Top Banner
– 1 – Data Converters Sample-and-Hold Professor Y. Chiu EECT 7327 Fall 2014 Sample-and-Hold (S/H) Basics
40

– 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Dec 15, 2015

Download

Documents

Derrick Oliff
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

– 1 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Sample-and-Hold (S/H) Basics

Page 2: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

ZOH vs. Track-and-Hold (T/H)

– 2 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Zero acquisition time• Infinite bandwidth• Not realistic

• T/2 acquisition time• Finite bandwidth• Practical

V(t)

t0 T 2TT

V(t)

t0T/2

T 2T

H T H T H T H T H T

Page 3: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

A Simple T/H (Top-Plate Sampling)

– 3 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Vo

Ф

CS

RS

Vi

• MOS technology is naturally suitable for implementing T/H• The lowpass SC network determines the tracking bandwidth• Non-idealities: signal-dependent Ron, charge injection, aperture, etc.

Ron

0 VDDVi

VTnVTp

PMOS

NMOS

CMOS

ithDDox1

on VVVL

WμCR

Page 4: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Tracking Bandwidth (TBW)

– 4 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Ron

CSVi Vo

RS Ron

0 VDDVi SonS CRR1TBW

• Tracking bandwidth determines how promptly Vo can follow Vi

• Typically TBW is many times greater than the max signal bandwidth• What’s wrong with the concept of “linear filtering” if Ron is constant?

Page 5: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Dispersion

– 5 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

jωHdω

dωt

:delay Groupω

jωHωt

:delay Phase

g

p

• Magnitude response• Non-uniform phase delay• Non-uniform group delay

|H(jω)|

1

ω0

H(jω)

-45°

0

-90°

ω0

ωω0

Page 6: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Dispersion

– 6 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Waveform is not very sensitive to the lowpass magnitude response as long as the signal bandwidth is on the order of TBW

• Waveform distortion is mainly due to non-uniform phase and group delays

Ron

CSVi Vo

RS

t t

Page 7: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Signal-Dependent Ron

– 7 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Vo

Ф

CS

RS

Vi

• Signal-dependent Ron → signal-dependent TBW → extra waveform distortion

• Neither signal-dependent Ron nor dispersion is of concern if TBW is

sufficiently large (>> fin, depending on the target accuracy)

Ron

0 VDDVi

VTnVTp

PMOS

NMOS

CMOS

ithDDox1

on VVVL

WμCR

Page 8: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Ideal T/H

– 8 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Sufficient tracking bandwidth → negligible tracking error• Well-defined sampling instant (asserted by clock rising/falling edge)• Zero track-mode and hold-mode offset errors

V(t)

tTrack HoldHold

Page 9: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

T/H Errors (Track Mode)

– 9 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Finite tracking bandwidth → tracking error, T/H memory• Track-mode offset, gain error, and nonlinearity

V(t)

t

δ1δ2

Droop

Track HoldHold

Δt

Page 10: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Acquisition Time (tacq)

– 10 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Ron

CSVi Vo

RS

SonS CRRTBW

Short L, thin tox, large W, large Vov, and small Vi help reduce Ron

Accuracy tacq

1% (7b) ≥ 5t

0.1% (10b) ≥ 7t

0.01% (13b) ≥ 9t

ch

2

ithDDox

2

ithDDox

on μQ

L

VVVWLμC

L

VVVLW

μC

1R

Page 11: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

T/H Errors (T-to-H Transition)

– 11 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Pedestal error (often signal-dependent) resulted from switch turn-offnonidealities (clock feedthrough and charge injection)

• Aperture delay – the delay Δt b/t hold command and hold action• Aperture jitter – the random variation in Δt (i.e., sampling clock jitter)

V(t)

t

δ1δ2

Droop

Track HoldHold

Δt

Page 12: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Switch Non-Idealities

– 12 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Ф

VDD

0

Vin+Vth

Switch on Switch off

Vout

Ф

CS

Zi

Vin

CgdCgs

Qch

Clock feedthrough (CF) Charge injection (CI)

Fast turn-off

Slow turn-off

DDSgs

gs VCC

CΔV

Sgs

inthDDox

CC2

VVVWLCΔV

thinSgs

gs VVCC

CΔV

0ΔV

Page 13: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Pedestal Error of Top-Plate T/H

– 13 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

o i os

gsox oxo i DD DD th

gs S gs S gs S

V 1 ε V V

CC WL C WL1 1V 1 V V V V

2 C C C C 2 C C

o i os

gs gso i th

gs S gs S

V 1 ε V V

C CV 1 V V

C C C C

Slow turn-off:

Fast turn-off:

Watch out for nonlinear errors!

