Top Banner

of 15

تصميم مقاطع الخرسانة المسلحة

Oct 11, 2015

Download

Documents

abulawaleed

مثال لتصميم مقطع خرساني
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 1 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    53 \ -1

    53 / bals fo naps trohs = sT . 01

    revoc + bals fo thgiew nwo = daol daeD mc 21 = St emussA . 51.0 + 5.2 * St =

    2/005 2/004 2/002= .2/ 0001

    .2m/.gk 003 = daol eviL

    .2m/t 57.0 = 03.0 + 51.0 + 21.0*5.2 = daol latoT

    : ( )

    y

    xmLRmL

    * =1*

    : erehW .oitaR ytiralugnatceR : R 67.0 ro 78.0 eb dluoc m dna 1m

    78.0 = )1m ro/dna m( 67.0 = )1m ro/dna m(

    .snoitcerid Y dna X ni snoisnemid bals eht era yL dna xL

    2> R 2< R

    : : 2/ 003 -1

    R = 0.050.51 2 dnA

    0.53R

    =

    . ffohsarG 2/ 003< -2

    R =+ 41 dnA R

    11

    R =+ 4

    .sucraM -3

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 2

    R 1.0 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.0 0.395 0.473 0.543 0.606 0.660 0.705 0.745 0.778 0.806 0.830 0.849 0.395 0.323 0.262 0.212 0.172 0.140 0.113 0.093 0.077 0.63 0.055

    1 .

    Design of R.C. sections:

    d`

    d

    b

    t

    Fc

    Fs / n

    CsCc

    T

    Yct

    c

    s

    z

    Notations:

    b Breadth of the rectangular section

    t Total depth of the cross section

    d Theoretical depth of cross section, from the center of tension steel to the outside fiber of the compression zone.

    d` Distance from compression steel to the outside fiber of the compression zone.

    z Distance from the Neutral Axis to the outside fiber of the compression zone.

    YCT Arm of resisting moment of internal force = distance between the compression and tension internal forces.

    AS Cross sectional area of tension steel

    AS` Cross sectional area of compression steel Notations, Cont.

    M External moment acting on the section

    CC Compression force on concrete

    CS Compression force on compression steel

    C = CS + CC = Total compression force on the section

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 3

    T Tensile force on tension steel

    C Strain of outside fibers of concrete

    S Strain of tension steel

    FC Maximum compressive stress of concrete in compression

    FS Tensile stress of steel in tension

    FS` Compressive stress of steel in compression

    n Modular ratio =

    C

    S

    EE

    , where E is the modulus of elasticity

    (zeta) = dz

    (beta) = dd`

    r =

    C

    S

    FF

    Ratio of tension steel reinforcement in the cross section

    = dbAS.

    ` Ratio of compression steel reinforcement in the cross

    section = dbAS.

    `

    Assumptions:

    1- .

    2- . (Strain) .

    zdz=S

    C

    .. for the elastic stage . (1)

    and EconstStrainStress == .

    SS EF =

    S and C

    C EF =

    C

    C S )1(

  • 4 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    dzz

    EFE

    F

    S

    S

    C

    C

    dz ro =z

    EE

    FF

    C

    S

    S

    C

    .=

    dzz

    FF

    nS

    C

    )2( . .=

    A.N ( 2)

    dzz

    nF

    )3( . . = CS F

    (3) SA . SF = T T

    zA CSznA CS) ( ro = ... TnFdz

    )4( . = ... TFdz . SA.n SA

    r dna d . = zFF

    C

    = S (2)

    .

    -dd.-d

    rn

    1 ==

    )r + n( = n r. = .n n r. = )-1(n

    nrn )5( . =+

    1 esaC -1 :ylno leets noisnet htiw noitces ralugnatceR .SA dna ,d ,b ,M : neviG .CF dna ,SF : deriuqeR

    .

    :

    dohtem noitceS demrofsnarT -1 dohtem secroF lanretnI -2

    -1 dohtem noitces demrofsnarT -2

  • 5 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    :

    `d

    d

    b

    t

    cF

    sF

    z

    sA.n

    Ytc

    : SA.n = etercnoc fo aera tnelaviuqE

    = )lairetam eno fo edam saw noitces eht fi sa( noitces eht fo aera lautriv ehT .SA.n + t.b =

    z :

    0.0 = A.N eht tuoba saera fo M )z-d( SA.n = )2/z( z.b 0.0 = d SA.n z )SA.n( + 2z )2/b(

    : )z(

    axbbca

    2 = 24

    2

    ..2.... 22b

    nAbnAdb =+ SSS znA

    =++

    S

    SS

    nAbd

    bnA

    bnA

    z.

