Top Banner
何何何 2012-12-08 adium(II)-Catalyzed Alkene Functionaliz
31

何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Dec 30, 2015

Download

Documents

Nancy Davidson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

何玉萍2012-12-08

Palladium(II)-Catalyzed Alkene Functionalization

Page 2: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

hydrogenation

oxidation

hydroformylation

oligomeriaztionpolymerization

RepresentativeReaction

Page 3: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

H2C CH2 1/2 O2

Pd/Cu

H3C

O

H

H2C CH2

PdII CH2

CH2PdII

2+

H2O

H+

PdII

OH

+

H

O

CH3

Pd0

2Cu+

2Cu2+H2O

1/2 O2+ 2H+

Smidt, J. Angew. Chem. 1959, 71, 176; Angew. Chem., Int. Ed. 1962, 1, 80.

Wacker Oxidation

Page 4: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Versatility of the PdII-Alkyl Intermediate Arising from Alkene Nucleopalladation

Page 5: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

1. Enantioselective Reaction involving Oxypalladation1.1 Phenol Cyclization1.2 Carboxylic acid Nucleophiles1.3 Alcohol Nucleophiles

2. Enantioselective Reaction involving Aminopalladation

3. Enantioselective Reaction involving Carbopalladation

Page 6: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

The first example of an enantioselective Pd-catalyzed alkene functionalization

Hosokawa, T.; J. Chem.Soc., Chem. Commun. 1978, 687; J. Chem. Soc., Chem.Commun. 1979, 475.

OHPd(OAc)2 (10%)

pinene (10%)

Cu(OAc)2 (1 equiv)O2 (1atm)

MeOH/H2O

O

12% ee

62% yield

pinene

PdO

O

2

PdOAc

CuX OAc

L

R

OMe

Me

H

Cl

COMe

yield (%)

44

76

77

72

74

ee (%)

26

21

18

6

1

2.1 Phenol Cyclization

Electronic Effect:

Page 7: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Hayashi, T. J. Am. Chem. Soc. 1999, 121, 5063

Tetrasubstituted AlkenesOH

Pd(TFA)2 (10%)

ligand (10%)

BQ (4 eq)MeOH, 60oC

O

N

O

O

N R

R

1: R = i-Pr

96% ee

75% yield

N

O

O

N R

R

COOMe

COOMe2

4% ee

30% yield(with Pd(MeCN)4(BF4)2

N

O O

NR R

3 : R = i-Pr

18% ee

64% yield

N

O O

NR R

4 : R = i-Pr

35% ee

6% yield

R1

R2

R1 = R2 = PPh2 (BINAP)

R1 = PPh2, R2 = OMe (MOP)

R1 = R2 = COOH

R1 = R2 =O

NH

OH

i-Pr

all racemic prouducts

R R R = H, 4-F, 4-Ph, 4-Me, 6-Me

90% - 97% ee

Page 8: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Trisubstituted Alkenes

OH

H

Pd(MeCN)2(BF4)2 (5%)

ligand (10%)

BQ (4 eq), O2 (1 atm)MeOH, 20oC

OH

N

O

O

N R

R

1: R = i-Pr

N

O

O

N R

R

COOMe

COOMe2

Ligand 1: 9% ee, 90% yield

Ligand 2: 88% ee, 90% yield

Hayashi, T. J. Org. Chem. 1999, 64, 1620.

Page 9: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

O

NO

N

R'R

R'R

PdII

O

NO

N

R'R

R'R

Pd

PdII

R'

R'

N

ON

O

R

R

not observed

R'

R'

N

ON

O

R

R

Pd

OH

R

Pd(TFA)2 (10%)ligand (10%)

BQ (4 equiv)MeOH

OR

O

NO

N

OMeR'

MeOR'

R' = Ph

R = CH3, 94% ee, 92% yield

N

O

O

N

O

NN

O

R'

R'

R'

R'

R' = Ph

R = CH3, 94% ee, 92% yield

R = H, 93% ee, 79% yield

Zhang, W. B. Tetrahedron Lett. 2007, 48, 4179.J. Org. Chem. 2007, 72, 9208.Tetrahedron Lett. 2007, 48, 4083.Tetrahedron. 2008, 64, 9413.

