University Microfilms Inc. - ShareOK

Post on 21-Mar-2023

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

I J n r v e r s i l y

M c r o f i l i n s

l a t e m a t i o i i a l

1.0

l . l

1.25

11' ^

11112

L: Ilia

1.4

|2g

a2.0

1.6

MICROCOPY RESOLUTION TEST CHART N A T IO N A L BU REA U O F STANDA RDS

ST A N D A R D R E FE R E N C E MATERIAL 1010a (A N SI a n d ISO T E S T C H A R T No. 2)

University Microfilms Inc.300 N. Zeeb Road, Ann Arbor, MI 48106

INFORMATION TO USERS

This reproduction was made from a copy of a meinuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help cleuify notations which may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap­pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec­tioning the original, beginning at the upper left hand comer and continu­ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or micro­fiche but lack clarity on xerographic copies made from the microfilm. For an additional charge, all photographs are available in black and white standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department.

' IMwBTsi ty Micrmihna

. latematiciial

8603510

E arlyw ine , A r th u r D ale

THE STEREOCHEMISTRY AND MECHANISM OF THE IRON PENTACARBONYL-PROMOTED COUPLING OF STRAINED OLEFINS TO CARBON MONOXIDE, A NMR-FACILITATED STUDY O F THE EQUILIBRIUM CONSTANTS BETWEEN AND COLLISION COMPLEX OF A 10,11-DIPHENYL- 1,4:5,8-DIMETH ANO-1,4,4A,4B,5,8,8A,8B-OCTAHYDROFLUORENE-9-ONE STEREOISOMER AND THE LANTHANIDE SHIFT REAGENT EU(FOD){,3), THE ELECTROPHILIC AROMATIC THALLATION OF SOME SELECTED BIOMOLECULES, AND THE SYNTHESIS AND HIGH RESOLUTION NMR STUDY O F THE TWO SERIES O F 1,4,4A,8A-TETRAHYDRO-ENDO-1,4- METHANONAPHTHALENE-5,8-DIONES AND PENTACYCLO(5.4.0.0(’2,6).0{’3,10).0(’5,9))UNDECANE-8,11-DIONES

The U niversity o f O k lahom a Ph.D. 1985

UniversityMicrofilms

I nter n cltiO n el 300 N. zeeb Road, Ann Arbor, Ml 48106

Copyright 1985

by

Earlywine, Arthur Dale

All Rights Reserved

PLEASE NOTE:

In all c a se s th is material has been filmed in th e b est possible w ay from th e available copy. Problem s encoun tered with this do cu m en t have been identified here with a ch eck m ark ■£_

1. G lossy photographs or p a g e s .

2. C olored illustrations, paper or p r in t______

3. Photographs with dark b a c k g ro u n d _____

4. Illustrations are poor c o p y _______

5. P ag es with black marks, not original c o p y .

6. Print show s through a s there is tçx t on both sides of p a g e .

7. Indistinct, broken or small print on several pages ^

8. Print exceeds margin req u irem en ts______

9. Tightly bound copy with print lost in sp in e _______

10. C om puter printout p ages with indistinct print

11. P a g e (s )____________ lacking w hen material received, a n d not available from school orauthor.

12. P a g e (s )____________ seem to b e m issing in numbering only as text follows.

13. Two pages n u m b ered . Text follows.

14. Curling and wrinkled p a g e s _______

15. Dissertation con ta ins pages with print at a slant, filmed a s received___________

16. O ther

UniversityMicrofilms

International

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

THE STEREOCHEMISTRY AND MECrtWISM OF THE IRON PENTACARBONYL-PROMOTED

COUPLING OF STRAINED OLEFINS TO CARBON MONOXIDE, A M1R-FACIL1TATED

STUDY OF THE EQUILIBRIUM CONSTANTS BETWEEN WD COLLISION COMPLEX OF A

1 0 , 1 1-DI PHENYL-1 , 4 : 5 , 8-DIMETWNO- 1 , 4 , 4 A , 4 B , 5 , 8 , 8 A , BB-OCTAHYDROFLUORENE

-9-ONE STEREOISOMER A4D THE LANTLANIDE SHIFT REAGENT EU<F0D>3, THE

ELECTROPHILIC AROWiTIC TmLLATION OF SOME SELECTED BIOMOLECULES, WD

THE SYNTHESIS fWD HIGH RESOLUTION NMR STUDY OF THE TWO SERIES OF

1 , 4 , 4A, 8A-TETRAHYDR0-END0- 1 , 4-METHAN0NAPHTmLENE-5, 8 -DI ONES fWD

PENTACYCLOL5.4.0.02,6.03, 10 .05 ,9 ] unDECANE-8 , 11-DI ONES

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in p a r t i a l -ful-fi 1 Iment of t h e r e q u i r e m e n t s f o r t h e

d e g r e e of

DOCTOR OF PHILOSOPHY

By

ARTHUR DALE EARLYWINE

Norman, Oklahoma

1985

THE STEREOCHEMISTRY AND MECHANISM OF THE IRON PENTACARBONYL-PROMOTED

COUPLING OF STRAINED OLEFINS TO CARBON MONOXIDE, A NMR-FACILITATED

STUDY OF THE EQUILIBRIUM CONSTANTS BETWEEN AND COLLISION COMPLEX OF A

1 0 , 1 1-DIPHENYL-l,4 : 5 , 8-DIMETHANO-1 , 4 , 4 A ,4B ,5 , 8 , BA,BB-OCTAHYDROFLUORENE

-9-ONE STEREOISOMER AND THE LANTHANIDE SHIFT REAGENT EU(F0D>3, THE

ELECTROPHILIC AROMATIC THALLATION OF SOME SELECTED BIOMOLECULES, AND

THE SYNTHESIS AND HIGH RESOLUTION NMR STUDY OF THE TWO SERIES OF

1 ,4 , 4A, BA-TETRAHYDRO-ENDO- 1 ,4-METHAN0NAPHTHALENE-5, B-DI ONES AND

PENTACYCLOC5.4.0.02,<4.03, 1 0 . 0 5 , 9 ] u n d ECANE-B , 1 1-DIONES

A DISSERTATION

APPROVED FOR THE DEPARTMENT OF CHEMISTRY

X l L -

' A y' _

---

C op y r ig h t by A r t h u r Da le E a r ly w in e 1985

Al l R i g h t s R ese r v ed

1 1 1

ACKNOWLEDGEMENTS

The a u t h o r w i sh es to e x p r e s s h i s a p p r e c i a t i o n t o Dr. A. P.

Marchand -for h i s gu id an ce and s u p p o r t in t h i s r e s e a r c h and w r i t i n g o-f

t h i s d i s s e r t a t i o n .

F u r t h e r th an k s i s of- fered t o : Dr. E r i c Enwal f o r a s s i s t a n c e in

a d a p t i n g a l e a s t s q u a r e s computer program f o r u se in t h e l a n t h a n i d e

s h i f t r e a g e n t " c o l l i s i o n - c o m p l e x " s t u d y , Dr. M. J . Heeg f o r h e r

s o l v i n g of s e v e r a l X- ray s t u c t u r e s , Dr. M. D. Joh ns ton f o r h i s

p r o v i d i n g of t h e LISA4 computer p rogram used in t h e l a n t h a n i d e s h i f t

r e a g e n t NMR and e q u i l i b r i u m s t u d i e s and f o r t h e h e l p fu l s u g g e s t i o n s

c o n c e r n i n g i t s u s e , Dr. D. J . N e lson f o r th e t h e o r e t i c a l MNDO

c a l c u l a t i o n s on t r a n s - 1, 2 - d i m e t h y l eye 1o p r o p a n o n e , and Dr. D. F .

M ar te n f o r c l a r i f i c a t i o n of c e r t a i n a s p e c t s of t h e o r g a n o m e t a l 1ic

c h e m i s t r y i n v o l v e d in th e i r o n p e n t a c a r b o n y l - p r o m o te d c o u p l i n g of

s t r a i n e d o l e f i n s t o carbon mon ox ide .

S p e c i a l g r a t i t u d e i s e x t e n d e d t o t h e G i g e r s , R i l e y s , S a r a h , and

Mr. C".

Most i m p o r t a n t l y , th e s u p p o r t of my w i f e and f r i e n d J a n e t i s

g r a t e f u l l y acknowledged.

IV

TABLE OF CONTENTS

page

LIST OF TABLES .............................................................................. v i i

LIST OF FIGURES ............................................................................ xi

LIST OF SCHEMES ............................................................................ xxvi

ABSTRACT ...................................................................................... x x v i i

PART I 1

INTRODUCTION .............................................................................. 1

RESULTS AND DISCUSSION ...................................................... 5

EXPERIMENTAL .............................................................................. 42

APPENDIX ........................................................................................ 49

ERROR ANALYSIS .......................................................................... 51

BIBLIOGRAPHY .............................................................................. 53

PART 11 55

INTRODUCTION .............................................................................. 55

RESULTS AND DISCUSSION ...................................................... 59

EXPERIMENTAL .............................................................................. 85

ERROR ANALYSIS .......................................................................... 87

BIBLIOGRAPHY .............................................................................. 88

V

PART I I I 90

INTRODUCTION ..................................................................................... 90

RESULTS AND DISCUSSION ............................................................ 90

C0NCLUSI0I4......................................................................................... 107

EXPERIMENTAL ......................................................... 108

ERROR A14ALYSIS ............................................................................... 108

BIBLIOGRAPHY .................................................................................... 109

PART IV 112

IlfTRODUCTION .................................................................................... 112

RESULTS AND DISCUSSION ............................................................ 117

EXPERIMENTAL ................................................................................. ' 196

CONCLUS 1014 ........................................................................................ 220

BIBLIOGRAPHY .................................................................................... 222

PART V 225

INTRODUCTION .................................................................................... 225

RESULTS AND DISCUSSION ........................................................... 228

CONCLUSION ........................................................................................ 270

EXPERIMENTAL ................................................................................... 270

BIBLIOGRAPHY .................................................................................... 284

PART VI 286

INTRODUCTIOI'l .................................................................................... 286

RESULTS AND DISCUSSION ........................................................ 286

EXPERIMENTAL .................................................................................... 298

BIBLIOGRAPHY .................................................................................... 388

V I

L I S T OF T A B L ES

TABLE Page

I - l . Examples o-f i r o n p e n t a c a r b o n y l - p r o m o t e d c o u p l i n g 2

r e a c t i o n s .

1 - 2 . M a t r i x o-f o b s e r v e d s h i f t s <6i> r e a d in and 14

i n c r e m e n t a l d i l u t i o n vo lumes f o r each RHOj.

I - 3 . Atomic p o s i t i o n a l p a r a m e t e r s f o r c a rb o n and oxygen. 28

1 -4 . A n i s o t r o p i c thermal p a r a m e t e r s f o r ca rbon and oxygen. 29

1 -5 . Atomic p o s i t i o n a l and i s o t r o p i c t he rm a l p a r a m e t e r s 30

f o r h y d r o g e n .

