Top Banner
Ch6.6 Mapping Ch6.7 Conformal Mapping 講講 講講講 講講 1
12

講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

Dec 14, 2015

Download

Documents

Ellis Dunham
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

1

Ch6.6 MappingCh6.7 Conformal Mapping

講者: 許永昌 老師

Page 2: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

2

ContentsConformal MappingMappings

TranslationRotationInversion

Branch Points and Multivalent Functions

Page 3: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

3

Conformal mapping ( 請預讀 P368~P370)

Mapping: zwThe mapping is conformal if angle and sense

of rotation are preserved by the mapping. If w=f(z) is analytic in a region R of the z-plane,

then the mapping of R onto its image in the w-plane is conformal, except at points where f ’(z)=0. Proof:

0analytic ' 0

arg arg arg arg ,

Therefore,

lim arg arg arg ' .

f i

f i f if i

zf z

f z f zww w z z

z z z

w z f z

Page 4: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

4

Conformal mapping (continue)Based on Cauchy-Riemann conditions, we get

2u=0=2v, u v=0.

They are orthogonal to each other The curves u=constant and v=constant are orthogonal to each other.

Example:w=z2=(x2-y2)+2ixyCode: z2_uv.m

y=sqrt(x2-u), y=v/(2x) Contour u= x2-y2 , v=2xy. -2 -1 0 1 2

-3

-2

-1

0

1

2

3

z-plane

-8 -6 -4 -2 0 2 4

-10

-8

-6

-4

-2

0

2

4

6

8

10

w-plane

Proper rotation

Page 5: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

5

Conformal Mapping (final)The mapping of w=z2.

From these figures, you will find that the contour lines of y=C and y=-C are the same in w-plane.

Reason: z=reiq and z’=rei q +ip . z2=r2ei2q=z’ 2.

Therefore, it has a two-to-one correspondence.

-2 -1 0 1 2

-3

-2

-1

0

1

2

3

z-plane

-4 -2 0 2 4-8

-6

-4

-2

0

2

4

6

8w-plane

Page 6: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

6

Mappings ( 請預讀 P360~P363)

Linear Transformation:Translation:

w=z+z0.

Rotation: w=cz=(rrc)ei(q+q

c).

Nonlinear Transformation:Inversion:

w=1/z=1/r e-iq.…

Code: mappings.m想像 w=z‘ 與 z 畫在同一個座標系

-4 -2 0 2 4 6

0

2

4

6

translation

-6 -4 -2 0 2 4

-2

0

2

4

rotation

-4 -2 0 2 4-3

-2

-1

0

1

2

inversion

-5 0 5 10 15 20

-10

-5

0

5

10

square

Page 7: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

7

ExerciseProve that w=1/z will map a straight line in z-

plane into a circle cross w=0.Try to add “z=z*(1+1i);x=real(z);y=imag(z);”

into the code mappings.m to see the result.

Page 8: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

8

Multivalent functions and Branch Points ( 請預讀 P363~P367)

Multivalent function:w=f(z), however, w is not unique for each z.

Example:w=sqrt(z)

If z=rei q ’=rei q +i2mp, w=?w=ln(z)

If z=rei q ’=reiq +i2mp, w=?

STOP TO THINK:Since

how can we say that f ’(z) does exist? analytic?

0

' lim and is a multivalent function,z

f z z f zf z f z

z

Hint: Restrict the allowed range of q’.

Page 9: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

9

Multivalent functions and Branch Points (continue)The cut line here joins the two branch point

singularities at 0 and .Dm: 2pm < q ’ < 2p (m+1 ).Sm : 2pm = q ’

Based on Morera’s theorem, we can get f(z) is analytic in zS0D0S1D1… SnDn.sqrt(z): n=1 and S0 = S2.ln(z): n=.We call this surface a Riemann surface.

* 莊 ( 土斤 ) 泰,張南岳,復變函數

Page 10: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

10

Multivalent functions and Branch Points (final)We can think that:

It is the basis for the entire calculus of residues.

Stop to think: Hint: Riemann surface.

200

00

1ln 2 .

i i

i

r e

r eCdz z iz

? Does it conflict with Morera's theorem?Czdz

Page 11: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

11

Homework6.6.26.6.36.6.56.6.66.6.76.7.16.7.4

Page 12: 講者: 許永昌 老師 1. Contents Conformal Mapping Mappings Translation Rotation Inversion Branch Points and Multivalent Functions 2.

12

NounsConformal mapping:

P368Riemann surface: P366