Page 10: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

(-)-sparteine

OH

R

Pd(II) (10%)(-)-sparteine (100%)

3A MS, O2

toluene, 80oC, 36h

O

R

Pd Source

PdCl2

yield(%) ee(%)

2 12

Pd(nbd)Cl2 68 12

53 12

328

20 16

18 51

72 76

83 77

PdBr2

Pd(CH3CN)2Cl2

Pd(CH3CN4)(OTf)2

Pd(OAc)2

Pd(TFA)2

(sp)Pd(TFA)2

nbd

Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892; J. Am. Chem. Soc. 2005, 127, 17778.

Page 11: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OH

R

(sp)Pd(TFA)2 (10%)(-)-sparteine (100%)

Ca(OH)2 (2 eqiuv)

3A MS, O2

toluene, 80oC, 36h

O

R

R = OMe: 64% yield, 88% ee

R = C(O)Me: 60% yield, 20% ee

R = t-Bu: 47% yield, 83% ee

R = H: 87% yield, 81% ee

R = Me: 47% yield, 86% ee

Page 12: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

[a] Unless noted, reactions were carried out using 0.25 mmol of starting material, 5 mol% Pd(TFA)2

(0.0125 mmol), 20 mol% pyridine(0.05 mmol), 0.5 mmol additive, 125 mg MS3A (500 mg/mmol substrate), and 1 atm O2 in 1.0 mL (entries 1–5) or 2.5 mL (entries 6–7) PhCH3 at 80oC. All yields are based on isolated product. [b] The starting Material was used as a mixture of E and Z alkenes. [c] 10 mol% Pd(TFA)2, 40 mol% pyridine, 2 equiv LiOAc. [d] 3:1 Z:E. [e] 10 mol% Pd(TFA)2, 40 mol% pyridine. [f ] 2 equiv Na2CO3 were added.

Aerobic oxidative heteroatom/alkene cyclizationsEntry Substrate product Time,Yield

O

OHO

O

O

NHTs

O

NHOBn

O

NTs

O

NOBn

O

O

COOEt

COOEt

COOH

O O

OHO

O

8h, 90% yield

8h, 88% yield

4h, 82% yield

48h, 63% yieldc,d

48h, 62% yielde

3h, 87% yieldf

10h, 93% yieldf

1b

2b

3b

4b

5

6b

7 OH

Page 13: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Zhang, W. B. Angew. Chem., Int. Ed. 2012, 51, 9141.

NHPG

OPd(TFA)2 (5%)

ligand (7.5%)

4A MSO2 (balloon)

MeCN, 60oC

NPG

O

N N

O

t-Bu-pyrox

ligand

8 9

R

Page 14: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OH

R2

PdII

oxy-palladation

O PdII

R2

R'

R = H

olefin insertion

O

R2

R'

O

2

R = Me hydride elimination

CO + NuH

R = H

carbonylation

O

2

NuOH

Page 15: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OH

BnO O

OMeO

O

Me

BnO

Pd(TFA)2

ligand (40%)

BQ (4equiv)

CH2Cl2, rt, 3.5d 97% ee

84% yield

N

O

O

NRR

R = Bn

OH

OMe

O OMePd(TFA)2 (3%)ligand (12%)

BQ (4equiv)

MeOH, rt, 15h 96% ee

80% yield

CO (1 atm) O

Tietze, L. F. Angew. Chem., Int. Ed. 2005, 44, 257;Chem.—Eur. J. 2006, 12, 8770; Chem.—Eur. J. 2008, 14, 8956; Heterocycles 2007, 74, 473.

Page 16: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OH Pd(TFA)2 (10%)

ligand (11%)

BQ (4equiv)

(CHCl2)2, 60oC

O

54% ee

55 yield

11% 5-membered ring

N OO N

H HR

RRR

R = i-Pr

ligand

Sasai, H. Tetrahedron: Asymmetry 2010, 21, 767.

Page 17: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Overman, L. E.; Org. Lett. 2007, 9, 911. Adv. Synth. Catal. 2009, 351, 3186.