1 -6 . Bond d i s t a n c e s i n v o l v i n g n o n -hydrogen a t om s . 31

1 -7 . Bond a n g l e s (deg) i n v o l v i n g n o n -hydrogen a tom s . 32

1 -8 . S e l e c t e d bond a n g l e s (deg) and bond d i s t a n c e s <S) in 34

compound X.

l l - l . M a t r i x of 100 MHz o b se rved s h i f t s (&j) r e a d in and 60

i n c r e m e n t a l d i l u t i o n vo lumes f o r ea ch RHOj.

I I - 2 . E x p e r im e n ta l 1 y measured LIS (J S jO bs ) l e s s t h e 62

undoped s h i f t <&oi^■

I I - 3 . M a t r i x o f t h e o r e t i c a l l y c a l c u l a t e d i n c r e m e n t a l 63

s h i f t s <J S j c a l c ) .

11 -4 . Computer c a l c u l a t e d m a t r i x of d e v i a t i o n s ( O j ' s ) 65

between e x p e r i m e n t a l 1 y o b s e r v e d i n c r e m e n t a l s h i f t s

(J&^obs) and t h e o r e t i c a l l y c a l c u l a t e d i n c r e m e n t a l

s h i f t s < j c a l c ) .

11 -5 . C o n c e n t r a t i o n s and bound f r a c t i o n s f rom t h e 100 MHz 67

i n p u t d a t a .

I I - 6 . Computer c a l c u l a t e d t j c a l c from t h e m a t r i x of 73

V I 1

c a l c u l a t e d i n c r e m e n t a l s h i f t s ( T a b le I I - 3 ) .

11- 7 . E q u i l i b r i u m c o n s t a n t , Q, and w e ig h t e d s t a n d a r d s h i f t 74

d e v i a t i o n v a l u e s f rom t h e 180 MHz and 300 MHz

E u ( f o d ) 3“k e t o n e LSR s t u d i e s .

11 -8 . M a t r i x of 300 MHz o b s e r v e d s h i f t s ( S j ) r e a d in and 76

i n c r e m e n t a l d i l u t i o n volumes f o r each RHOj.

11- 9 . C o n c e n t r a t i o n s and bound f r a c t i o n s f rom t h e 300 MHz 80

i n p u t d a t a .

11 -1 0 . 300 MHz Undoped (Goi> and bound chemica l s h i f t s 81

<J i ' s > .

I I - 1 1 . N o rm a l i z ed 300 MHz bound chemical s h i f t s . 82

I I I - l . Atomic < x / a , y / b , z / c ) and C a r t e s i a n <x, y , z) 100

c o o r d i n a t e d f o r c a r b o n , hy drogen, and oxygen a tom s .

I I 1 -2 . N o n - l i n e a r l e a s t s q u a r e s (NLLSQ) c a l c u l a t e d ' b e s t - 102

f i t ' bound chemical s h i f t s ( d l j ' s ) from t h e 100

MHz and 300 MHz ' C o l l i s i o n - C o m p l e x ' LSR s t u d i e s of

t h e ' f r e e ' and ' f i x e d ' d a t a s e t s .

111- 3. P a r a m e t e r s c a l c u l a t e d u s in g th e ' f r e e ' and ' f i x e d ' 103

J j v a l u e s o f T a b l e 111 -2 .

I V - 1 . R e p r e s e n t a t i v e r e a c t i o n s of some s u b s t i t u t e d 113

n o r b o r n a d i e n e compounds w i th i r o n p e n t a c a r b o n y l .

I V - 2 . P ro p o sed r e a c t i o n s of some s u b s t i t u t e d n o r b o r n a d i e n e 120

compounds w i t h i r o n p e n t a c a r b o n y l .

IV-3. X-T-X d i m e r i c k e t o n e s which c o u ld r e s u l t f rom t h e 121

r e a c t i o n of 2 - c a r b o e t h o x y n o r b o r n a d i e n e w i t h i r o n

p e n t a c a r b o n y l .

I V - 4 . Compar ison of t h e chemica l s h i f t s ( o b t a i n e d a t 300 188

MHz) o f t h e a l i p h a t i c and v i n y l i c p r o t o n s o f some

n o r b o r n a d i e n e - d e r i v a t i v e dimer Ke tone s d i s c u s s e d in

t h i s s t u d y .

IV-5. Atomic p o s i t i o n a l p a r a m e t e r s of c a r b o n , o x y g e n , and 202

hydrogen f o r SNTNS dimer ke tone XXXII.

IV-6. Carb on , oxy g en , and hydrogen thermal p a r a m e t e r s . 203

I V - 7 . Bond a n g l e s i n v o l v i n g carbon and oxygen a to m s . 204

vi i i

IV-8. Bond l e n g t h s i n v o l v i n g ca rbon and oxygen a to ms . 205

IV-9 . Atomic p o s i t i o n a l p a r a m e t e r s o-f c a r b o n , o x y g e n , and 208

hydroge n f o r AXTNA dimer k e t o n e XXXIII .

I V - 10. C a r b o n , o x y g e n , and hydrogen the rm a l p a r a m e t e r s . 209

I V - 1 1. Bond a n g l e s i n v o l v i n g ca rb on and oxygen a tom s. 210

IV-12 . Bond l e n g t h s i n v o l v in g ca rb on and oxygen a toms. 211

IV-1 3 . Bond l e n g t h s i n v o l v i n g hydrogen a to m s . 212

V -1 . S u g g e s t e d s y n t h e s e s of a r y l t h a l l i u m b i o m o l e c u l a r 229

i n t e r m e d i a t e s s u i t a b l e f o r i n - v i v o r a d i o i o d i n a t i o n

and t r a c e r s t u d i e s .

V -2 . P r e l i m i n a r y r e a c t i o n s co n d u c te d i n o r d e r t o p roduce 231

t h a l 1 i u m ( I I I ) t r i f l u o r o a c e t a t e and s e v e r a l s imple

a r y l t h a l 1ium i n t e r m e d i a t e s .

V -3 . A t t e m p t e d p r e p a r a t i o n of t h a l 1a t e d h i p p u r i c a c i d . 244

V -4 . P ro p o s e d use of d i c y c l o h e x y l c a r b o d i i m i de (DCC) to 246

fo rm th e p e p t i d e bond in t h a l 1a t e d h i p p u r i c a c id

and i t s e th y l and t - b u t y l e s t e r s .

V I - 1 . C r y s t a l 1o g r a p h i c da ta f o r 3 - m e t h y l p e n t a c y c l o - 370

C 5 .4 .0 .0 2 ) < ^ .0 3 ) 10.0519 ] u n d e c a n e - 8 , 1 1 -d io n e IVd.

V I - 2 . Atomic p o s i t i o n a l p a r a m e t e r s f o r c a r b o n , o xygen , and 371

h y d r o g e n .

V I - 3 . C ar b o n , o x y g e n , and hydrogen the rm a l p a r a m e t e r s . 272

V I - 4 . Bond Len g th s i n v o l v i n g ca rb on and oxygen a to ms . 373

V I - 5 . Bond a n g l e s i n v o l v in g ca rb on and oxygen a to ms . 374

V I - 6 . 1h chemical s h i f t s and c o u p l i n g c o n s t a n t s (Hz) f o r 375

t h e 1 . 4 . 4 a . 8 a - t e t r a h v d r o - endo- l , 4 - m e t h a n o n a p h t h a l e n e -

5 , 8 - d i o n e s I l l a - I I l d .

V I - 7 . D ow nf ie ld (^ ) or u p f i e l d ( - ) chem ica l s h i f t s <6) 376

of t h e 1 . 4 . 4 a . 8 a - t e t r a h v d r o - endo- 1 . 4 - m e th a n o n a p h th a -

1 e n e - 5 , 8 - d i o n e s I I l a - I I I d .

V I - 8 . chemical s h i f t s f o r t h e 1 , 4 , 4 a , 8 a - t e t r a h y d r o - 377

e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e s I I l a - I I I d .

V I - 9 . D ow nf ie ld (■ > or u p f i e l d ( - ) chemic al s h i f t s (6) 378

of t h e 1 , 4 , 4 a , 8 a - t e t r a h v d r o - endo- 1. 4 - m e t h a n o n a o h t h a -

ix

1e n e - 5 , 8- d i o n e s I l l a - I I I d .

V I - 1 0 . chemical s h i f t s and c o u p l i n g c o n s t a n t s (Hz) f o r 380

t h e p e n t a c y c l o [ 5 . 4 . 0 . 0 2 i<i.0 3 »10 . 0 5 »9 ] g n d e c a n e - 8 , 11-

d i o n e s IVa-IVd.

V I - 1 1 . D o w n f ie ld (+) or u p f i e l d ( - ) chem ic a l s h i f t s (G) 381

of t h e p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , < ^ . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e -

8 . 1 1 - d i o n e s IVa-IVd.

V I - 1 2 . ^3(2 chemic al s h i f t s and m u l t i p l i c i t i e s f o r t h e 382

p e n t a c y c l o E 5 . 4 . 0 . 02» ^ . 0 3 , 1 0 . 0 5 , 9 ] u r i d e c a n e - 8 , 11 - d io n e s

IVa-IV d .

V I - 1 3 . D o w n f ie ld (+> o r u p f i e l d <-) chemical s h i f t s (G) 383

of t h e p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , ^ . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e -

8 . 1 1 - d i o n e s IVa-IVd.

V I - 1 4 . Mass s p e c t r a l m o l e c u l a r f r a g m e n t s and ab u n d a n ce s f o r 385

D i e l s A l d e r a d d u c t s I l l a - I I l d .

V I - 1 5 . Mass s p e c t r a l m o l e c u l a r f r a g m e n t s and ab u n d a n ces f o r 386

cage d i k e t o n e p h o t o l y s i s p r o d u c t s IVa-IV d .

L I S T OF F IG U R E S

FIGURE Page

I - l . C o n v e n t i o n s r e g a r d i n g c o n f i g u r a t i o n a l n o m e n c la tu r e 3

p e r t i n e n t t o i r o n p e n t a c a r b o n y l c o u p l i n g p r o d u c t s .

1 - 2 . E f f e c t o f 7 -L ew is base s u b s t i t u e n t s on p ro d u c t 5

s t e r e o c h e m i s t r y .

1 - 3 . P r o p o s e d r e a c t i o n s of 7 - s u b s t i t u t e d n o r b o r n a d i e n e s 6

w i t h Fe(C0>5 .

1 - 4 . Two t y p e s of l o n g - r a n g e c o u p l i n g . 7

1 -5 . 60 MHz hMR spec t ru m of 7 -p h e n y l d imer k e to n e VII 8

(CDCI3 /TMS) .

