Top Banner
Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS Konstantin GERMAN Chair Head of Natural Sciences, Medical Institute REAVIZ
53

реавиз лекция2 Термодинамика thermodynam

Apr 13, 2017

Download

Education

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: реавиз лекция2 Термодинамика thermodynam

Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS

Konstantin GERMAN

Chair Head of Natural Sciences Medical Institute REAVIZ

ЛЕКЦИЯ 2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ

Зав кафедрой естественнонаучных дисциплинКонстантин Эдуардович

Герман

WWWslidesharenet

Химические реакции протекающие в организме человека

Равновесны или неравновесны

Обратимы или необратимы

Задачи химической термодинамики применение законов общей термодинамики к физико-

химическим явлениям (реакциям фазовым превращениям)

bull Самый простой и одновременно по философски сложный раздел химии

bull Вопросы решаемые с помощью химической термодинамикиndash 1048766 расчет тепловых эффектов процессов для различных условий ndash 1048766 определение температур или теплот фазовых переходов ndash 1048766 выбор оптимального технологического режима проведения

процесса ndash 1048766 определение условий подавления побочных (нежелательных)

реакций и процессов ndash 1048766 определение областей устойчивости вещества

Предмет и методы химической термодинамики

bull Химическая термодинамика решает важные вопросы не прибегая к данным о внутреннем строении вещества используя лишь такие макроскопические определяемые экспериментально параметры как давление температура объем концентрация и др

bull Химическая термодинамика изучаетndash переходы энергии из одной формы в

другую от одной системы к другой ndash энергетические эффекты

сопровождающие различные физические или химические процессы

ndash зависимость их от условий ndash возможность протекания направление

и пределы самопроизвольного протекания самих процессов в рассматриваемых условиях

bull Термодинамика базируется на двух основных законах называемых первым и вторым началами термодинамики которые были установлены на основании опыта человечества

bull Начала термодинамики являются аксиомами основанными на обобщении известных эмпирических фактов представленных позднее в математической форме

bull Для вывода различных уравнений химической термодинамики необходимо знать начальные и конечные состояния вещества внешние условия и тп поэтому для применения положений химической термодинамики необходимо ввести ряд определений которые задают условия для изучаемых объектов

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 2: реавиз лекция2 Термодинамика thermodynam

ЛЕКЦИЯ 2

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ

Зав кафедрой естественнонаучных дисциплинКонстантин Эдуардович

Герман

WWWslidesharenet

Химические реакции протекающие в организме человека

Равновесны или неравновесны

Обратимы или необратимы

Задачи химической термодинамики применение законов общей термодинамики к физико-

химическим явлениям (реакциям фазовым превращениям)

bull Самый простой и одновременно по философски сложный раздел химии

bull Вопросы решаемые с помощью химической термодинамикиndash 1048766 расчет тепловых эффектов процессов для различных условий ndash 1048766 определение температур или теплот фазовых переходов ndash 1048766 выбор оптимального технологического режима проведения

процесса ndash 1048766 определение условий подавления побочных (нежелательных)

реакций и процессов ndash 1048766 определение областей устойчивости вещества

Предмет и методы химической термодинамики

bull Химическая термодинамика решает важные вопросы не прибегая к данным о внутреннем строении вещества используя лишь такие макроскопические определяемые экспериментально параметры как давление температура объем концентрация и др

bull Химическая термодинамика изучаетndash переходы энергии из одной формы в

другую от одной системы к другой ndash энергетические эффекты

сопровождающие различные физические или химические процессы

ndash зависимость их от условий ndash возможность протекания направление

и пределы самопроизвольного протекания самих процессов в рассматриваемых условиях

bull Термодинамика базируется на двух основных законах называемых первым и вторым началами термодинамики которые были установлены на основании опыта человечества

bull Начала термодинамики являются аксиомами основанными на обобщении известных эмпирических фактов представленных позднее в математической форме

bull Для вывода различных уравнений химической термодинамики необходимо знать начальные и конечные состояния вещества внешние условия и тп поэтому для применения положений химической термодинамики необходимо ввести ряд определений которые задают условия для изучаемых объектов

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 3: реавиз лекция2 Термодинамика thermodynam