Nonoxidation Intermolecular Addition of Phenols to (Z)-Allylic Trichloroacetimidates

Addition of Phenols to (E)-Allylic Trichloroacetimidates

Cl3C O

NH n-Pr

ZRHO

3 equiv

1% COP-OAc

CH2Cl2, 38 oC n-Pr

O R

HO

92% ee86% yield

HO

90% ee63% yield

OMe

HO

90% ee97% yield

FHO

91% ee96% yield

HO

90% ee87% yield

Br

ClF

Cl3C O

NH

n-Pr

ERHO

5 equiv

1% catalyst

CDCl3, 38 oCn-Pr

O R

n-Pr

N

O

Cl3C

COP-OAc: 59% (91% ee) 41%

COP-NHCOCl3: 92% (90% ee) 8%

Page 18: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Overman, L. E. J. Am. Chem. Soc. 2005, 127, 2866.

1.2 Addition of Carboxylic Acids to (Z)-Allylic Trichloroacetimidates

Cl3C O

NH

E 3 equiv

1% COP-OAC

CH2Cl2, room temp R

OR

HO

O

R'

O

R'

with R' = Me

Cl3C O

NHOH

97% ee92% yield

Cl3C O

NHOAc

>99% ee90% yield

Cl3C O

NHOTBS

93% ee98% yield

3

with R = n-Pr

HO

O

Me

94% ee88% yield

HO

O

Ph

94% ee98% yield

OMeO

HO

>99% ee92% yield

O

HO

>94% ee60% yield

NO2

Page 19: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Mechanism (Illustrated for Catalysis by (+)-COP-OAc)

*

R2COOH

-H+

NH

OCl3C

R1

Pd

N

C

*

N

OCl3C

R1

Pd

N

C OCOR2

HOAc

Cl3C

O

NH2

R1

OCOR2

PdC

C OAc

*

*

NH

OCl3C

R1

Pd

N

C

-OAc

R1

R2

O

Cl3CNH

O R1

1

3

2

45

6

7

Page 20: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Pd(TFA)2 (15%)

ligand (18%)

BQ (4equiv)

CH2Cl2, rt

N OO N

H HR

RRR

R = i-Pr

ligand

HO OH OMe

HO

70% ee 70% yield

BINAP : no reaction

N

O O

N

R = i-Pr

no reaction

N

O

O

N

R

R

R = i-Pr

no reaction

2.3 Alcohol Nucleophiles2.3.1 Addition of Alcohols to Unactivated Alkene

Sasai, H. J. Am. Chem. Soc. 2001, 123, 2907; Heterocycles 2004, 62, 831.

Page 21: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Pd(TFA)2 (20%)

ligand (24%)

BQ (4equiv)

0oC

N

O

O

N

R

R

R = i-Pr

BzO OH OBnO

95% ee

68% yield

(85 hr)

ON N O

R2

R3R1

O N N O

56% ee

36% yield

ligand

a

b

c

d

R1

H

Me

H

t-Bu

R2

H

Me

i-Pr

i-Pr

R3

H

Me

i-Pr

i-Pr

yield(%)

34

54

59

74

ee(%)

66

87

97

95

Page 22: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OBzHO

OBzHO

PdN

N*

O

O

2HX

OH

OH

PdXX

NN

*

1

*

O OBz

3

HX

O

Pd

OBz

NN* X

O OBz

48O

BnO

2

O

Pd

OBz

NN

*

7

HX

HX

O

Pd

OBz

NN

* X

6

5HX

O

PdN

N*

X

OBz

2

PdN

N

H

X

* PdN

N

H

X

* Pd(0)N

N

Plausible Mechanism of Tandem Cyclization viathe Oxy-palladation

Page 23: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Pd(OAc)2 (5%)

ligand (7.5%)

BQ (50%)AcOH, rt

OH

OH

CO (balloon)O

O O

OH

OH62% ee

29% yield

racemic

N

OO

N

ligand

Yoshida, Z. Tetrahedron Lett. 1985, 26, 4479.

Page 24: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Sasai, H. Org. Lett. 2010, 12, 3480.