1 - 6 . IR s p e c t r u m of 7-pheny l dimer k e t o n e VII (CCI4 f i l m ) . 9

1- 7 . Mass s p e c t r u m of 7-pheny l d imer k e t o n e V I I . 10

1 - 8 . 60 MHz ^H NMR sp ec t r um of 7 - o - a n i s y l d imer k e to n e 11

IX (CDCI3/TMS) .

1 -9 . Compar ison of t h e 60 MHz ^H NMR s p e c t r a of 7-pheny l 12

(V I I ) and 7 - o - a n i s y l (IX) d imer k e t o n e s (CDCI3/TMS).

1 - 1 0 . IR s p e c t r u m of 7 - o - a n i s y l d imer k e t o n e IX (K B r) . 13

I - 1 1 . P r o t o n , c a r b o n , oxygen, and C^-Cj-C% bond an g l e 14

l a b e l i n g scheme f o r phenyl k e t o n e V I I .

1 -1 2 . G e o m e t r i c a l r e l a t i o n s h i p s in a complex in which con- 16

f o r m a t i o n a l f l e x i b i l i t y e x i s t s f o r b o th europium (Wg)

and hydrogen (wn) .

1 -1 3 . S t r u c t u r e of t h e f l u o r i n a t e d l a n t h a n i d e s h i f t r e a g e n t 17

t r i s ( 1 , 1 , 1 , 2 , 2 , 3 , 3 - h e p t a f l u o r 0 - 7 , 7 - d i m e t h y l o c t a n e -

4 , 6 - d i o n a t o ) e u r o p i u m ( I I I ) t Eu( P o d ) 3 ] .

1 -1 4 . 60 MHz ^H NMR spec t ru m of 7 -p h e n y l d imer ket one V I I , 19

xi

ISg] = 0.192M and CEu<Fod)33 = 0.009M; RHO =

[ L q ] / [ S o ] = 0 . 050 <CDCl3/TMS).

1 -1 5 . 60 MHz hMR spec t rum o-f 7-pheny l d imer k e t o n e V I I , 20

RHO = 0 . 150 (CDCl3/TMS).

1 -1 6 . 60 MHz ^H NMR spec t ru m o-f 7 -pheny l d imer k e t o n e V I I , 21

RHO = 1 .599 (CDCl3/TMS).

1 -1 7 . 60 MHz ^H NMR spec t ru m o-f 7-pheny l d imer k e t o n e V I I , 22

RHO = 3 . 011 (CDCl3/TMS).

1 -1 8 . 60 MHz ^H NMR spec t ru m o-f 7 -p heny l d imer k e t o n e VII 23

upon which t h e d e c o u p l in g e x p e r i m e n t s w e re per-formed,

RHO = 0 .2 5 0 (CDCl3/TMS) .

1 - 1 9 . 100 MHz ^H hMDR s p e c t r a o-f phenyl k e t o n e VII a t [SqI 24

= 0.192M and [ E u ( t o d ) 3 l = 0 .0 4 8 M, [L oI /C SoI = RHO

= 0 . 2 5 (CDCl3/TMS).

1 -2 0 . Number ing scheme and computer drawn r e p r e s e n t a t i o n 27

o-f t h e s a t u r a t e d 7 - o - a n i s y l d imer k e t o n e X.

1 -21 . I l l u s t r a t i o n o-f the g e o m e t r i c a l r e l a t i o n s h i p between 33

t h e back lo b e o-f the s y n - p r o t o n on t h e s p ^ - h y b r i d -

i z e d b r i d g e carbon and th e v i n y l t l o b e s in a

7 - s u b s t i t u t e d n o rb o r n a d ie n y l d i m e r .

1 -2 2 . 300 MHz ^H NMR spec t rum o-f 7 -p heny l d imer k e t o n e VII 38

(CDCl3/ TMS).

1 -2 3 . 75 MHz 13c ( lower) and s p i n echo ( u p p e r ) s p e c t r a o-f 39

7 -p h e n y l d imer ket one VII (CDCl3) .

1 -2 4 . 300 MHz 1h HOMCOR hMR spec t r um o-f 7 - p h e n y l d imer 40

k e t o n e VII (CDCl 3) .

1 -25 . Expanded u p f i e l d r e g io n of th e 300 MHz ^H HOMCOR 41

ffMR s p e c t r u m ( F ig 1-23) of 7-pheny l d imer k e to n e

VII (CDCl3) .

1 -2 6 . 300 MHz 1h NMR spec t rum of 7 - o - a n i s y l d imer k e to n e 43

IX (CDCl 3/TMS) .

1 - 2 7 . 75 MHz 13c ( low er) and s p in echo ( u p p e r ) s p e c t r a of 44

7 - o - a n i s y l dimer k e to n e IX (CDCl3) .

1 -2 8 . 300 MHz 1h HOMCOR NMR sp ec t r um of 7 - o - a n i s y l dimer 45

xi i

k e to n e IX (CDCl3) .

I - 2 9 . Expanded up -f ie ld r e g i o n o-f t h e 300 MHz HOMCOR NMR 46

s p e c t r u m ( F i g 1-27) of 7 - o - a n i s y l d im er k e t o n e IX

(CDCl3) .

I I - l . LISA4 computer p l o t of t h e 100 MHz m a t r i x of d e v i - 64

a t i o n s between th e o b s e r v e d (&j) and t h e o r e t i c a l l y

c a l c u l a t e d ( S j c a l c ) chemical s h i f t s which a r e

1i s t e d in T a b l e 11- 4 .

11- 2 . P l o t of RHO v s . [L S I / I L S 2 ] from t h e d a t a in T a b l e 11- 5 . 68

11 - 3 . P l o t o f a , and a ^ from the Da ta in T a b l e 69

I I - 5 .

11 - 4 . P l o t o f t h e ex p e r i m e n t a l 1 y o b se rv e d 100 MHz l a n t h a - 71

n i d e - i n d u c e d chemical s h i f t s ( £ j ) o f t h e f i v e p a i r s

of p r o t o n s v s . RHO from th e d a t a in T a b l e I I - l .

11- 5 . P l o t of t h e LISA4 c a l c u l a t e d 100 MHz LIS ( C j c a l c ) of 72

th e f i v e p a i r s of p r o t o n s v s . RHO from th e d a t a in

T a b l e 11 -6 .

11- 6 . P l o t of t h e e x p e r i m e n t a l l y o b se r v ed 300 MHz LIS (S j ) 77

of t h e sev en p a i r s of p r o t o n s v s . RHO from t h e d a t a

in T a b l e 11- 8 .

11 -7 . LISA4 computer p l o t of t h e d e v i a t i o n s between t h e 79

o b s e r v e d ( S p and t h e o r e t i c a l l y c a l c u l a t e d ( S j c a l c )

chemic al s h i f t s from th e 300 MHz e x p e r i m e n t .

1 1 -8 . N o n l i n e a r l e a s t s q u a r e s p l o t of RHO v s . t h e e x p e r i - 84

m e n t a l l y o b s e r v ed LIS s h i f t s from t h e d a t a in T a b l e

I I - l (RHO = 0 .0 13 to 0 .600) .

I I I - l . R e p r e s e n t a t i o n of t h e g e o m e t r i c a l r e l a t i o n s h i p s b e t - 91

ween eu rop iu m and hydrogen atom ' i ' in te rm s o f d i s ­

t a n c e and a n g l e from th e p r i n c i p l e m a g n e t i c a x i s in

a complex in which 'X ' i s t h e b i n d i n g s i t e .

111 - 2 . R e p r e s e n t a t i o n of t h e g e o m e t r i c a l r e l a t i o n s h i p s in a 91

complex in which co n f o rm a t i o n a l f l e x i b i l i t y e x i s t s

f o r b o th europium (w^) and hydrogen (Wn).

111 - 3 . Number ing scheme and computer drawn r e p r e s e n t a t i o n 93

xi i i

o-f 7 - p h e n y l d imer k e t o n e VII ( d i s c u s s e d in PART I

and a d a p t e d -from t h a t o-f the s a t u r a t e d -form o-f t h e

7 - £ - a n i s y l d imer k e t o n e IX which was a l s o d i s c u s s e d

i n PART I ) .

IV-1. T r i g o n a l b i p y r a m i d a l o r i e n t a t i o n o-f t h e o r g a n o m e t a l - 115

l i e <ol e-f i n ) 2Pe(C0) 3 complex which l e a d s t o -for­

m a t i o n o-f t h e X-T-X d i m e r i c k e t o n e as s u g g e s t e d by

M a n t z a r i s and W e i s b e r g e r .

IV-2. S yn-e xo F e (0 ) c o m p le x a t io n in a 7 - o x y g e n - s u b s t i t u t e d 115

n o r b o r n e n e o r n o r b o r n a d i e n e l e a d i n g t o t h e X-T-N

s t e r e o c h e m i s t r y .

IV-3. The complex p r e p a r e d by L a s z lo which s u p p o r t s t h e 115

p o s s i b i l i t y o-f s y n - e x o co m p lex a t io n a s s u g g e s t e d in

F ig IV -2 .

I V - 4 . C o n f i g u r a t i o n a l i n t e r c o n v e r t i b i l i t y of t h e a n t i a r o - 116

m a t i c and s t e r i c i n t e r a c t i o n s v i a r o t a t i o n a b o u t the

Cy-Caryl bond.

IV-5. 60 MHz NMR s p ec t r u m of 7 -b enzo y l o x y n o r b o r n a d i e n e 124

XIV (CDCl3/T M S) .

IV -6 . IR s p e c t r u m of 7 - b e n z o y l o x y n o r b o r n a d i e n e XIV (KBr) . 125

IV-7. 300 MHz ^H NMR s p ec t r u m of benzoy lo xy c a g e compound 126

XVI (CDCl3/T M S).

IV -8 . IR s p e c t r u m of ben z o y lo x y cage compound XVI (CCI4) . 127

IV-9. Mass s p e c t r u m of b en z oy lo xy ca g e compound XVI. 128

IV-10. 20 MHz 13c and s p in echo s p e c t r a of b e n z o y lo x y cage 129

compound XVI (CDCl 3) .

I V - 1 1. 300 MHz 1h HOMCOR NMR spec t rum of b e n z o y lo x y ca g e 130

compound XVI (CDCl3) .

IV-12. Expanded u p f i e l d r e g i o n of th e HOMCOR NMR s p e c t r u m 131

( F i g I V - 11) of ben z o y lo x y cage compound XVI (CDCI3 ) .

IV-13. 300 MHz 1h NMR s p e c t r u m of AXTXA b e n z o y lo x y d imer 132

k e t o n e XV (CDCl3/TMS).

I V - 14. IR s p e c t r u m of AXTXA benzoyl oxy dimer k e t o n e )(V 133

(CHCI3) .