Химические реакции протекающие в организме человека

Равновесны или неравновесны

Обратимы или необратимы

Задачи химической термодинамики применение законов общей термодинамики к физико-

химическим явлениям (реакциям фазовым превращениям)

bull Самый простой и одновременно по философски сложный раздел химии

bull Вопросы решаемые с помощью химической термодинамикиndash 1048766 расчет тепловых эффектов процессов для различных условий ndash 1048766 определение температур или теплот фазовых переходов ndash 1048766 выбор оптимального технологического режима проведения

процесса ndash 1048766 определение условий подавления побочных (нежелательных)

реакций и процессов ndash 1048766 определение областей устойчивости вещества

Предмет и методы химической термодинамики

bull Химическая термодинамика решает важные вопросы не прибегая к данным о внутреннем строении вещества используя лишь такие макроскопические определяемые экспериментально параметры как давление температура объем концентрация и др

bull Химическая термодинамика изучаетndash переходы энергии из одной формы в

другую от одной системы к другой ndash энергетические эффекты

сопровождающие различные физические или химические процессы

ndash зависимость их от условий ndash возможность протекания направление

и пределы самопроизвольного протекания самих процессов в рассматриваемых условиях

bull Термодинамика базируется на двух основных законах называемых первым и вторым началами термодинамики которые были установлены на основании опыта человечества

bull Начала термодинамики являются аксиомами основанными на обобщении известных эмпирических фактов представленных позднее в математической форме

bull Для вывода различных уравнений химической термодинамики необходимо знать начальные и конечные состояния вещества внешние условия и тп поэтому для применения положений химической термодинамики необходимо ввести ряд определений которые задают условия для изучаемых объектов

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 4: реавиз лекция2 Термодинамика thermodynam

Задачи химической термодинамики применение законов общей термодинамики к физико-

химическим явлениям (реакциям фазовым превращениям)

bull Самый простой и одновременно по философски сложный раздел химии

bull Вопросы решаемые с помощью химической термодинамикиndash 1048766 расчет тепловых эффектов процессов для различных условий ndash 1048766 определение температур или теплот фазовых переходов ndash 1048766 выбор оптимального технологического режима проведения

процесса ndash 1048766 определение условий подавления побочных (нежелательных)

реакций и процессов ndash 1048766 определение областей устойчивости вещества

Предмет и методы химической термодинамики

bull Химическая термодинамика решает важные вопросы не прибегая к данным о внутреннем строении вещества используя лишь такие макроскопические определяемые экспериментально параметры как давление температура объем концентрация и др

bull Химическая термодинамика изучаетndash переходы энергии из одной формы в

другую от одной системы к другой ndash энергетические эффекты

сопровождающие различные физические или химические процессы

ndash зависимость их от условий ndash возможность протекания направление

и пределы самопроизвольного протекания самих процессов в рассматриваемых условиях

bull Термодинамика базируется на двух основных законах называемых первым и вторым началами термодинамики которые были установлены на основании опыта человечества

bull Начала термодинамики являются аксиомами основанными на обобщении известных эмпирических фактов представленных позднее в математической форме

bull Для вывода различных уравнений химической термодинамики необходимо знать начальные и конечные состояния вещества внешние условия и тп поэтому для применения положений химической термодинамики необходимо ввести ряд определений которые задают условия для изучаемых объектов

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 5: реавиз лекция2 Термодинамика thermodynam

Предмет и методы химической термодинамики

bull Химическая термодинамика решает важные вопросы не прибегая к данным о внутреннем строении вещества используя лишь такие макроскопические определяемые экспериментально параметры как давление температура объем концентрация и др

bull Химическая термодинамика изучаетndash переходы энергии из одной формы в

другую от одной системы к другой ndash энергетические эффекты

сопровождающие различные физические или химические процессы

ndash зависимость их от условий ndash возможность протекания направление

и пределы самопроизвольного протекания самих процессов в рассматриваемых условиях

bull Термодинамика базируется на двух основных законах называемых первым и вторым началами термодинамики которые были установлены на основании опыта человечества

bull Начала термодинамики являются аксиомами основанными на обобщении известных эмпирических фактов представленных позднее в математической форме

bull Для вывода различных уравнений химической термодинамики необходимо знать начальные и конечные состояния вещества внешние условия и тп поэтому для применения положений химической термодинамики необходимо ввести ряд определений которые задают условия для изучаемых объектов

