Top Banner
フフフフフフフフフフフフ フフフフフフフフフフフフフ 22 February 2008 仙仙仙 仙仙仙仙 仙仙仙仙 ( 仙仙仙仙 )
49

フレーバーの離散対称性と ニュートリノフレーバー混合

Dec 30, 2015

Download

Documents

amal-riggs

フレーバーの離散対称性と ニュートリノフレーバー混合. 22 February 2008 仙台市 作並温泉 谷本盛光 ( 新潟大学 ). Introduction Neutrinos: Windows to New Physics. Neutrino Oscillations provided information. ● Tiny Neutrino Masses ● Large Neutrino Flavor Mixings. Flavor Symmetry. Global fit for 3 flavors - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: フレーバーの離散対称性と ニュートリノフレーバー混合

フレーバーの離散対称性とニュートリノフレーバー混合

22 February  2008仙台市 作並温泉

谷本盛光 ( 新潟大学 )

Page 2: フレーバーの離散対称性と ニュートリノフレーバー混合

11 IntroductionIntroduction

Neutrinos: Windows to New Neutrinos: Windows to New PhysicsPhysics

●   Tiny Neutrino Masses●   Large Neutrino Flavor Mixings

 Flavor Symmetry 

Neutrino Oscillations provided information

Page 3: フレーバーの離散対称性と ニュートリノフレーバー混合

Global fit for 3 flavorsMaltoni et al : hep-ph/0405172 ver.6 (Sep 2007)

Page 4: フレーバーの離散対称性と ニュートリノフレーバー混合

Two Large MixingsTri-bi maximal

(Δmsol / |Δmatm| )1/2 = 0.16 - 0.20 ≒   λ                

22

Page 5: フレーバーの離散対称性と ニュートリノフレーバー混合

  Tri-Bi-Maximal

Harrison, Perkins, Scott (2002) sin2θ12 =1/3 , sin2θ23 =1/2

Page 6: フレーバーの離散対称性と ニュートリノフレーバー混合

Neutrino Mixing closes to Tri-bi maximal mixing !

Tri-bi maximal mixing provides good theoretical motivationto search flavor symmetry.

A key to looking for “hidden” flavor symmetry.

Page 7: フレーバーの離散対称性と ニュートリノフレーバー混合

Mixing angles are independent of mass eigenvalues

Different from quark mixing angles

Page 8: フレーバーの離散対称性と ニュートリノフレーバー混合

Non-Abelian Flavor Symmetry is appropriatefor lepton flavor physics.

22    Discrete Flavor SymmetryDiscrete Flavor Symmetry

Page 9: フレーバーの離散対称性と ニュートリノフレーバー混合

Quark SectorQuark Sector

Page 10: フレーバーの離散対称性と ニュートリノフレーバー混合

order 6 8 10 12 14 ...

SN : permutation groups S3 ...

DN : dihedral groups D3 D4 D5 D6 D7 ...

QN : quaternion groups Q4 Q6 ...

T : tetrahedral groups T(A4) ...

Discrete Symmetry Discrete SymmetryNon-Abelian discrete groups have non-singlet irreducible representations which can be assigned to interrelate families. Non-Abelian discrete groups have non-singlet irreducible representations which can be assigned to interrelate families.

Pakvasa and Sugawara (’78) : S3Pakvasa and Sugawara (’78) : S3

Frampton and Rasin (’99) : D4, Q4 Frampton and Rasin (’99) : D4, Q4 Frigerio, S.K., Ma and Tanimoto (’04) : Q4 Frigerio, S.K., Ma and Tanimoto (’04) : Q4

Babu and Kubo (’04) : Q6 Babu and Kubo (’04) : Q6

Frampton and Kephart (’94), Frampton and Kong (’95)Frampton and Kephart (’94), Frampton and Kong (’95)Chang, Keung and Senjanovic, (’90) Chang, Keung and Senjanovic, (’90)

Kubo et al. (’03,’04,’05) : S3Kubo et al. (’03,’04,’05) : S3

. . . . . . . . . . .. . . . . . . . . . .

Grimus and Lavoura (’03) : D4 Grimus and Lavoura (’03) : D4

Discrete symmetric models have long history . . .Discrete symmetric models have long history . . .

Page 11: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 12: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 13: フレーバーの離散対称性と ニュートリノフレーバー混合

Need some ideas to realize Tri-bi maximal mixing by S3 flavor symmetry

Page 14: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 15: フレーバーの離散対称性と ニュートリノフレーバー混合

by E. Ma1 1’ 1” 3

33   A4A4   ModelModel

Page 16: フレーバーの離散対称性と ニュートリノフレーバー混合

by E. Ma

Page 17: フレーバーの離散対称性と ニュートリノフレーバー混合

Diagonal terms come from 3 × 3 → (1, 1’,1”) 1’ × 1” → 1 Off Diagonal terms come from 3 × 3 ×3 → 1

Page 18: フレーバーの離散対称性と ニュートリノフレーバー混合

hi are yukawa couplings; vi are VEV

Page 19: フレーバーの離散対称性と ニュートリノフレーバー混合

Move to diagonal basis of the charged lepton mass matrix

Page 20: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 21: フレーバーの離散対称性と ニュートリノフレーバー混合

What is the origin of b=c and e=f=0 ?

Can one predict the deviation fromTri-bi maximal mixing ?

In order to answer this question, we should discuss the model:

Altarelli, Feruglio, Nucl.Phys.B720:64-88,2005

Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions

Page 22: フレーバーの離散対称性と ニュートリノフレーバー混合

hd (1) , hu (1) : gauge doublets gauge singlets

b=c and e=f=0 is required  for Tri-bi maximal.