X i v

IV-15 . Mass s p ec t ru m o-f AXTXA benzoyl oxy d imer k e t o n e XV. 134

IV - 1 6 . 20 MHz 13c and s p in echo NMR s p e c t r a o-f AXTXA 135

b e n z o y lo x y dimer k e t o n e XV (CDCl3) .

I V - 17. 300 MHz 1h NMR s p ec t r u m o-f SNTNS benzoy l oxy dimer 136

k e t o n e XXXII (CDCl3/TMS).

IV-18 . IR s p e c t r u m o-f SNTNS benzoyl oxy dimer k e t o n e XXXII 117

(CHCI3) .

IV - 1 9 . Mass s p e c t r u m o-f SNTNS benzoy l oxy dimer k e t o n e XXXII. 138

I V - 2 0 . 20 MHz 13c and s p in echo hMR s p e c t r a o-f SNTNS 139

b e n z o y lo x y dimer k e t o n e XXXII (CDCl3) .

I V - 2 1. 300 MHz 1h NMR spec t r um o-f AXTNA benzoy l oxy dimer 140

k e t o n e XXXIII (CDCls^rMS).

IV - 2 2 . IR s p e c t r u m o-f AXTNA benzoyl oxy dimer k e t o n e XXXIII 141

(CHCI3) .

IV-23 . Mass s p ec t ru m o-f AXTNA benzoyl oxy dimer k e t o n e 142

XXXIII .

IV-24 . 20 MHz 13c and s p in echo NMR s p e c t r a o-f AXTNA 143

b e n z o y lo x y dimer k e t o n e XXXIII (CDCl3) .

I V - 2 5 . 300 MHz 1h HOMCOR NMR s p e c t r u m of AXTNA b en z oy lo xy 144

d im er k e t o n e XXXIII (CDCl3) .

IV - 2 6 . 300 MHz 1h NMR spec t r um of b e n z o y lo x y ca g e d i k e t o n e 145

XXXIV (CDCl3/TMS).

IV-27 . IR s p e c t r u m of benzoy lo xy c a g e d i k e t o n e XXXIV 146

(CHCI3) .

IV-28 . Mass s p ec t ru m of ben zo y lo x y c a g e d i k e t o n e XXXIV. 147

IV-29 . 75 MHz 13c and s p in echo NMR s p e c t r a o f b en z oy lo xy 148

c a g e d i k e t o n e XXXIV (CDCl3) .

IV-30 . 100 MHz 1h NMR s p ec t r u m o f AXTXA b e n z o y lo x y dimer 150

k e t o n e XV (CDCl3/TMS).

I V - 3 1. 100 MHz 1h NMR d e c o u p l i n g e x p e r i m e n t s on AXTXA 151

b e n z o y lo x y dimer k e t o n e XV (CDCl3/TMS).

IV-32 . Computer drawn r e p r e s e n t a t i o n and number ing scheme 154

o f t h e SNTNS benzoy loxy dimer k e t o n e XXXII.

IV - 3 3 . Computer drawn r e p r e s e n t a t i o n o f t h e m o l e c u l a r 155

XV

p a c k i n g diag ram o-f t h e SNTNS ben zo y lo x y dimer k e t o n e

XXXII .

I V - 3 4 . C o n to u r p l o t o-f the 300 MHz H0M2DJ NMR spec t ru m 156

o-f AXTNA benzoyloxy dimer k e t o n e XXXIII (CDCI3) .

IV - 3 5 . Expanded co n t o u r p l o t o-f t h e 300 MHz ^H H0M2DJ hBMR 157

s p e c t r u m o-f AXTNA benz oyloxy dimer k e t o n e XXXIII

wh ich i n c l u d e s th e 2 .8 8 t o 3 . 6 8 ppm chemical s h i f t

and 13 t o 30 Hz s p e c t r a l r e g i o n o f F ig IV-34 (CDClg) .

IV - 3 6 . S t a c k e d p l o t of the 300 MHz ^H H0M2DJ hMR spec t rum 158

o f AXTNA benzoy loxy dimer k e t o n e XXXIII (CDCl3) .

I V - 3 7 . Computer drawn r e p r e s e n t a t i o n and number ing scheme 160

of t h e AXTNA benzoyloxy dimer k e t o n e XXXIII.

IV - 3 8 . Computer drawn r e p r e s e n t a t i o n of t h e m o l e c u l a r 161

p a c k i n g diag ram of t h e AXTNA b e n z o y lo x y dimer k e t o n e

X X X II I .

I V - 3 9 . 300 MHz ^H NMR spect rum of ? - £ - a n i s o y l o x y n o r b o r - 162

n a d i e n e XVII (CDCl 3.aMS> .

IV-40 . IR s p ec t r u m of 7 - g - a n i s o y l o x y n o r b o r n a d i e n e XVII 163

(KBr) .

I V - 4 1. Mass s p ec t r u m of 7 - f i - a n i s o y l o x y n o r b o r n a d i e n e XVI1. 164

IV -42 . 20 MHz 13c and sp in echo NMR s p e c t r a of 7 - £ - a n i - 165

s o y l o x y n o r b o r n a d i e n e XVII (CDCl3) .

IV - 4 3 . 300 MHz 1h NMR spect rum of g - a n i s o y l o x y cage com- 166

pound XIX (CDCl3/TMS).

IV-44 . IR s p e c t r u m of f i - a n i s o y l o x y ca g e compound XIX 167

(CHCI3) .

IV-45 . Mass s p e c t r u m of g - a n i s o y l o x y c a g e compound XIX. 168

IV-46 . 20 MHz 13[ and spin echo NMR s p e c t r a of g - a n i s o y l o x y 169

c a g e compound XIX (CDCl3) .

IV-47 . 300 MHz 1h HOMCOR NMR s p e c t r u m of £ - a n i s o y l o x y ca g e 170

compound XIX (CDCl3) ,

I V - 4 8 . 300 MHz 1h NMR spect rum of AXTXA g - a n i s o y l o x y dimer 171

k e t o n e XVIII (CDCl3/TMS).

IV-49. IR s p e c t r u m of AXTXA g - a n i s o y l o x y dimer k e to n e XVIII 172

XV i

<CHCl3>.

I V - 5 0 . Mass s p e c t r u m o-f AXTXA g - a n i s o y l o x y dimer k e to n e 173

X V I I I .

I V - 5 1. 20 MHz 13c and sp in echo NMR s p e c t r a o-f AXTXA £ - a n i - 174

s o y l o x y dimer ketone XVIII (CDCl3) .

IV r5 2, P o s s i b l e mass s p e c t r a l -fragment o-f m o l e c u l a r we igh t 175

514.

IV-53 . I n t e r m e d i a t e s in the m e t a l - c a t a l y z e d d i m e r i z a t i o n s o-f 177

n o r b o r n a d i e n e .

I V - 5 4 . 300 MHz 1h NMR spec t rum of cage d i o l XXXX 179

(Pyr-d^/TMS) .

IV-55 . IR s p e c t r u m of cage d i o l XXXX (KBr) . 180

IV-56 . Mass s p e c t r u m of cage d i o l XXXX. 181

IV-57 . 20 MHz 13c NMR spec t rum of ca ge d i o l XXXX 182

( P y r - d g / T M S ) .

IV-58 . 300 MHz 1h NMR spec t rum of ca ge d i k e t o n e XXXX! 184

(CDCl3/T M S).

IV-59. IR s p e c t r u m of cage d i k e t o n e XXXXI (CCI4 ) . 185

I V - 6 0 . Mass s p e c t r u m of cage d i k e t o n e )(XXXI. 186

I V - 6 1 . 20 MHz 13 NMR spect rum of cage d i k e t o n e XXXXI 187

(CDCl3) .

IV-62 . 60 MHz 1h NMR spect rum of 2 - c a r b o e t h o x y n o r b o r n a d i e n e 190

XX (CDCl3/TMS).

IV-63. IR s p e c t r u m of 2 - c a r b o e t h o x y n o r b o r n a d i e n e XX ( f i l m ) . 191

lV -6 4 . Mass s p e c t r u m of 2 - c a r b o e t h o x y n o r b o r n a d i e n e XX. 192

IV-65. 20 MHz 13c and sp in echo s p e c t r a o f 2 - c a r b o e t h o x y - 193

n o r b o r n a d i e n e XX (CDCl3) .

IV-6 6 . 60 MHz 1h NMR spec t rum of compound XXIa (CDCl3/TMS). 194

IV-67 . 60 MHz 1h NMR spect rum of compound XXIb (CDCl3/TMS). 195

V-1 . NMR s p e c t r u m of p h e n y l t h a l 1 ium b i s ( t r i f 1u o r o a c e t a t e ) . 226

V-2 . IR s p e c t r u m of m e s i t y l t h a l 1 ium b i s ( t r i f l u o r o a c e t a t e ) . 226

V-3. IR s p e c t r u m of d i m e s i t y l t h a l 1 ium t r i f l u o r o a c e t a t e . 226

V -4 . IR s p e c t r u m of t h a l l i u m ( I I I ) t r i f l u o r o a c e t a t e (KBr) . 232

V-5. IR s p e c t r u m of o - c a r b o x y p h e n y l t h a l 1ium d i t r i f l u o r o - 234

XV i i

a c e t a t e I I CKBr).

V - 6 . 60 MHz I r NMR s p e c t r u m o-f o-carboxypheny 1 t h a l 1 iurn 235

di t r i - f l u o r o a c e t a t e I I (DMSO-d^/TMS) .

V -7 . 60 MHz iR NMR s p e c t r u m o-f o - i o d o b e n z o i c a c i d 236

(CDCI3/T M S).

V -8 . Mass s p e c t r u m o-f o - i o d o b e n z o i c a c i d . 237

V -9 . IR s p e c t r u m o-f o - c a r boxam idopheny l t h a l l i u m d i t r i - 238

-fl u o r o a c e t a t e I I I (KBr) .

V-10 . 60 MHz 1r NMR s p ec t ru m o-f o -carbo xa midop heny l th a l - 239

Hum d i t r i - f l u o r o a c e t a t e I I I (DMSO-d^-^TMS) .

V-11 . IR s p e c t r u m of g - x y l y l t h a l l i u m d i t r i f l u o r o a c e t a t e V 240

( K B r ) .

V-12 . 60 MHz iR NMR s p ec t r u m of f i - x y l y l t h a l 1ium d i t r i - 241

f l u o r o a c e t a t e V (DMSO-dd/TMS).

V-13. 60 MHz 1r NMR s p ec t r u m of g - a n i s y l t h a l l i u m d i t r i - 242

f l u o r o a c e t a t e VI (DMSO-d^/TMS).

V-14 . 60 MHz ^H NMR s p ec t r u m of g - i o d o a n i s o l e (CDCI3/TMS). 243

V-15 . 60 MHz iR NMR s p e c t r u m of 2 - b i s ( t r i f l u o r o a c e t a t o ) - 248

t h a l 1i o - h i p p u r i c a c i d IX (DMSO-d^/TMS).