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 6: реавиз лекция2 Термодинамика thermodynam

Взаимосвязь между процессами обмена веществ и энергии в организме

Термодинамическая система bull Процессы жизнедеятельности на Земле

обусловлены в значительной мере накоплением солнечной энергии в биогенных веществах (белках жирах углеводах) и последующими превращениями этих веществ в живых организмах с выделением энергии

bull Работы А М Лавуазье (1743mdash1794) и П С Лапласа (1749ndash 1827) прямыми калориметрическими измерениями показали что энергия выделяемая в процессе жизнедеятельности определяется окислением продуктов питания кислородом воздуха вдыхаемого животными

bull С развитием в XIXmdashXX вв термодинамики стало возможно количественно рассчитывать превращение энергии в биохимических реакциях и предсказывать их направление Термодинамический метод основан на ряде строгих понятий laquoсистемаraquo laquoсостояние системыraquo laquoвнутренняя энергия системыraquo laquoфункция состояния системыraquo

bull Термодинамической системой называется всякий объект природы состоящий из достаточно большого числа молекул (структурных единиц) и отделенный от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела)

bull Объекты природы не входящие в систему называются средой

Antoine Lavoisier laquoРеспублика не нуждается в учёныхraquohellip

Pierre-Simon Laplace

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 7: реавиз лекция2 Термодинамика thermodynam

Современный калориметр-бомба (постоянного объема)

bull

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 8: реавиз лекция2 Термодинамика thermodynam

Шкала Цельсия

bull Celsius - Используется чаще всегоbull Вода замерзает при 0degC и кипит при 100degC

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 9: реавиз лекция2 Термодинамика thermodynam

bull Фаренгейт Fahrenheitbull Water freeze at 32degF and boils at 212degFbull Реомюр hellip

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 10: реавиз лекция2 Термодинамика thermodynam

Определение теплоты сгоранияbull Для определения мы должны знать тепловую

емкость калориметра Скалор

bull Она определяется по изменению Т при сгорании М грамм эталона (1 г бензойной кислоты дает2638 кДж Если dT=4857oC то Скалор равна 26384857 = 5341 кДжоС

bull Зная Скалор и измерив изменение температуры в другой реакции мы можем определить изменение теплоты в любом процессе

bull Qреакц = С х DT

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 11: реавиз лекция2 Термодинамика thermodynam

Калориметрия при постоянном давлении

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 12: реавиз лекция2 Термодинамика thermodynam

Наиболее общими характеристиками систем являются м ndash масса вещества содержащегося в

системе и Е ndash внутренняя энергия системыbull Масса вещества системы

определяется совокупностью масс молекул из которых она состоит

bull Внутренняя энергия системы представляет собой сумму энергий теплового движения молекул и энергии взаимодействия между ними

bull Системой называется тело или совокупность тел мысленно (или фактически) обособленных от окружающей среды

bull Системы по характеру обмена веществом и энергией с окружающей средой подразделяют на три типа изолированные закрытые и открытые

bull Изолированной системой называется такая система которая не обменивается со средой ни веществом ни энергией (Δm = 0 ΔE = 0)

bull Закрытой системой называется такая система которая не обменивается со средой веществом но может обмениваться энергией (Δm = 0 ΔE^ 0)

bull Обмен энергии может осуществляться передачей теплоты или совершением работы

bull Открытой системой называется такая система которая может обмениваться со средой как веществом так и энергией (Δm ne 0 ΔE ne 0)

bull Важным примером открытой системы является живая клетка

bull Системы в зависимости от агрегатного состояния вещества из которого они состоят подразделяют на гомогенные и гетерогенные

bull Система называется гомогенной если внутри нее нет поверхности раздела между частями системы и гетерогенной если такие поверхности раздела имеются

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 13: реавиз лекция2 Термодинамика thermodynam

ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ

bull Термодинамика не дает ответа на вопрос какова природа или механизм того или иного явления Она исследует исключительно энергетическую сторону процессов

bull Химическая термодинамика изучает

соотношение между химической и другими видами энергии и играет важную роль для решения биофизикохимических проблем

bull Она позволяет решить такие

вопросы как энергетический баланс химических и биохимических процессов условия рав-новесия осуществимость химической реакции и тп

bull Химическая термодинамика позволяет судить о том может ли данная химическая реакция необходимая для какого-либо жизненного процесса протекать или эта возможность принципиально исключена

bull Биоэнергетикой называется область науки которая занимается изучением трансформации энергии в живых системах