    .12....2

    22

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 6

    S

    SS

    Andb

    bAn

    bAn

    z.

    ..21... ++=

    ++=

    S

    S

    Andb

    bAnz

    ...211.

    . . (1-1)

    z = .d (AS / b.d) =

    ++=

    .211....nb

    dbnd.

    ++= .

    211...n

    dn . (1-2)

    .

    ( )223 ..2

    ..12. zdAnzzbzbI SX +

    +=

    xC I

    zMF .= and ( )X

    S IzdMF = . . (1-3)

    3- Internal forces method

    Internal moment = external applied moment

    T. C.YCT = M but the force = (stress * area)

    = dAFC C . = dybFC C .. ) ( = dyFbC C .. = b . area of stress diagram

    the compression force ( C ) = width of the section * area of stress diagram C = (0.5 FC.z) . b M = (0.5 FC.z) . b . YCT and YCT = d z/3

    ( )32zdbz

    MFC = . (1-4)

    substituting for z with .d

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 7

    ( ) 2..31

    2

    3...2

    dbM

    dddbMFC

    == ..

    putting 131

    2 C=

    .

    21 ..dbMCFC = . (1-5)

    where .2

    1 =C taking the moment about the line of action of compression force: T . YCT = M ( ) MzdFA SS = 3.

    ( )3zdAMF

    SS = . (1-6)

    Putting AS = . b . d & z = . d

    222 .

    .

    31.dbMC

    db

    MFS =

    =

    . . (1-7)

    Where

    =

    31

    12 .C & 31

    =

    then .1

    2 =C

    2- Case (2) Given : M, b, d, AS & AS` required : FS , FC Moment of areas about the N.A = 0.0

    ( ) ( )zdAndzAnzb SS =+ ..`..2 `2

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 8

    C

    Fc

    d`

    Z

    Z - d

    `

    Cs Z/3

    2/3

    Z

    ( ) ( ) 0.0`......2 ``

    2 =+++ dAdAnzAAnzb SSSS

    z

    ( ) ( ) ( )`...2. `2

    `` dAdAbn

    bAAn

    bAAnz SSSSSS ++

    +++= . (2-1)

    z = . d , AS = .b.d , AS` = `.b.d = `/ , = d`/d

    ( ) ( ) ( )`..`...2`... 22 ddbdbbn

    bdbn

    bdnbd ++

    +++= `.

    ( ) ( ) ( ) .1...21..1... 22222 +++++= dndndnd.

    ( ) ( ) ( )( )

    +++++= 22222 1..

    .1211...1..

    ndndnd.

    ( ) ( )( )

    +++++= 21..

    .1211.1.

    nn . (2-2)

    z.

    Stresses in concrete and steel: C = CS + CC M about tension steel = 0.0

    ( )`3

    ddCzdCM SC +

    =

    ( )`.3

    ...21 `` ddFAzdbzFM SSC +

    = . (2-3)

    but `` dz

    z

    nFF

    S

    C

    =

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 9

    ( )zdzFnF CS

    `` .. = or ( )

    dddFnF CS .....`

    =

    ( ) = ..` CS FnF . (2-4)

    FS` )2-4 ( )2-3(

    ( ) ( )zdzFn

    ddAzdbzFM CSC`

    `` ..3

    ...21 +

    =

    ( )`` `..32

    . ddzdzAnzdzb

    MFS

    C

    +

    = . (2-5)

    z = . d , AS = .b.d , AS` = `.b.d = `/ , = d`/d

    ( )ddddddbndddb

    MFC.

    .`.....

    3.

    2.. ` +

    =

    ( ) 22 ..1.....3

    1.21 dbndb

    MFC

    +

    =-

    ( )

    +

    =1...

    31.

    21

    1.. 2

    -

    ndbMFC . (2-6)

    21 ..dbMCFC = . (2-7)

    where : ( )

    +

    =1...

    31.

    21

    11

    -

    nC . (2-8)

    FC.

    FC )2-7 ( )2-4.( ( )

    21`

    ....dbMCnFS

    = . (2-9) to find FS

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 10

    zdz

    nFFS

    C

    = (z = .d)

    ( )CS F

    nF .1.= . (2-10)

    FC )2-6 ( )2-10(

    ( ) n

    ndbMFS

    )1(.1...

    31.

    21

    1.. 2

    -

    +

    =

    ( )

    +

    =1...

    31.

    21

    )1(.. 2

    -

    2 n

    ndbMFS

    22 ..dbMCFS = . (2-11)

    where:

    ( )

    +

    =1...

    31.