V-16 . 60 MHz iR WR s p ec t r u m of 2 - b i s < t r i f l u o r o a c e t a t o ) - 249

t h a l 1 i o - e t h y l h i p p u r a t e X (DMSO-d,^/TMS) .

V-17 . IR s p e c t r u m of 2 - b i s ( t r i f l u o r o a c e t a t o ) t h a l 1 i o - e t h y l 250

h i p p u r a t e X ( K B r ) .

V-18 . 60 MHz 1r NMR s p ec t r u m of 2 - b i s ( t r i f l u o r o a c e t a t o ) - 251

t h a l 1 i o - t e r t i a r y b u t y l h i p p u r a t e XI (DMSO-d^j/TMS) .

V-19 . 60 MHz 1r NMR s p ec t r u m of 2 - b i s ( t r i f l u o r o a c e t a t o ) - 252

t h a l 1i o - t e r t i a r y b u t y l h i p p u r a t e XI (KBr) .

V-20 . 60 MHz iR NMR s p ec t r u m of p r o d u c t IX r e s u l t i n g f rom 253

t h e c o n d e n s a t i o n of 2- b i s ( t r i f l u o r o a c e t a t o ) t h a l 1 i o -

t e r t i a r y b u t y l h i p p u r a t e XI (DMSO-da/TMS).

V-21 . IR s p ec t r u m of 2 - bi s < t r i f l u o r o a c e t a t o ) t h a l 1 i o- 255

h i p p u r i c a c i d IX (KBr) .

V-22 . 60 MHz ^H NMR s p ec t r u m of methyl h i p p u r a t e XII 256

(DMSO-dj/TMS).

x v i i i

V-23 . IR s p e c t r u m o-f methyl h i p p u r a t e XII (K B r) . 257

V-24. Mass s p ec t r u m c o n t a i n i n g th e p a r e n t ion (m/e 319) 258

o-f t h e a n t i c i p a t e d o - i o d o - m e t h y l h i p p u r a t e X I I I .

V-25 . 300 MHz NMR spec t r um o-f o - i o d o h i p p u r i c a c i d XIV 259

(DMSO-d^-TMS) .

V -2 6 . IR s p e c t r u m o-f o - i o d o h i p p u r i c a c i d XIV. 260

V-27 . Mass s p ec t ru m o-f o - i o d o h i p p u r i c a c i d XIV. 261

V-28 . 300 MHz NMR spec t r um o-f 3 , 4 - b i s ( 3 - i o d o - B - a n i s y l ) - 263

h ex an e XVI (CDCI3/TMS).

V-29. IR s p ec t r u m o-f 3 , 4 - b i s ( 3 - i o d o - p - a n i s y l ) hexane XVI 264

(CHCI3) .

V-30 . Mass s p ec t r u m o-f 3 , 4 - b i s ( 3 - i o d o - £ - a n i s y l ) h e x a n e XVI. 265

V-31 . 300 MHz NMR sp ec t r um o-f N - t r i - f l u o r o a c e t y l - 3 , 4 - 267

di m e th o x y p h en e th y l amine XX (CDCl g/^TMS) .

V-32 . IR s p e c t r u m o-f N - t r i-f 1 u o r o a c e t y l - 3 , 4 -d i m e t h o x y p h e n - 268

e t h y l amine XX (CCI4) .

V-33 . Mass spec t r um o-f N - t r i-f 1 u o r o a c e t y l - 3 , 4 -d i m e t h o x y - 269

p h e n e t h y l a m i n e XX.

V-34 . Mass s p ec t r u m o-f t h e compound w i t h t h e e x p e c t e d 271

m o l e c u l a r w e ig h t of 403 which i s b e l i e v e d to be t h e

d e s i r e d N - t r i f 1u o r o a c e t y l - 2 - i o d o - 4 , 5 - d i m e th o x y p h e n -

e t h y l a m i n e XXI.

V - 3 5 . 100 MHz ^H NMR sp ec t r um of b i a r y l compound 2 , 2 " - d i - 272

( N - t r i f l u o r o a c e t y l a m i n o e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y -

b i p h e n y l XXII (CDCI3/TMS).

V - 3 6 . IR s p ec t r u m of 2 , 2 ' - d i - ( N - t r i f 1u o r o a c e t y l a m i n o e t h y l ) - 273

4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i p h e n y l XXII (K Br) .

V - 3 7 . Mass s p ec t ru m of 2 , 2 ' - d i - ( N - t r i f 1u o r o a c e t y l a m i n o - 274

e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i p h e n y l XXII .

V I - 1 . P e r s p e c t i v e view of compound IVd. 289

V I - 2 . Examples of 5-bond l o n g - r a n g e ^H-^h c o u p l i n g . 292

V I - 3 . 300 MHz ^H NMR spec t r um of 1 . 4 . 4 a . 8a - t e t r a h v d r o - en d o - 294

1, 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e I l i a (CDCI3/TMS).

V I - 4 . IR s p e c t r u m of 1. 4 . 4 a . 3 a - t e t r a h v d r o - e n d o - 1 c- thano- 295

xix

n a p h t h a l e n e - 5 , 8 - d i o n e I l i a (KBr) .

V I - 5 . Mass s p e c t r u m o-f 1 . 4 . 4 a . 8a - 1 e t r a h v d r o - en d o - 1. 4 - m e t h - 296

a n o n a p h t h a l e n e - 5 , 8 - d i o n e I l i a .

V I - 6 . 28 MHz 13c and s p i n echo NMR s p e c t r a o-f 1 , 4 , 4 a , 8a - 297

t e t r a h v d r o - en do- 1 , 4 -m ethano naphthal e n e - 5 , 8 - d i o n e

I l i a (CDCI3 ) .

V I - 7 . 300 MHz 1h HOMCOR NMR spec t rum of l , 4 , 4 a , 8 a - t e t r a - 298

h v d r o - e n d o - i . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I l i a

(CDCI3 ) .

V I - 8 . 300 MHz 1h and 75 MHz HETCOR NMR s p e c t r u m of 299

1 . 4 . 4 a . 8a - t e t r a h v d r o - endo- I . 4 - m e t h a n o n a p h t h a l e n e -

5 , 8- d i o n e I l i a (CDCl3) .

V I - 9 . 300 MHz 1h NMR s p e c t r u m of p en t a c y c l o [ 5 . 4 . 0 .02i<5. - 300

0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 1 1 - d i o n e IVa (CDCI3/TMS).

V I -1 0 . IR s p e c t r u m of p e n t a c y c l oE5 . 4 . 0 . 02 j 6 , 0 3 j 1 0 .0 5 >9]_ 302

u n d e c a n e - 8 , 1 1 -d i o n e IVa (KBr).

V I - 1 1 . Mass s p e c t r u m of p e n t a c y c l oE5 . 4 . 0 . 0 2 . 0 J , 1 0 . 0 5 , 9 ] - 3 0 3

u n d e c a n e - 8 , 11 - d i o n e IVa.

V I - 1 2 . 20 MHz 13q and s p i n echo NMR spec t r um of p e n t a c y c l o - 304

[ 5 . 4 . 0 . 0 2 )6 , 0 3 ,10 . 0 5 , 9 ] u n d e c a n e - 8 , 11 -d i o n e IVa

(CDCl 3) .

V I - 1 3 . 300 MHz 1h HOMCOR NMR spec t rum of p e n t a c y c l o E 5 . 4 . 0 . - 305

0 2 . 6 . 0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 1 1 - d i o n e IVa (CDCI3) .

V I - 1 4 . 300 MHz 1h H0M2DJ NMR spect rum of p e n t a c y c l o E 5 . 4 . 0 . - 306

0 2 . 6 . 0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 11-d ione IVa (CDCI3 ) .

V I - 1 5 . S t a c k e d p l o t of t h e 300 MHz ^H H0M2DJ NMR s p e c t r u m 307

o f p e n t a c y c l o E 5 . 4 . 0 . 0 2 , 6 , 0 3 , 1 0 . 0 5 , 9 ] un d e c a n e - 8 , 11-

d i o n e IVa (CDCl3) .

V I - 1 6 . 300 MHz 1h and 75 MHz 13c HETCOR NMR s p e c t r u m of 308

p e n t a c y c l o E 5 . 4 . 0 . 8 2 , 6 , 0 3 , 1 0 , 0 5 , 9 ] u n d e c a n e - 8 , 11 -d i o n e

IVa (CDCl3) .

V I - 1 7 . 300 MHz ^H NMR s p ec t r u m of 6-methyl - 1 , 4 , 4 a , 8a - t e t - 309

r a h v d r o - e n d o - 1 , 4 -m e thanonaph tha l e n e - 5 , 8- d i o n e 11Ib

(CDCI3/T M S) .

XX

V I - 1 8 . IR sp ec t r u m o-f 6 - m e t h y l - 1 . 4 . 4 a . 8a - t e t r a h v d r o - endo- 310

1 .4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e I l l b ( 8814) .

V I - 1 9 . Mass s pec t r um o-f 6-methy l - 1 . 4 . 4 a . 8 a - t e t r ah v d r o - endo- 312

1 .4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e 1 1 Ib .

V I - 2 0 . 20 MHz 13c and s p i n echo NMR s p e c t r a o-f 6- m e t h y l - 313

1 , 4 , 4 a , 8 a - t e t r a h y d r - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8-

d i o n e 11Ib (CDCl3) .

V I - 2 1 . 300 MHz 1h HOMCOR NMR s p e c t r u m o-f 6-methyl - 1 , 4 , 4 a , - 314

8a - t e t r a h v d r o - endo- l . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e

I l l b (CDCI3 ) .

V I - 2 2 . 300 MHz iH and 75 MHz HETCOR NMR sp ec t r um o-f 315

6- m e t h v l - l , 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - l , 4-m etha non aph-

t h a l e n e - 5 , 8- d i o n e I l l b (CDCl3) .

V I - 2 3 . Expanded co n to u r p l o t o-f t h e HETCOR spec t r um o-f F ig 316

V I -2 2 which i n c l u d e s t h e 1 . 2 - 3 .6 ppm ^H and 47-50

ppm 13c s p e c t r a l r e g i o n o-f 6-m ethy l - 1 , 4 , 4 a , B a - t e t -

r a h y d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I l l b

(CDCI3 ) .

V I - 2 4 . Expanded con tou r p l o t o-f t h e HETCOR sp ec t r um o-f F ig 317

V1-22 which i n c l u d e s t h e 5 . 6- 6 .5 ppm 1h and 133.5 -

141.5 ppm 13c s p e c t r a l r e g i o n o-f 6 - m e t h y l - l , 4 , 4 a , -

8a - t e t r a h v d r o - endo- 1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e

I l l b (CDCI3 ) .