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 14: реавиз лекция2 Термодинамика thermodynam

Совокупность свойств системы называется ее состоянием

bull Свойства которые однозначно определяют состояние системы называются термодинамическими параметрами В свою очередь параметры делятся на две группы

bull Параметры зависящие от количества вещества составляющего систему (общие объем масса энтропия теплоемкость и тд) которые подчиняются закону аддитивности называются экстенсивными Параметры которые не зависят от количества вещества и имеют одинаковые значения во всех точках системы если она находится в равновесии (давление температура и др) называются интенсивными

bull Энергия любого вида может быть представлена в виде произведения в котором один из сомножителей является величиной экстенсивной а другой mdash интенсивной

bull Например в изобарно-изотермических условиях (p T=const) механическая работа расширения газа A равна произведению pdv где давление p mdash фактор интенсивности а изменение объема dv mdash изменение фактора экстенсивности (фактора емкости)

bull Параметры системы связаны между собой уравнением состояния bull F ( p v T ) = 0

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 15: реавиз лекция2 Термодинамика thermodynam

Состояние системы равновесие процесс

bull Состояние системы называется равновесным если параметры системы во времени самопроизвольно не изменяются и сохраняют одинаковое значение в пределах каждой фазы

bull Процесс mdash это изменение состояния системы bull Процесс может протекать в равновесных условиях когда при бесконечно

малых воздействиях со стороны внешней среды происходят бесконечно малые изменения параметров

bull Разновидностью равновесного процесса является обратимый процесс совершив который система возвращается в исходное состояние не оставив изменений ни в системе ни в окружающей среде

bull Процесс можно охарактеризовать изменениями параметров ΔT Δp и тд которые не зависят от того каким образом система пришла к данному состоянию Это означает что если система после протекания в ней ряда процессов вернулась в первоначальное состояние то все ее параметры принимают первоначальное значение

bull Неравновесный (необратимый) процесс mdash это процесс при котором изменения в системе происходят и при этом система не возвращается в исходное состояние

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 16: реавиз лекция2 Термодинамика thermodynam

ВНУТРЕННЯЯ ЭНЕРГИЯ

bull Величины зависящие только от природы веществ и состояния системы называют функциями состояния Величины зависящие от того каким путем система перешла от начальных условий к конечным называют функциями процесса

bull ВНУТРЕННЯЯ ЭНЕРГИЯ -термодинамическая функция состояния системы ее энергия определяемая внутренним состоянием Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов молекул ионов электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной)

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 17: реавиз лекция2 Термодинамика thermodynam

Внутренняя энергия U

bull Внутренняя энергия U как функция состояния вводится первым началом термодинамики согласно которому разность между теплотой Q переданной системе и работой W совершаемой системой зависит только от начального и конечного состояний системы и не зависит от пути перехода те представляет изменение функции состояния

bull В изохорных процессах те процессах при постоянном объеме система не совершает работы за счет расширения W=0 и теплота переданная системе равна приращению внутренней энергии Qv=ΔU Для адиабатических процессов когда Q = 0 = - W

где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 18: реавиз лекция2 Термодинамика thermodynam

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики представляет собой строгую количественную

основу для анализа энергетики различных систем bull Под состоянием понимают

совокупность свойств системы позволяющих определить систему с точки зрения термодинамики

bull В качестве обобщенной характеристики состояния системы применяют понятия

bull laquoравновесноеraquo bull laquoстационарноеraquo bull laquoпереходное состояниеraquo

bull Состояние системы называется равновесным если все свойства остаются постоянными в течение какого угодно большого промежутка времени и в системе отсутствуют потоки вещества и энергии

bull Состояние называется стационарным Если свойства системы постоянны во времени но имеются потоки вещества и энергии

Изменение внутренней энергии системы ΔE обусловлено работой W которая совершается при взаимодействии системы со средой и обменом теплотой Q между средой и системой

Отношение между этими величинами составляет содержание первого начала термодинамики

Приращение внутренней энергии системы ΔE в некотором процессе равно теплоте Q полученной системой плюс работа W совершенная над системой в этом процессе