Page 14: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Speed-Accuracy Tradeoff of T/H

– 14 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

S

ch

C

Q

2

1ΔV Pedestal error:

TBW:S

2ch

Son CL

μQ

CR

1TBW

L

μQ

CL

C

Q

2

1

TBW

ΔV 2

ch

S2

S

ch Therefore:

Technology scaling improves T/H performance!

Page 15: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Aperture Delay (Δt)

– 15 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Fixed aperture delay is usually not of problem in a single-path T/H• Non-uniform aperture delays among time-interleaved T/H paths cause

significant errors (Δt1, Δt2… are also called sampling clock skew)

CH 1

CH 2

Φ1

Φ2

Vin

Φ1

Φ2

Page 16: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Aperture Jitter

– 16 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

V(t)

t

δV

Track Hold

δt

dVdt

Ref: M. Shinagawa, Y. Akazawa, and T. Wakimoto, “Jitter analysis of high-speed sampling systems,” IEEE Journal of Solid-State Circuits, vol. 25, issue 1, pp. 220-224, 1990.

Page 17: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Aperture Jitter

– 17 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

2

σωAδt

2

ωAdtωtcosAω

T

1δttε

onary"Cyclostati"ωtAcosωδtωtAsintVtε2

t22

222T

0

222

i

i

2

V t Asin ω t δt

Asin ωt cos ωδt Acos ωt sin ωδt

ωδt ωδt ωδtAsin ωt 1 sin Acos ωt 2sin cos

2 2 2

Asin ωt ωδt Acos ωt for small δt

2t

2

2t

222

σω

1

2σωA

2A

SNR

Page 18: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Aperture Jitter

– 18 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

106

107

108

109

0

20

40

60

80

100

120

140

Input Freq [Hz]

SN

R [

dB

]

t = 0.1ps

t = 1ps

t = 10ps

t = 100ps

t10 ωσLOG20SNR

Page 19: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

T/H Errors (Hold Mode)

– 19 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Hold-mode droop caused by off-switch/diode/gate leakage• Hold-mode input feedthrough (i.e., due to capacitive coupling)

V(t)

t

δ1δ2

Droop

Track HoldHold

Δt

Page 20: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Evaluating T/H Performance

– 20 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

kT/C noise:

SNDR: 2ε

222

2N

2i

Vδt2ωA

V

VSNDR

S0

2

S

2N C

kTdf

RCfj2π1

14kTRV

Noise Distortion

CS √kT/C

100pF 6.4μV

1pF 64μV

10fF 640μV

T = 300K

Jitter

Page 21: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

– 21 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

MOS S/H Techniques

Page 22: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Simple Top-Plate Sampling

– 22 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Vo

Ф

CS

RS

Vi

Pros• Simple, minimum number of devices• Potentially wideband, zero track-mode offset

Cons• Signal-dependent tracking bandwidth• Signal-dependent charge injection and clock feedthrough• Signal-dependent aperture delay (sampling point)

Page 23: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Signal-Dependent Aperture Delay

– 23 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Non-uniform sampling due to signal-dependent aperture delay causes distortion in top-plate S/H

• Sharp clock edge and small Vin mitigate the delay variation

Ф

VDD

0

Vi+Vth(Vi)

Switch on Switch off

Vth(Vi)

i

io

V t Asin ωt

V tV t Asin ω t

SR

Page 24: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Signal Distortion

– 24 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

ωt2sinA2

1

SR

ωωtAcos

SR

ωtAsinωtε

ωtAcosSR

VωtVtVtε

2

ioi

io

i i

i i

VV t Asin ω t

SR

V VAsin ωt cos ω Acos ωt sin ω

SR SR

V VAsin ωt ω Acos ωt for small

SR SR

22

2

22

2

ωA

SR4

2

SR2ωA

2A

SDR

← 2nd-order

Page 25: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

CMOS Switch

– 25 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Ron still depends on Vin and is sensitive to N/P mismatch

• Large parasitic cap due to PMOS switch for symmetric Ron

• Clock rising/falling edge alignment

Ron

0 VDDVi

VTnVTp

PMOS

NMOS

CMOS

Vo

CS

Vi

Ф

Ф

Page 26: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Clock Bootstrapping

– 26 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Constant gate overdrive voltage VGS = VDD for the switch

• Ron is not dependent on Vin to the first order (body effect?)

• NMOS device only with less parasitic capacitance

Ron

0 VDDVi

OutInM1

VDD

Φ Φ

Page 27: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Clock Bootstrapping

– 27 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Out

M6

CC2C1

M5

Φ

ΦΦ

Φ

Φ

Φ

In

M4 M3

M2

M1

VDD

VSS

Φ

Ref: A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC,” IEEE Journal of Solid-State Circuits, vol. 34, issue 5, pp. 599-606, 1999.