V I - 2 5 . S t a c k e d p l o t of t h e HETCOR s p e c t r u m of F ig VI -2 2 of 318

6- m e t h v l - 1 . 4 , 4 a , 8a - t e t r a h v d r o - endo- 1 , 4-methanonaph­

t h a l e n e - 5 , 8- d i o n e I l l b (CDCI3 ) .

V I - 2 6 . 300 MHz 1h NMR s pec t r um of 1- m e t h y l p e n t a c y c l o C 5 . 4 . 0 . - 319

6%; 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , l 1 - d i o n e IVb (CDCI3/TMS).

V I - 2 7 . IR sp e c t ru m of 1- m e t h y l p e n t a c y c l oC5.4 . 0 . 02 , 6 . 8 3 , 1 0 . - 320

0 5 . 7 ] und e c a n e - 8 , 11 -d ione IVb (KBr) .

V I - 2 8 . Mass spec t r um of 1-methyl p e n t a c y c l o I 5 .4 . 0 . 0 2 , 6 322

0 3 . 1 0 . 0 5 . 7 ] und e c a n e - 8 , 11 - d i o n e IVb.

V I - 2 9 . 20 MHz 13c and s p i n echo 14MR s p ec t r u m of 1 -m e th y l - 323

p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 , 0 5 , 9 ] u n d e c a n e - 8 , 1 1-d ione IVb

XX i

(CDCl 3) .

V I - 3 0 . 300 MHz 1h HOMCOR NMR spec t rum o-f 1 - m e t h y l p e n t a c y c l o- 324

[ 5 . 4 . 0 . 0 2 , 6 .@ 3,10 . 0 5 , 9 ] u n d e c a n e - 8 , 11 - d i o n e IVb

(CDCl 3) .

V I - 3 1 . 300 MHz ^H H0M2DJ f-lMR spec t rum o-f 1-methyl p e n t a c y c l 0- 325

[ 5 . 4 . 0 . 0 2 , 6 . 83,10 . 0 5 , 9 ] i ] n d e c a n e - 8 , 1 1 - d i o n e IVb

(CDCl 3) .

V I -3 2 . S t a c k e d p l o t o-f th e H0M2DJ s p ec t r u m o-f F ig VI-31 o-f 326

1-m ethy l p e n t a c y c l o t 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 , 0 5 , 9 ] u n d e c a n e -

8 , 1 1 -d io n e IVb (CDCl 3) .

V I -3 3 . 300 MHz 1h and 75 MHz l^C HETCOR NMR s p e c t r u m o-f 327

l - m e t h y l p e n t a c y c l o C 5 . 4 . 0 . 02 , 6 . 03 , 1 0 . 0 5 , 9 ] und e c a n e -

8 , 1 1 - d io n e IVb (CDCl3) .

V I - 3 4 . 300 MHz ^H t-fliR spec t r um o-f 2 - m e t h y l - 1 , 4 , 4 a , 8a - t e t - 329

r a h v d r o - e n d o - 1 , 4-methanonap h thal e n e - 5 , 8 - d i o n e I l i e

(CDCI3/TMS) .

V I - 3 5 . IR s p ec t r u m o-f 2 - m e t h v l - l .4 . 4a . 8a - t e t r a h v d r o - endo- 330

1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I I I c (CCI4) .

V I - 3 6 . Mass s p e c t r u m o-f 2 - m e t h v l - l . 4 . 4 a . 8a - t e t r a h v d r o - en d o - 331

1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I I I c .

V I - 3 7 . 20 MHz 12c and s p i n echo NMR s p e c t r a o-f 2 - m e t h y l - 332

1 . 4 . 4 a . 8a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8-

d i o n e I I I c (CDCI3) .

V I - 3 8 . 300 MHz 1h HOMCOR NMR spect rum o-f 2 - m e t h y l - 1 , 4 , 4 a , - 333

8a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c (CDCI3 ) .

V I - 3 9 . 300 MHz 1h H0M2DJ NMR spec t ru m o-f 2 -m e thy l - 1 , 4 , 4 a , - 334

8a - t e t r a h v d r o - endo- 1 . 4 - m e t h a n o n a p h th a l e n e - 5 , 8 - d i o n e

I I I c (CDCI3 ) .

V I - 4 0 . Expanded c o n t o u r p l o t o-f t h e H0M2DJ s p e c t r u m o-f F ig 335

VI -39 which i n c l u d e s the 3 . 3 - 3 . 5 ppm ^H and 15-35

Hz s p e c t r a l r e g i o n o-f 2 - m e t h y l - l , 4 , 4 a , 8 a - t e t r a h y d r o -

endo- 1. 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I I I c (CDCl3) .

V I - 4 1 . S t a c k e d p l o t of t h e H0M2DJ spec t r um of F ig VI- 39 of 336

xxi i

2-m eth y l - 1 , 4 , 4 a , 8 a - t e t r a h y d r o - e n ^ - 1 , 4 - m e t h a n o n a p h -

t h a l e n e - 5 , 8 - d i o n e I I I c (CDCI3 ) .

V I - 4 2 . 300 MHz 1h and 75 MHz HETCOR I4MR s p e c t r u m o-f 337

2 - m e t h v I - l . 4 . 4 a . 8 a - t e t r a h v d r o - endo- l , 4 - m e th a n o n ap h ­

t h a ] e n e - 5 , 8 - d i o n e I I I c (CDCI3 ) .

V I - 4 3 . Expanded c o n t o u r p l o t o-f t h e HETCOR s p e c t r u m o-f F i g 338

V I - 2 2 which i n c l u d e s t h e 2 . 8 - 3 . 4 ppm ^H and 47-55

ppm 13c s p e c t r a l r e g i o n o-f 2 - m e t h y l - 1 , 4 , 4 a , 8a - t e t -

r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I I I c

<CDCl3 ) .

V I - 4 4 . S t a c k e d p l o t of t h e HETCOR sp ec t ru m of F i g V I- 42 of 339

2 - m e t h y l - 1 . 4 . 4 a . 8a - t e t r a h v d r o - endo- 1 , 4 -m e th a n o n ap h ­

t h a l e n e - 5 , 8 - d i o n e I I I c (CDCI3 ) .

V I - 4 5 . 300 MHz 1h NMR sp ec t r u m of 1 -m e thy l - 1 , 4 , 4 a , 8a - t e t - 341

r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e 11 Id

(CDCls/TMS).

V I - 4 6 . IR s p e c t r u m of 1 -m e th v l - 1 . 4 , 4 a . 8 a - t e t r a h v d r o - en d o - 342

1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e I I Id (CCI 4) .

V I - 4 7 . Mass s p e c t r u m of 1 -m e th v l - 1 . 4 . 4 a . 8a - t e t r a h v d r o - en d o - 343

1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e 11 I d .

V I - 4 8 . 20 MHz 13c and s p i n echo NMR s p e c t r a of 1 - m e t h y l - 344

1 . 4 . 4 a . 8a - t e t r a h v d r o - endo- 1. 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 -

d i o n e I I l d (CDCI3 ) .

V I - 4 9 . 300 MHz 1h HOMCOR tfMR sp ec t r u m of 1-methyl - 1 , 4 , 4 a , - 345

8a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e

I I Id (CDCI3 ) .

V I - 5 8 . 300 MHz iH and 75 MHz 13c HETCOR NMR s p e c t r u m of 346

1 - m e t h y l - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - endo- 1. 4 - m e t h a n o n a p h -

t h a l e n e - 5 , 8 - d i o n e I l l d (CDCl3) .

V I - 5 1 . Expanded c o n t o u r p l o t of t h e HETCOR s p e c t r u m of F ig 347

VI- 50 which i n c l u d e s t h e 5 . 8- 6 .2 ppm 1h and 130-145

ppm 13c s p e c t r a l r e g i o n of 1 -m e thy l - 1 , 4 , 4 a , Ca­

t e t r a h y dr o - e n ^ - 1 , 4-me thanonaph tha l e n e - 5 , 8 - d i o n e 11 Id

(CDCI3 ) .

xxi i i

V I - 5 2 . 300 MHz ^H NMR s p e c t r u m of 2 - m e t h y l p e n t c y c l o E S . 4 . 6 3 4 8

0 2 . 6 . 0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 11 -d i o n e IVc (CDClg/TMS).

V I - 5 3 . IR s p e c t r u m of 2- m e t h y l p e n t a c y c l o I 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 3 5 0

0 5 . 9 ] u n d e c a n e - 8 , 11 -d i o n e IVc (KBr) .

V I - 5 4 . Mass s p e c t r u m of 2 - m e t h y l p e n t a c y c l o t 5 . 4 . 0 . 0 ^ > ^ . - 351

0 3 . 1 8 . 0 5 . 9 ] u n d e c a n e - 8 , 11 -d io n e IVc.

V I - 5 5 . 20 MHz I3c and s p i n echo NMR s p e c t r a of 2- m e t h y l - 352

p e n t a c y c 1o [ 5 . 4 . 0 . 02 , 6 . 0 3 , 1 0 , 0 5 , 9 ] und e c a n e - 8 , 1 1 -d i o n e

IVc (CDCl3) .

V I - 5 6 . 300 MHz 1h HOMCOR NMR s p e c t r u m of 2 - m e t h y l p e n t a c y c l 0- 353

[ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e IVc

(CDCl 3) .

V I - 5 7 . 300 MHz ^H H0M2DJ NMR s p ec t r u m of 2 - m e t h y l p e n t a c y c l 0- 354

[ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 10 . 0 5 , 9 ] u n d e c a n e - 8 , 11- d i o n e

IVc (CDCl3) .

V I - 5 8 . S t a c k e d p l o t of th e H0M2DJ s p ec t ru m of F ig VI- 57 of 355

2 -m e thy l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e -

8 . 1 1 - d i o n e IVc (CDCl3) .

V I - 5 9 . 300 MHz iH and 75 MHz l^C HETCOR NMR s p e c t r u m of 356

2 -m e thy l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 03 , 10 . 0 5 , 9 ] y n d e c a n e -

8 . 1 1 - d i o n e IVc (CDCl3) .

V I - 6 0 . S t a c k e d p l o t of t h e HETCOR s p ec t ru m of F ig V I- 59 o f 357

2 - m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 10. 0 5 , 9 ] u n d e c a n e -

8 . 1 1 - d i o n e IVc (CDCI3) .

V I - 6 1 . 300 MHz 1h NMR s p e c t r u m of 3 - m e t h y l p e n t a c y c l o E 5 . 4 . 0 . - 359

0 2 . 6 . 0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 1 1 - d i o n e IVd

(CDCI3/T M S).

V I - 6 2 . IR s p e c t r u m of 3 -methyl p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 10._ 360

0 5 . 9 ] u n d e c a n e - 8 , 1 1 -d i o n e IVd (KBr) .