Page 23: フレーバーの離散対称性と ニュートリノフレーバー混合

4 Deviations from Tri-bi maximal mixing

M.Honda and M. Tanimoto, arXiv:0801.0181

Page 24: フレーバーの離散対称性と ニュートリノフレーバー混合

Deviations in Charged Lepton Sector

Page 25: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 26: フレーバーの離散対称性と ニュートリノフレーバー混合

CP violating phases

Page 27: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 28: フレーバーの離散対称性と ニュートリノフレーバー混合

Deviations in Charged Lepton Sector

b=c=0 e=f=0

Page 29: フレーバーの離散対称性と ニュートリノフレーバー混合

55 DiscussionsDiscussions Experiments indicate Tri-bi maximal mixing for Leptons, which is easily realized in A4 flavor symmetry.

does not deviate from 1 largely due to A4 phase.

can deviate from 0.5 largely.

can be as large as 0.2.

Deviation from Tri-bi maximal mixing is important to test A4 flavor symmetry.

Desired vacuum

Page 30: フレーバーの離散対称性と ニュートリノフレーバー混合

Can we predict CKM Quark Mixing angles in A4 flavor symmetry ? Quark mass matrices are given as

There is no Quark mixing while tri-bi maximal mixing for Leptons.

Deviation is a clue to deeper understanding of flavor symmetry !

Page 32: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 33: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 34: フレーバーの離散対称性と ニュートリノフレーバー混合

arXiv:0802.2310Hajime Iashimori, Tatsuo Kobayashi, Ohki HiroshiYuji Omura, Ryo Takahashi, Morimitsu Tanimoto

Page 35: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 36: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 37: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 38: フレーバーの離散対称性と ニュートリノフレーバー混合

SUSY 化が 容易にできる  D4 モデルが構成できる。

・ FCNC の抑制の大きさが予言できる。・ Slepton の質量行列の構造が予言できる。

          LHC でのテスト可能

  再び クォークセクターは?

Page 39: フレーバーの離散対称性と ニュートリノフレーバー混合

Hirsch, Ma, Moral, Valle: Phys. Rev. Hirsch, Ma, Moral, Valle: Phys. Rev. D72(2005)091301(R)D72(2005)091301(R)

L lcΦi 3 ×3× (1,1’,1”) ←   Diagonal matrix

LLηi 3 ×3 × (1,1’,1”) LLξ 3 ×3 × 3

< Φi >=v1, v2, v3

Page 40: フレーバーの離散対称性と ニュートリノフレーバー混合

Bi - MaximalBi - Maximal θθ1212 == θθ2323 =π/4 , θ =π/4 , θ1313 =0 =0

Tri - Bi-maximalθ12 ≒35°,   θ23 =π/4 , θ13 =0

Page 41: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 42: フレーバーの離散対称性と ニュートリノフレーバー混合

A4 flavor symmetry can easily realize (approximate or exact) Tri-Bi-maximal Mixing

A4 symmetry (Tetrahedral Symmetry) 

Page 43: フレーバーの離散対称性と ニュートリノフレーバー混合

Landau and LifschitzLandau and Lifschitz(理論物理学教程 量子力学12章対称性の理論 (理論物理学教程 量子力学12章対称性の理論 点群点群))              群群 TT (正四面体群):正4面体の対称軸系(正四面体群):正4面体の対称軸系

立方体の向かい合った面の中心を通る3っの2回対称軸と立方体の向かい合った面の中心を通る3っの2回対称軸とこの立方体の空間対角線である4っの3回対称軸この立方体の空間対角線である4っの3回対称軸(二面的ではない)(二面的ではない)

二つの同じ角度の回転は、もしも群の元の中に、一方の回転軸を二つの同じ角度の回転は、もしも群の元の中に、一方の回転軸を他の回転軸に重ねるような変換があれば、同じ類に属する。他の回転軸に重ねるような変換があれば、同じ類に属する。

定義:定義: ある物体がある軸のまわりを角度  ある物体がある軸のまわりを角度  2π/n2π/n 回転するとき自分自身に回転するとき自分自身に     重なり合うとすれば、このような軸はn回対称軸と呼ばれる。     重なり合うとすれば、このような軸はn回対称軸と呼ばれる。          同じ軸の周りの、同じ角度の、反対方向の回転が共役ならば、同じ軸の周りの、同じ角度の、反対方向の回転が共役ならば、     この軸を二面的と呼ぶ。     この軸を二面的と呼ぶ。

  従って、 群従って、 群 TT の12の元(回転)は4っの類に分類される。の12の元(回転)は4っの類に分類される。   EE (単位元)  (単位元)  CC 2(4っの回転)  2(4っの回転)   CC 3(4っの回転)  3(4っの回転)  CC 4(3っの回4(3っの回転)転)

Page 44: フレーバーの離散対称性と ニュートリノフレーバー混合

Tri - Bi-maximalθ12 ≒35°,   θ23 =π/4 , θ13 =0

A, B, C are independent complex parameters

Page 45: フレーバーの離散対称性と ニュートリノフレーバー混合

S-Kam Atmospheric Neutrino Data

Page 46: フレーバーの離散対称性と ニュートリノフレーバー混合

MINOS Experiment

SK atmospheric neutrinos

Page 47: フレーバーの離散対称性と ニュートリノフレーバー混合

KamLand

Page 48: フレーバーの離散対称性と ニュートリノフレーバー混合
Page 49: フレーバーの離散対称性と ニュートリノフレーバー混合

Numerical Results: Deviations from Tri-bi maximal mixing.