Page 28: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Clock Bootstrapping (Φ=0)

– 28 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Out

C Φ

Φ

Φ

In

M2

M1

Φ

VDD

VSS

Out

C

Φ

Φ

In

M3

M1

M2Φ

Φ

Page 29: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Clock Bootstrapping (Φ=1)

– 29 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Out

C

Φ

Φ

In

M3

M1

M2Φ

Φ

Out

C Φ

Φ

Φ

In

M2

M1

Φ

VDD

VSS

Page 30: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Dummy Switch

– 30 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Initial size of dummy chosen with the assumption of a 50/50 split of Qch; usually (W/L)dummy < ½(W/L)switch in practice

• The nonlinear dependence of CI on Zi, CS, and clock rise/fall time makes it difficult to achieve a precise cancellation

• Ф_ rising edge must trail Ф falling edge

Vo

Ф

WL CS

W2L

Ф

Vi

Page 31: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Balanced Switch + Dummy

– 31 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Vo

Ф

WL CS

W2L

Ф

Vi

CS

Ref: L. A. Bienstman and H. J. De Man, “An eight-channel 8 bit microprocessor compatible NMOS D/A converter with programmable scaling,” IEEE Journal of Solid-State Circuits, vol. 15, issue 6, pp. 1051-1059, 1980.

• TBW• Parasitics

Page 32: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Fully-Differential T/H

– 32 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• All even-order distortions cancelled, including the signal-dependent aperture delay-induced distortion

• Actual cancellation limited by P/N mismatch (1-10% typically)

fin 0.5GHz

VDD 1.8V

tf 0.1ns

A (Vin) 0.5V

SDR (SE) 20-30 dB

SDR (DF) 40-50 dB

Vo+

CS+

Vi+

Vo-

CS-

Vi-

Ф

M1

M2

E.g.

Page 33: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Bottom-Plate Sampling

– 33 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• AC-ground switch opens slightly earlier than input switches

• Signal-independent CF and CI of switch Φe to the first order!

• Input switch can be further bootstrapped

• Typical for applications of more than 8-bit resolution

• Less tracking bandwidth due to more switches in series

• Signal swing at node X is not entirely zero!

Фe Ф

CS

Vi

Ф

ФФe

X

Page 34: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

– 34 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Sample-and-Hold Amplifier(SHA)

Page 35: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Inverting SHA

– 35 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

Vi+ Vo

+

Vo-Vi

-

CS+

Ф2CS

-

Ф2

Ф1e

Ф1

Ф1

Ф2

CH+

CH-

Ф1

Ф1

• Inverting, closed-loop gain determined by the ratio CS/CH

• CMOS or bootstrapped switches are required when passing signals with large swing (where?)

Ф1eФ1

Ф2

T H

Page 36: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Inverting SHA (Track-Mode)

– 36 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• CF and CI are independent of Vin and cancelled differentially

• Φ1e switch is equivalent to two switches of half channel length → faster, less CF and CI

Vi+

Vi-

CS+

CS-

Ф1e

Ф1

Ф1

CH+

CH-

Ф1

Ф1

WL

Ф1e Ф1e

WL/2

WL/2

Page 37: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Inverting SHA (Hold-Mode)

– 37 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• For 1X gain (CS = CH), the feedback factor is about 1/2

• Floating switch Φ2 in hold-mode → flexible input common mode

• Useful for single-ended to differential conversion

Vo+

Vo-

CS+

Ф2CS

-

Ф2

Ф2

CH+

CH-

• CM?• DM?

Page 38: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Differential Mode

– 38 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• DM charge transfer is complete

Vo+

Vo-

CS+

Ф2CS

-

Ф2

Ф2

CH+

CH-

DM half circuit

Vo+

CS

Ф2

Adm

CH

Vi,dmФ2

Page 39: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Common Mode

– 39 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• CM charge is not transferred!

Vo+

Vo-

CS+

Ф2CS

-

Ф2

Ф2

CH+

CH-

CM half circuit

Vo

+

CS

Ф2

Acm

CH

Vi,cm

Page 40: – 1 – Data Converters Sample-and-HoldProfessor Y. Chiu EECT 7327Fall 2014 Sample-and-Hold (S/H) Basics.

Flip-Around SHA

– 40 –

Data Converters Sample-and-HoldProfessor Y. Chiu

EECT 7327Fall 2014

• Non-inverting, 1X closed-loop gain

• Close-to-unity feedback factor in hold mode

• CF/CI independent of Vin and cancelled differentially

Vi+ Vo

+

Vo-Vi

-

CS+

Ф2Ф1eCS

-

Ф2Ф1e

Ф1

Ф1

Ф1eФ1

Ф2

T H