V I - 6 3 . Mass s p e c t r u m of 3- m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . - 361

0 3 . 1 0 . 0 5 . 9 ] u n d e c a n e - 8 , 1 1 -d io n e IVd.

V I - 6 4 . 20 MHz 12c and s p i n echo NMR s p e c t r a of 3 - m e t h y l - 362

p e n t a c y c l o [ 5 . 4 . 0 . 02 , 6 , 03 , 10 . 0 5 , 9 ] y n d e c a n e - 8 , 11- d i o n e

IVd (CDCl3) .

XX ivy

V I - 6 5 . 300 MHz ^H HOMCOR NMR s p ec t r u m o-f 3 -methyl p e n tacy c l o- 363

[ 5 . 4 . 0 . 0 2 , 4 , 03 , 1 0 .0 5 19 ] u n d e c a n e - 8 , 1 1 -d io n e IVd

(CDCl 3) .

V I - 6 6 . 300 MHz iH H0M2DJ NMR s p e c t r u m o-f 3 -m ethyl p en tacy c l 0- 364[ 5 . 4 . 0 . 02 , 4 . 0 3 , 1 0 . 05 , 9 ] u n d e c a n e - 8 , 11 -d io n e IVd

(CDCl3) .

V I - 6 7 . S t a c k e d p l o t o-f the H0M2DJ s p e c t r u m o-f F ig VI-66 of 365

3 - m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 4 . 0 3 , 1 0 . 0 5 , 9 ] undecane-

8 . 1 1 -d io n e IVd (CDCl 3) .

V I - 6 8 . 3 0 0 MHz iH and 75 MHz 13c HETCOR NMR sp e c tr u m o f 366

3 - m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 4 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e -

8 . 1 1 -d io n e IVd (CDCl 3) .

V I - 6 9 . Expanded c o n t o u r p l o t of t h e HETCOR spec t r um of Fig 367

V I -68 which i n c l u d e s th e 1 . 8 - 3 . 4 ppm ^H and 38-62

ppm 12c s p e c t r a l r e g io n of 3 - r a e t h y l p e n t a c y c l o L 5 . 4 . -

0 . 0 2 , 4 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 11 - d i o n e IVd (CDCl3 ) .

V I - 7 0 . S t a c k e d p l o t of the HETCOR s p e c t r u m of Fig VI-67 of 368

3 - m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 4 . 0 3 , 1 0 . 0 5 , 9 ] y n d e c a n e -

8 . 1 1 -d io n e IVd (CDCI3) .

XXV

L I S T OF SCHEMES

SCHEMES

I - l . Mechanism o-f t h e i r o n p e n t a c a r b o n y l - p r o m o t e d c o u p l i n g 4

o-f o l e f i n s t o carbon monoxide s u g g e s t e d by M a n t z a r i s

and Wei s b e r g e r .

1 -2 . Mechanism of fo r m a t io n of 7 -p h e n y l dimer ke tone VII 36

s u g g e s t e d by Marchand and Goodin .

IV -1 . Mechanism of t h e i r o n p e n t a c a r b o n y l - p r o m o t e d c o u p l i n g 118

of s t r a i n e d o l e f i n s t o ca rb o n monoxide a s s u g g e s t e d

by Marchand and Hayes.

IV -2 . Mechanism of th e i ro n p e n t a c a r b o n y l - p r o m o t e d c o u p l i n g 119

of 7 - t - b u t o x y n o r b o r n a d i e n e t o form dimer ke tone I I .

V-1. P ro p o s ed s y n t h e s i s of 2 - i o d o - 4 , 5 - d i m e t h o x y p h e n e t h y l - 266

amine XXI11.

V I - 1 . S e r i e s of r e a c t i o n s n e c e s s a r y f o r t h e s y n t h e s i s of 287

p e n t a c y c l o ! 5 . 4 . 0 .0 2 1 . 0 3 , 10 . 0 5 , 9 ] und e c a n e - 8 , 11- d i o n e s

IVa-IVd .

V l - 2 . Number ing schemes used in t h e d i s c u s s i o n of a l l NIiR 291

s p e c t r a in t h e ex p e r im e n ta l s e c t i o n and in T a b l e s

V I -6 t h ro ugh VI -13 .

V I - 3 . ' F o r m a l ' r e t r o D i e l s A ld e r f r a g m e n t a t i o n pathway f o r 384

a d d u c t s I l l a - d .

X X V I

ABSTRACT

The s t e r e o c h e m i s t r y and mechanism o-f t h e i r o n p e n t a c a r b o n y l -

i n d u c e d c o u p l i n g o-f s t r a i n e d o l e f i n s ( e . g . , 7 - p h e n y l n o r b o r n a d i e n e ) to

ca rb on monox ide i s d i s c u s s e d . Em ph as is i s p l a c e d on d e t e r m i n a t i o n of

t h e s t r u c t u r e of one d im er i c k e t o n e c o u p l i n g p r o d u c t w i t h t h e a i d of

t h e l a n t h a n i d e s h i f t r e a g e n t E u ( f o d >3 in n u c l e a r m a g n e t i c r e s o n a n c e

d e c o u p l i n g e x p e r i m e n t s . The u s e of a computer program which

c a l c u l a t e s t h e e q u i l i b r i u m c o n s t a n t s (Kj and K2) and bound

che mic al s h i f t s ( J l and j 2 ) f o r t h e one s t e p (L + S LS) and

t h e two s t e p (LS + S LS2) l a n t h a n i d e s h i f t r e a g e n t - d i m e r i c

k e t o n e i n t e r a c t i o n s (1^5^) i s a l s o d e m o n s t r a t e d . The p o s i t i o n of

t h e eu r o p iu m atom in th e L iS j " c o l l i s i o n - c o m p l e x " i s d e t e r m i n e d

w i t h t h e a i d of an o the r computer p ro g r am . Other new i r o n ca rb o n y l

c o u p l i n g p r o d u c t s and two u n i q u e ca g e compounds s y n t h e s i z e d from them

a r e a l s o d i s c u s s e d .

I n t r o d u c t i o n o f the e a s i l y r e p l a c e a b l e t h a l l i u m d i t r i f l u o r o ­

a c e t a t e s u b s t i t u e n t i n t o s e v e r a l b i o l o g i c a l l y a c t i v e compounds and

i t s e v e n t u a l s u b s t i t u t i o n by r a d i o a c t i v e i o d i n e ( f o r u s e a s an

im ag ing a g e n t in t r a c e r s t u d i e s ) i s i n v e s t i g a t e d .

F i n a l l y , t h e s y n t h e s i s o f a s i n t e r e s t i n g s e r i e s of h i g h l y

s t r a i n e d p e n ta c y c lo C 5 . 4 . 0 . 0 2 , 6 .@ 3 ,10 . 0 5 , 9 ] u n d e c a n e - 8 , 11- d i o n e s

i s d e m o n s t r a t e d , compre hens ive an d NMR s i g n a l a s s i g n m e n t s

a r e made u s i n g h ig h r e s o l u t i o n c o n v e n t i o n a l and 2- d i m e n s i o n a l n u c l e a r

m a g n e t i c r e s o n a n c e t e c h n i q u e s , and t h e X - r a y c r y s t a l s t r u c t u r e o f the

3-m et hy l pen t a c y c l o [ 5 . 4 . 8 . 02»<^.0 3 , 10.05 , ? ] u n d e c a n e - 8 , 1 1 - d i o n e

isom er i s d e m o n s t r a t e d .

X X V I I

THE STEREOCHEMISTRY AND MECHANISM OF THE IRON PENTACARBONYL-PROMOTED

COUPLING OF STRAINED OLEFINS TO CARBON MONOXIDE, A NMR-FACILITATED

STUDY OF THE EQUILIBRIUM CONSTANTS BETWEEN AND COLLISION COMPLEX OF A

1 0 . 1 1-DIPHENYL-1 , 4 : 5 , 8-DIMETHANO-1 , 4 , 4A, 4B, 5 , 8 , 8A, 8B-0CTAHYDR0FLU0RENE

-9-ONE STEREOISOMER AND THE LANTHANIDE SHIFT REAGENT EU(F0D)3, THE

ELECTROPHILIC AROMATIC THALLATION OF SOME SELECTED BIOMOLECULES, AND

THE SYNTHESIS AND HIGH RESOLUTION NMR STUDY OF THE TWO SERIES OF

1 , 4 , 4A, 8A-TETRAHYDRO-ENDO- 1 , 4-METHAN0NAPHTHALENE-5, 8-DIONES AND

PENTACYCLO! 5 . 4 . 0 . 0 2 , < 4 . 0 3 , 1 0 . 0 5 , 9] UNDECANE- 8 , 11-DI ONES

PART I

THE STEREOCHEMISTRY AND MECHANISM OF THE IRON PENTACARBONYL-PROMOTED

COUPLING OF STRAINED OLEFINS TO CARBON MONOXIDE, WITH EMPHASIS ON THE

NUCLEAR MAGNETIC RESONANCE LANTHANIDE SHIFT REAGENT STUDY OF A

1 0 . 1 1-DIPHENYL-1 , 4 : 5 , 8-DIMETHANO-1 , 4 , 4A, 4B, 5 , 8 , BA, 8B-0CTAHYDR0FLU0RENE

-9-ONE STEREOISOMER

I n t r o d u c t i on

P r e v i o u s i n v e s t i g a t i o n s ^ ,2 c o n c e r n i n g t h e s t e r e o c h e m i s t r y and

mechanism o-f i r o n c a r b o n y l - p r o m o t e d c o u p l i n g of s t r a i n e d o l e f i n s to

c a rb o n mono xide have p r o v i d e d i n t e r e s t i n g r e s u l t s . Examples of

s e v e r a l such r e a c t i o n s a r e shown in T a b l e I - l . As i l l u s t r a t e d ,

a n t i - 7 - t - b u t Q x v n o r b o r n a d i e n e i s i n e r t un de r th e normal r e a c t i o n

c o n d i t i o n s , w h e rea s s y n - 7 - t - b u t o x y n o r b o r n a d i ene a f f o r d s d i m e r i c

K e to nes IV and V. S in c e 7 - t - b u t o x y n o r b o r n a d i e n e a f f o r d s o n l y one

d i m e r i c K e to n e , t h e double bond a n t i t o t h e t - b u t o x y gro up must be

i n v o l v e d in t h e t r a n s i t i o n s t a t e and p a r t i c i p a t e in t h e r e a c t i o n .

C o n v e n t i o n s r e g a r d i n g c o n f i g u r a t i o n a l n o m e n c la tu r e a r e i l l u s ­

t r a t e d in F ig I - l . The c e n t r a l eye 1 o p e n t a n o n e r i n g c o n t a i n s f o u r

1

TABLE I - l

Examples o-f I r o n P e n t a c a r b o n y l - P r o m o t e d C oup l in g R e a c t i o n s .