ΔE = Q + W

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 19: реавиз лекция2 Термодинамика thermodynam

Первое начало термодинамикиbull Первое начало

термодинамики относится к числу фундаментальных законов природы которые не могут быть выведены из каких-то других законов

bull Его справедливость доказывают многочисленные эксперименты в частности неудачные попытки построить вечный двигатель первого рода т е такую машину которая смогла бы как угодно долго совершать работу без подвода энергии извне

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 20: реавиз лекция2 Термодинамика thermodynam

Если давление в системе постоянно ( равно внешнему давлению) то процесс называются изобарными Работа расширения совершаемая при изобарном процессе равна

bull Соответственно выражение можно записать в виде

bull Qp = Н2 ndash Н1 = ΔH

То энтальпия ndash функция состояния приращение которой равно теплоте полученной системой в изобарном процессе

bull Измерение приращения энтальпии в некотором процессе может быть осуществлено при проведении этого процесса в калориметре при постоянном давлении Именно так проводили свои эксперименты А М Лавуазье и П С Лаплас изучая энергетику метаболизма в живом организме

Подставляя работу расширения в математическое выражение первого начала получаем Qρ = ΔE + pΔV = (E2 + ρV2) ndash (E1 + ρΔV1)

Величина (E+ pV) ndash функция состояния системы обозначаемая через Н и называемая энтальпией H = E + ρV

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 21: реавиз лекция2 Термодинамика thermodynam

ЭНТАЛЬПИЯ bull Энтальпия mdash это термодинамическое

свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Энтальпия mdash это термодинамическое свойство вещества которое указывает уровень энергии сохраненной в его молекулярной структуре

bull Это значит что хотя вещество может обладать энергией на основании температуры и давления не всю ее можно преобразовать в теплоту

bull Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру Часть кинетической энергии вещества недоступна когда его температура приближается к температуре окружающей среды

bull Следовательно энтальпия mdash это количество энергии которая доступна для преобразования в теплоту при определенной температуре и давлении Шкала энтальпий

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 22: реавиз лекция2 Термодинамика thermodynam

Энтальпия связей и энергия из топлива

bull Different fuels have different enthalpies of combustion

Почему они так сильно различаются

Чтобы выделить энергию топливо должно соединиться с кислородом

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 23: реавиз лекция2 Термодинамика thermodynam

закон Гессаbull тепловой эффект химической реакции определяется разностью энергетических

состояний продуктов и реагентов и не зависит от пути реакции

Графическое истолкование закона Гесса

на примере превращения углерода

в углекислый газ

Углекислый газ из углерода и кислорода можно получить двумя путями 1) в одну стадию ndash прямым сжиганием в избытке кислорода 2) в две стадии ndash получением сначала монооксида углерода и его последующим сжиганием Согласно закону Гесса ΔH1 = ΔH2 + ΔH3

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 24: реавиз лекция2 Термодинамика thermodynam

Три следствия закона Гесса

bull Следствие 1 Энтальпия реакции равна разности энтальпий образования продуктов и реагентов

bull ΔHр = ΣΔHf (прод) ndash ΔHf (реаг) bull Так если уравнение реакции в общем виде записать следующим образом bull aА + bB = cC + dD то bull ΔHр = cΔHf(C) + dΔHf(D) ndash aΔHf(A) ndash bΔHf(B) bull Из первого следствия закона Гесса можно определить стандартную теплоту образования

глюкозы пользуясь энтальпией ее сгорания bull С6Н12О6 + 6О2 = 6СО2 + 6Н2О

bull Следствие 2 Энтальпия реакции равна разности энтальпий сгорания реагентов и продуктов

bull ΔHр = ΣΔHсг(реаг) ndash ΔHсг(прод)

bull для реакции bull aА + bB = cC + dD bull ΔHр = aΔHсг(А) + bΔHсг(B) ndash cΔHсг(C) ndash dΔHсг(D)

bull Следствие 3 Термохимические уравнения реакций можно складывать и вычитать умножать и делить записывать справа налево несмотря на подчас практическую неосуществимость обратных реакций

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 25: реавиз лекция2 Термодинамика thermodynam

Способ применения закона Гесса (Hessrsquos Law)

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 26: реавиз лекция2 Термодинамика thermodynam