Cylization of b - Dicarbonyl nucleophilies

Pd(TFA)2 (10%)

ligand (12%)

BQ (2 equiv)

diglyme, 25oC,12h

N OO N

H HR

RRR

O

O

R

OH

O

R

O

O

R

R = i-Pr

R = 81% ee, 80% yield

R = 51% ee, 60% yield

OR

major minor

Page 25: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Pd(TFA)2 (10%)

ligand (12%)

BQ (2 equiv)

diglyme, 25oC,12h

OH

O R

O

O

R

R =

OR

(z)-1a 72% 12%

Pd(TFA)2 (10%)

ligand (12%)

BQ (2 equiv)

diglyme, 25oC,12h

OH

O

O

O

R =

O

52% 8%

a

b

Page 26: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Plausible Mechanism

PdII

Pd0

O

H

HOR1

R2H

Pd

OHO

R1

R2

O

O H

H

Pd

H

R2

R1

ringflipping

Helimination

O

O H

R2

R1 Helimination

O

O H Pd

H

R2

R1

H

OHO

R1

R2H

Pd H

O

OR1

R2H

Pd

Helimination

O

OH

R2

H

R1

H

O

R2

R1H H

OH

O

R2

R1

O

H

1

2

3

I

II

III

IV

v

VI

H Pd

re-insertion

Page 27: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Hosokawa, T. J. Org. Chem. 2009, 74, 3048.

Intermolecular Alkoxyvinylation of Viny Ethers

OH

OH

N

O

N

O

Bn Bncatechol

ligand

O

O

CuX

PdX

N

N

N

Nbisoxazoline

X = anionic ligands

Ph OHOnBu

Pd(OAc)2 (5%)Cu(OAc)2 (5%)catechol (10%)

ligand (10%)O2, toluene, rt

HOnBu

53% ee

86% yield

O

Ph

PdII

OnBuvia

Page 28: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

2.3.2 Addition of Alcohols to ortho-Vinyl Phenols

OH

5% Pd[(-)-Sparteine]Cl2

OH OMe

OMe

OH PdIIX

OMe

PdII X2

MeOH

O

OMe

Pd0

MeOH

quinone methideformation

-HX

oxypalladation

-HX

MeOH

20% CuCl2, O2

rt70% yield

Sigman, M. S. J. Am. Chem. Soc. 2006, 128, 2794. Sigman, M. S. Org. Lett. 2006, 8, 5557.

Page 29: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

OH

PdN

N

Cl

Cl

R1

OHR

HR2

R O

PdN

N

Cl

HPd

O

H

NN

Cl-+

H

OPd

N

N

OR2

HO

R2OH

Pd0 A

CuCl2 or O2

Readily OxidizedHidered Alchol

NucleophilicAlcohol

Page 30: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Pd(MeCN)2Cl2 (4%)

ligand (10%)

KHCO3(40%), O2

CuCl (8%)

OH OH Nu'

HO R

Rn Nu'HO

n

RR

toluene, rt

OH O

O

92% ee

57% yield

5:1 dr

OH O

O

OH

90% ee

59% yield

9:1 dr

OH OH

O

96% ee

63% yield

5:1 dr

OH N3

O

84% ee

51% yield

1.4:1 dr

OH

O

94% ee

82% yield

>20:1 dr

N

OH

O

85% ee

53% yield

>20:1 dr

N

OH OMe

O

90% ee

68% yield

10:1 dr

OH OMe

88% ee

50% yield

6:1 dr

O

N

N

O

RR = i-Prligand

Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 17074. Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870.

Page 31: 何玉萍 2012-12-08 Palladium(II)-Catalyzed Alkene Functionalization.

Summary

1.Broad functional-group compatibility air- and moisture-tolerence of PdII catalyst for preparing of important organic building blocks as well asuseful hetero- and carbocyclic molecules.

2. Only a small number of reactions proceed with very high enantiomeric excess, and the successful examples generally have been demonstrated for only a small scope of substrates.

3. Many chiral ligands appear to have deleterious effects on catalyst activity, resulting in the need for high catalyst loadings and long reaction times and a large excess of undesirable oxidants.

4. The discovery of new classes of chiral ligands compatible with the use of molecular oxygen reactivity is in need..