation experiment

CP violation measurementOscillation pattern , , m2

Sub-GeV Beam + Large water Cherenkov detector Beam control-ability and stability Event reconstruction (single e, ) Energy reconstruction Event selection (GPS timing)

Meaurements = (E) x Flux(E) x Detector responseSystematic studies of (anti-v) interactionsDetector response

Near/Far extrapolation

Page 54: ニュートリノ物理 発展と動向

54

sin2213 from appearance experiment e + n e + p

sin2213

Background in Super-K (as of Oct 25, 2001)

SignalSignal + BG e e total

0.1 12.0 10.7 1.7 0.5 24.9 114.6 139.5

0.01 12.0 10.7 1.7 0.5 24.9 11.5 36.4

0.5 sin2213

m2

Off axis 2 deg, 5 years

Off axis 2 deg, 5 years

Wor

k in

pro

gres

s

Page 55: ニュートリノ物理 発展と動向

55

Schematic drawing of Hyper-Kamiokande

1 Mton (fiducial) volume: Total Length 400m (8 compartments)

Page 56: ニュートリノ物理 発展と動向

56

Sensitivity(3)

Chooz excluded@m31~3x10-3eV2

JHFSK cannot discover 13

IF BG sys 2%

sin2213=0.01sin>0.55 (33deg)

large sin2213

sin>0.25 (14deg)

Study in progress !

Page 57: ニュートリノ物理 発展と動向

57

Artificial Neutrino Sources

• Conventional neutrino beams

• Neutrino factory – Very small backgrounds– Continuous Spectrum

N,

N,

e

e

,NP ee100

Page 58: ニュートリノ物理 発展と動向

58

J.Wilkes’ TableExperiment

Property

SK K2K MINOS ICARUS OPERA JHF-Kam MONOLITH

-factory

CNGS

(m223)

±%

50 20 10 10 20 3.3 6 2

(sin22 23)

±%

5 5 5 5 ? 1 4 2

Osc peak X? ○* ○? X(○atm) ? ○ ○ ○

appear-

ance

○? X ○ ○ ○ X ○ ○

sin2213 >0.1 >0.01 0.03 0.015 ? 0.006 ? 1~3x10-3

(s/) 0.2 X 0.05? 0.05 ? 0.2? ~0.2 0.01

decay ○? ~X ○ X(○atm) ? ○ ○ ○

Sign of m2 X X X X X X X ○

CP violation X X X X X ○ X ○

On-going experiments

(www.phys.washington.edu./~wilkes/NNO/)

Page 59: ニュートリノ物理 発展と動向

59

Solar Neutrinos8B NC is consistent with SSMNon-e neutrino in solar neutrino flux Sterile disfavoredCl, Ga, SK flux and 8B spectrum, Day/Night almost eliminate SMA, LOW solution

Spectrum , Day/Night , NC high precision measurementsLong baseline reactor exp. test LMA solution (Kamland)Solar neutrino at low energy (Borexino, Xmass….)

Atmospheric Neutrinos1.6x10-3 <m2 < 4x10-3eV2 sin22 > 0.89 (90%C.L.)s oscillation is disfavored with 99%C.L.-enrich data is consistent with t oscillation with CC.

Still Statistics limited

Conclusion-1

Page 60: ニュートリノ物理 発展と動向

60

Conclusion-2

Accelerator experiments K2K 97% CL energy distortion in a few years, if m2>2x10-3eV2 KARMEN/NOMAD eliminate m2>eV2 region of LSND

Sterile? (Mini-BooNE) Direct confirmation of OPERA, ICARUS

Dip in disappearance ?m232 (JHFSK,MINOS)

e appearance ( JHFSK) CP violation in lepton sector (JHF-HyperK)

0Majorana neutrino!