Если мы можем измерить ΔH2 и ΔH1 мы сможем найти ΔH Используя закон Гесса

ΔH + ΔH2 = ΔH1

Следовательно ΔH = ΔH1 - ΔH2

Энтальпийные циклы полезны тк они позволяют определить изменения энтальпии в реакциях которые не

могут быть реализованы в прямом эксперименте

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 27: реавиз лекция2 Термодинамика thermodynam

Using an Enthalpy Cycle to Determine Enthalpy Change of Reactionbull It is not possible to determine the enthalpy change for the reaction

between silicon tetrachloride and water directly by experiment

ΔH1 = -1212 kJ mol-1ΔH2 = -12801 kJ mol-1

Now use Hessrsquos law to show ΔH is -681kJmol

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 28: реавиз лекция2 Термодинамика thermodynam

Bonds and Enthalpy CyclesThe bond-breaking and bond-making can be represented in an enthalpy cycle

Now can you use your data book and the information about bond enthalpies to calculate DH2

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 29: реавиз лекция2 Термодинамика thermodynam

Now use Hessrsquos Law to show the enthalpy change of combustion is -818 kJ mol-1

This value is a little different from the standard enthalpy change of combustion of methane -890kJ mol-1

bull Give two reasons why the experimental value of this enthalpy change is different from the one calculated from bond energies

bull helliphelliphelliphellip

bull helliphelliphelliphellip

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 30: реавиз лекция2 Термодинамика thermodynam

Born-Haber cycle calculations

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 31: реавиз лекция2 Термодинамика thermodynam

Via an Energy level cycleThis is the method always required in examinations

The sum of energies for route 1 = sum of energies for route 2

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 32: реавиз лекция2 Термодинамика thermodynam

ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА

bull Математическое выражение bull ndashΔE = ndashQ ndash Wbull для первого начала

термодинамики определяет точное соотношение между расходом внутренней энергии системы ΔЕ работой W совершаемой системой и энергией Q которая теряется в виде теплоты

bull Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии которая может быть преобразована в работу

bull Теоретические оценки затрат осуществляются на основе второго начала термодинамики Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и кроме того позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса

bull Процесс называется самопроизвольным если он осуществляется без каких-либо воздействий когда система предоставлена самой себе

Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 33: реавиз лекция2 Термодинамика thermodynam

Обратимые и необратимые (термодинамически) процессы

bull Процесс называется термодинамически обратимым если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными

bull Процесс называется термодинамически необратимым если хоть одно из промежуточных состояний неравновесно

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 34: реавиз лекция2 Термодинамика thermodynam

Энтропия bull Максимальная работа Wмакс которая

может быть получена при данной убыли внутренней энергии ΔЕ в процессе перехода из состояния 1 в состояние 2 достигается лишь в том случае если этот процесс обратимый В соответствии с выражением для первого начала термодинамики при этом выделяется минимальная теплота Qмин = ΔЕ ndash Wмакс

bull КПД или эффективность двигателя Карно определяется как отношение работы которую он производит к энергии (в форме тепла) отнятой у горячего резервуара Нетрудно доказать что эффективность (E) выражается формулой

bull E = 1 mdash (TcTh) где Тc и Тh mdash соответственно температура холодного и горячего резервуаров (в кельвинах) Очевидно что эффективность двигателя Карно меньше 1 (или 100)

Rudolf Clausius ln p = HRT + константа Природным процессам свойственна направленность и необратимость ипричина такой необратимости процессов происходящих во Вселенной кроется во втором начале термодинамики который при всей его кажущейся простоте является одним из самых трудных и часто неверно понимаемых законов классической физики Ни один тепловой двигатель работающий по замкнутому циклу при двух заданных температурах не может быть эффективнее идеального двигателя Карно

Sadi Carnot

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 35: реавиз лекция2 Термодинамика thermodynam

Энтропия Порядок и беспорядокbull Понятие энтропии ввел (1865 г)