    21

    )1(2

    -

    2 n

    nC . (2-12)

    Case 3 Design of Rectangular section with tension steel only: 3-1 Free design (the depth is unlimited) Given : M, b, FC, and FS Required : d, and AS

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 11

    d`

    d

    bt

    Fc

    Fs / n

    C

    T

    Yct

    :

    zdz

    nFFS

    C

    = . (3-1)

    of moment about tension steel C.YCT = M

    MzdbzFC =

    3

    ....21 . (3-2)

    and from equation 3-1 d

    FFn

    nz

    C

    S.

    += and r

    FF

    C

    S =

    drnnz .+=

    z (3-2)

    Mrnndd

    rnnbFC =

    ++ 31.....

    21 and =+ rn

    n

    MdbFC =

    3

    1.....21 2

    bM

    Fd

    C

    .

    31.

    2

    =

    . putting 1

    31.

    2 KFC

    =

    .

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 12

    bMKd .1= . (3-3)

    (3-3) (Balanced Depth)

    K1 FC FS.

    M about C = 0.0 M = T . YCT

    =3

    .. zdFAM SS dz .=

    =

    31..dF

    MAS

    S = 31

    dFMAS

    S ..= 2. KFS =

    dKMAS .2

    = . (3-4) 3-2 Fixed design (the depth is given) 3-2-1 The given depth > the balanced depth

    d`

    d

    b

    t

    Fc

    Fs / n

    C

    T

    Yct

    Given : M, b, d, FC, and FS Required : AS

    (Balanced Depth)

    FS AS.

  • 31 .gE ,.vinU ainiM-lE ,.tpeD gnE liviC ,deyaS-lE .A rmA /:yB deraperP

    :

    bM 1K wonk nac ew os 1= Kd

    .CF teg nac ew sixA-X no CF dna ,sixA-Y no 1K neewteb sevruc eht morf -1 CF ngised fo esac siht ni( ton ro elbawolla si ti fi enimreted nac ew CF gniwonk morf -2 .).lla CF < eb tsum

    .2K dnif nac ew ,2K dna ,CF neewteb sevruc eht morf -4

    -5Kd

    2. SAM =

    )htpeD decnalaB(

    SF CF .

    :

    bM 1K wonk nac ew os 1= Kd

    owt ward ,sixA-Y no 1K fo eulav eht dna ,sixA-X no CF elbawolla mumixam eht morf htiw evruc a no tcesretni lliw senil owt eht dna ,ylevitcepser senil lacitrev dna latnoziroh .2K teg nac ew os , niatrec fo SF mumixam eht snoitceS-T fo ngiseD = ceS-T fo htdiw evitceffe = ro

    :

    CF T :

    B -1

    . ) T ( -2

    ( ) ( ) .

    ) ) T ( -3

    (

    ].ceS-R fo esac ni[ ).lla( CF fo 57.0 ~ 5.0 = ].ceS-T fo esac ni[ ).lla( CF

    . CF

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 14

    Examples: For the plan shown in the following figure, find the loads on all beams knowing

    that: 1- Slab thickness = 12.0 cm 2- Weight of cover = 150.0 kg/m2 3- Live load = 200.0 kg/m2 4- Wall height = 3.0 m 5- Depth of all beams = 60.0 cm 6- Breadth of beams ab, cde = 12.0 cm 7- Breadth of the remaining beams = 25.0 cm

    And the draw the absolute shearing force and bending moment of the main beam (fbd), and design the critical sections, the draw to scale 1:20 the details of reinforcement of a longitudinal section of the beam (fbd).

    4.00A

    5.00

    2

    3

    1

    B2.00 2.00

    5.00

    3

    2

    1

    A B

    2.006.00

    5.00

    5.00

    60 60

    3.00

    a

    b

    c

    d

    e

    f

  • Prepared By:/ Amr A. El-Sayed, Civil Eng Dept., El-Minia Univ., Eg. 15

    -8.27

    16.45

    -9.28

    17.48

    -9.63-0.3

    21.41

    -19.22

    20.9

    -1.8

    -4.63

    23.75

    -18.38

    20.25

    -2.12 -0.73

    20.54

    -18.2

    23.82

    -6.47

    3.0 t/m

    3.4

    -7.1

    13.9

    -2.59

    -16.09

    15.91

    -4.09-10.09

    3.912.89

    -4.11

    9.89

    -1.83

    -15.33

    16.67

    -4.96

    -13.96

    7.04

    2.99

    -4.01

    9.99

    -2.17

    -15.67

    16.33

    -4.23-10.23

    3.772.5

    -8.0

    13.0

    -1.45-10.45

    10.55

    -3.74 -12.74

    8.26

    3.0 t/m2.0 t/m

    3.0 t

    Absolute bending moment of a continues beam

    19.22

    -23.75 -23.82

    9.638.27