немецкий физик Р Ю Клаузиус (1822mdash1888) энтропия представляет собой функцию состояния приращение которой ΔS равно теплоте Qмин подведенной к системе в обратимом изотермическом процессе деленной на абсолютную температуру Т при которой осуществляется процесс

bull ΔS = Qмин Т bull Единица измерения энтропии ДжК

bull Примером обратимого изотермического процесса может служить медленное таяние льда в термосе с водой при 273degК Экспериментально установлено что для плавления 1 моля льда (18 г) необходимо подвести по крайней мере 6000 Дж теплоты При этом энтропия системы laquoлед ndash водаraquo в термосе возрастает на ΔS = 6000 Дж 273degК = 22 ДжК

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 36: реавиз лекция2 Термодинамика thermodynam

ЭКЗО- и ЭНДО- термические процессы

Q Q

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 37: реавиз лекция2 Термодинамика thermodynam

Энергетически невыгодные процессы в организме реализуются в основном за счет

энергии запасенной в АТФ ndash что это за химия

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 38: реавиз лекция2 Термодинамика thermodynam

Аденозин АМФ АДФ и АТФ

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 39: реавиз лекция2 Термодинамика thermodynam

Макроэргические производные фосфата -три других типа

2 ангидриды фосфорной и карбоновой кислот

3 гуанидинофосфаты

4 фосфоенолпируват

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 40: реавиз лекция2 Термодинамика thermodynam

2

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 41: реавиз лекция2 Термодинамика thermodynam

Енолфосфаты

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 42: реавиз лекция2 Термодинамика thermodynam

ATФ (рус) = ATP (англ)

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 43: реавиз лекция2 Термодинамика thermodynam

Сопряженные реакции

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 44: реавиз лекция2 Термодинамика thermodynam

Спасибо за внимание

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law
Page 45: реавиз лекция2 Термодинамика thermodynam

Enthalpy Cycles amp Hesss Law

bull Instead of manipulating chemical equations you can also use enthalpy cycles like the one shown in the next slide DH cannot be determined directly by experiment It is possible however to determine the enthalpy changes of combustion of carbon and hydrogen (DH1) and the enthalpy change of methane (DH2) The key idea for this cycle is that the total enthalpy change for one route is the same as the total enthalpy change for an alternative route

  • Lecture 2 CHEMICAL THERMODYNAMICS and LIFE ENERGETICS
  • ЛЕКЦИЯ 2 ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА и ЭНЕРГЕТИКА ЖИЗНИ
  • Химические реакции протекающие в организме человека Равнове
  • Slide 4
  • Задачи химической термодинамики применение законов общей те
  • Предмет и методы химической термодинамики
  • Взаимосвязь между процессами обмена веществ и энергии в организ
  • Современный калориметр-бомба (постоянного объема)
  • Шкала Цельсия
  • Slide 10
  • Определение теплоты сгорания
  • Калориметрия при постоянном давлении
  • Наиболее общими характеристиками систем являются м ndash масса веще
  • ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА КАК ТЕОРЕТИЧЕСКАЯ ОСНОВА БИОЭНЕРГЕТИКИ
  • Совокупность свойств системы называется ее состоянием
  • Состояние системы равновесие процесс
  • ВНУТРЕННЯЯ ЭНЕРГИЯ
  • Внутренняя энергия U
  • ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ Первое начало термодинамики предст
  • Первое начало термодинамики
  • Если давление в системе постоянно ( равно внешнему давлению) то
  • ЭНТАЛЬПИЯ
  • Энтальпия связей и энергия из топлива
  • закон Гесса
  • Три следствия закона Гесса
  • Способ применения закона Гесса (Hessrsquos Law)
  • Slide 27
  • Using an Enthalpy Cycle to Determine Enthalpy Change of Reactio
  • Bonds and Enthalpy Cycles The bond-breaking and bond-making can
  • Slide 30
  • Born-Haber cycle calculations
  • Via an Energy level cycle This is the method always required
  • ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ СВОБОДНАЯ ЭНЕРГИЯ ГИББСА
  • Обратимые и необратимые (термодинамически) процессы
  • Энтропия
  • Энтропия Порядок и беспорядок
  • Slide 37
  • Энергетически невыгодные процессы в организме реализуются в ос
  • Аденозин АМФ АДФ и АТФ
  • Макроэргические производные фосфата - три других типа 2 а
  • 2
  • Slide 42
  • Енолфосфаты
  • Slide 44
  • ATФ (рус) = ATP (англ)
  • Сопряженные реакции
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Спасибо за внимание
  • Enthalpy Cycles amp Hesss Law