R e a c t io n Re-ference

I (X-T-X)

O

I I (S-X-T-N-S)I I I

V (S-X-T-X-S)IV (S-X-T-N-S)

t r a t e d in F ig I - l . The c e n t r a l c y c lo p e n t a n o n e r i n g c o n t a i n s -four

hyd rogens ( two -from each o-f t h e two n o r b o r n a d i e n e m o i e t i e s ) . In

-format ion o-f t h e s e d i m e r i c K e to n e s , hy d ro gens A and B from t h e

p r e c u r s o r o l e f i n must be c i s , w h e rea s h y d r o g e n s A and A' may be

e i t h e r c i s (C) or t r a n s (T) w i t h r e s p e c t t o t h e c y c l o p e n t a n o n e r i n g .

The l a t t e r c i s or t r a n s s t e r e o c h e m i s t r y a l s o a p p l i e s t o hydrogens B

and B^. A l s o , d u r i n g r i n g f o r m a t i o n t h e n o r b o r n a d i e n e m oie ty may

become s u b s t i t u t e d a t e i t h e r i t s endo (N) o r i t s exo (X) f a c e .

F i n a l l y , t h e p o s i t i o n of a s u b s t i t u e n t on th e 7 - b r i d g e ca rbon may be

c o n v e n i e n t l y s p e c i f i e d as b e i n g syn (S) or a n t i (A) w i t h r e s p e c t t o

th e c y c l o p e n t a n o n e r i n g . For example , the p r o d u c t ( I I ) of Reac t io n 2

i s unam biguous ly d e s c r i b e d a s s y n - e x o - t r a n s - e n d o - s y n (SXTNS).

F I G U R E I - l

C o nven t ions R eg rd in g C on - f ig u ra t i o n a l N o m en c la tu re

P e r t i n e n t t o I ro n P e n t a c a r b o n y l Coupl ing P r o d u c t s .

C i s ( C )

H

E i o ( X ) Endo (ni)

S , n ( B ) Anil ( A )

The q u e s t i o n o-f mechanism n a t u r a l l y a r i s e s . M a n t z a r i s and

W e i s b e r g e r 3 have s u g g e s t e d t h a t p r o d u c t i o n o-f d i m e r i c k e t o n e s

r e s u l t s -from Fe(CO) 4- o l e f i n complex f o r m a t i o n f o l l o w e d by; <i )

s u b s t i t u t i o n o f a CO l i g a n d by a n o t h e r o l e f i n , < i i ) r e a r r a n g e m e n t ,

and ( i i i ) l o s s o f t h e i ro n m o i e t y (Scheme I - l ) . The S-X-T-N-S

SCHEME I - l

Mechanism of t h e I ron P e n t a c a r b o n y l Promoted C oup l ing o f

O l e f i n s t o Carbon Monoxide S u g g e s t e d by M a n t z a r i s and W e i s b e r g e r .

r*(co)j -------- ^ r«(co)^ * co

(3

( ^ — F .(C O )^CO

(J_Fe(C0)3

-F e C C O j

«0 ) 3

(CO ), I - F e

c U )

e(C O ),

Fe{C0>2

+ Fe p ro d u c ts

p r e f e r e n c e h a s been n o t e d ^ and h a s been a t t r i b u t e d t o t h e p r e s e n c e

of a Lewis b a s e s u b s t i t u e n t a t t h e 7 - b r i d g e p o s i t i o n 4 - 6 which m ight

d i s p l a c e CO a s shown in Fig 1 -2 .

FIGURE 1-2

E f f e c t o f 7 - L e w i s Base S u b s t i t u e n t s on P r o d u c t S t e r e o c h e m i s t r y .

/

R e s u l t s and D i s c u s s i o n

To f u r t h e r e l u c i d a t e th e mechanism of i n v o lv em en t of 7-Lewis b ase

s u b s t i t u e n t s , a s t u d y was u n d e r t a k e n of t h e r e a c t i o n s of 7 - p h e n y l n o r ­

b o r n a d ie n e (VI) and 7 - o - a n i s y l n o r b o r n a d i e n e ( V I I I ) w i t h i ro n p e n t a c a r ­

bonyl ( F i g 1-3) J Based upon c o n s i d e r a t i o n of the i n t e r a c t i o n s

d e p i c t e d in F i g 1 - 2 , compound V I I I m igh t be e x p e c t e d to y i e l d dimer

k e to n e IX p o s s e s s i n g th e SXTNS c o n f i g u r a t i o n . Such s t e r e o c h e m i s t r y

might be a d i r e c t r e s u l t of methoxy oxygen p a r t i c i p a t i o n in CO

d i s p l a c e m e n t d u r i n g t h e c o u p l i n g r e a c t i o n .

S p e c i f i c n u c l e a r magne t i c r e s o n a n c e d e c o u p l i n g e x p e r i m e n t s have

proven u s e f u l in t h e s t r u c t u r a l d e t e r m i n a t i o n s of s i m i l a r k e t o n e s .

Two t y p e s of lo n g ra n g e c o u p l i n g have been o b s e r v e d . F i g u r e I - 4 a

d e m o n s t r a t e s t h e ' v i n y l ' long r a n g e c o u p l i n g c a u s e d by i n t e r a c t i o n of

the v i n y l < c l o u d and th e back lo b e of t h e s p ^ h y b r i d i z e d b r i d g e

h y d r o g e n . 8 The sec on d ty pe of lon g r a n g e c o u p l i n g i s i l l u s t r a t e d

in F ig I - 4 b and i s c a l l e d ' W - l e t t e r ' c o u p l i n g . ? ; 10

FI G U R E 1 - 3

P ro po sed R e a c t i o n s

R e a c t i o n

£

Fe(CO)q. h e a t ^

<n-Bu>20

4 . VI : Ar = Phenyl

5 . V I I I : Ar = o -A n i s y l

VII : Ar = Phenyl

IX: Ar = o -A n isy l

Normal 60 MHz p r o t o n NMR s p e c t r a 1% o-f VII ( F i g 1-5) and IX ( F i g

1-8) e x h i b i t s t r i k i n g s i m i l a r i t i e s which a r e e a s i l y compared in F ig

1 - 9 . A s h a r p AB p a t t e r n ( c o r r e s p o n d i n g t o t h e p r o t o n s so l a b e l e d in

F ig I - l -for t h e t r a n s c o n f i g u r a t i o n abou t t h e c y c lo p e n t a n o n e r i n g ) i s

s een -for bo th VII and IX in th e 2 . 2 - 2 .8 ppm r e g i o n . S i m i l a r r e s u l t s

have been o b s e r v e d -for o t h e r d imer k e t o n e s of t h i s t y p e . 12 T h i s

s i m p l e AB p a t t e r n a r i s e s b e c a u s e = 0 .0 Hz and

^Hb-Hb' = 0 . 0 Hz a s a r e s u l t of t h e t r a n s c o n f i g u r a t i o n of th e

c y c l o p e n t a n o n e r i n g ( s e e F ig I - l l f o r a l a b e l i n g s c h e m e ) . 2 , 4 , 1 2

The s i m i l a r i t y and s i m p l i c i t y of t h e p r o t o n s p e c t r a s u g g e s t s

s y m m e t r i c a l p r o d u c t s . A l s o , t h e l ^ c s p e c t r a of VII ( c f . F ig 1 -2 2 ,

7

FIGURE 1-4

Two Ty pes of Long-Range ^H-Ih C o u p l in g .

Vinyl M e i n w a ld ' s ' W - L e t t e r '

H(a) (b)

J h- h % 0 . 5 Hz J h-H % 2 .0 Hz

r e f e r e n c e 8 r e f e r e n c e s 9 , 10

c o n t a i n i n g o n ly tw e lv e s i g n a l s a s would be e x p e c t e d f o r a

s y m m e t r i c a l dimer k e t o n e i n s t e a d of a maximum of twen ty t h r e e s i g n a l s

e x p e c t e d f o r an uns ym m et r i ca l dimer k e t o n e ) and of IX ( c f . F ig 1-26,

c o n t a i n i n g o n ly f i f t e e n s i g n a l s a s would be e x p e c t e d f o r a

s y m m e t r i c a l dimer k e t o n e i n s t e a d of a maximum of tw en ty n i n e s i g n a l s

e x p e c t e d f o r an unsym m et r i ca l d imer k e to n e ) s u p p o r t s t h i s

c o n t e n t i o n . T h e r e f o r e , i t was t e n t a t i v e l y assumed t h a t m a g n e t i c a l l y

Ha = H a ' , Hb = H y ' , He = H e ' , • • • Hg = Mg ' . T h i s

a s s u m p t i o n , d i s r e g a r d i n g f o r t h e moment t h e a r o m a t i c and methoxy

p r o t o n s , i m p l i e s t h a t th e p r o t o n s p ec t r u m of each compound shou ld

c o n s i s t of r e s o n a n c e s c o r r e s p o n d i n g t o seven p a i r s of p r o t o n s , the

members o f a p a i r b e in g e q u i v a l e n t w i t h r e s p e c t to t h e i r mag net i c

e n v i r o n m e n t s . The i n f r a r e d s p e c t r a l * o f VII and of IX a l s o e x h i b i t

soo 400 100 0 Ht

e de

s.o 4.0 3.0 1.0 01.0 4.0 3.0r.o

F i g u r e 1 - 5 . 6 0 MHz NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I ( C D C I 3 / T M S ) .

3 MICROMLTERS 4 10 12 U 16100 IO C .100100

8080

j—t—i6060

40

IZZ'

2020

1000 (CM ') 800 60014003000 (CM') 2500 2000 1800 1600 12003500

'O

F i g u r e 1 - 6 . I R S p e c t r u m o-f 7 - P h e n y 1 D i m e r K e t o n e V I I ( C C I 4 - f i l m ) .

10

FIGURE 1-7

Mass Spect rum o-f 7-Phen y l Dimer Ketone VII

5&JUW5W Tk t 2 e o , i n , 3 e o ^ n , 2 8 e s s er i C N 4 .1 3 E *0 4 m 3 64 n

n n i N s e . e n n p x s e e . e

TMT 13504-----8 6 SPECTRA668

M E - 7 6 564 È53ÜM64 Tk- - - - - - - - - - - -: 2 0 D , IM ,3 O D /M ,2 8 G D 5 0 - 5 0 8

9 7 PEAKS BOSE AEUHDQNCE 2 332 1 8 - 1 5 0 . 0 M L - 5 0 0 . 8 n i - 1 5 0 . 0 M 2 -3 9 8 .0

BASE PEAK 1 6 7 .1 HSTRP- 0

irftk 15554 SRN 19 RT 2 .0

-Tt+ttn

Ïi i n i i i i i i i i i i i n m n0 aèe 3 6 0 aéa

MASS % MASS %BIC 60 2 0 5 . 1 4 . 11 5 0 . 0 1 . 6 2 0 6 . 0 1 . 41 5 1 . 0 7 . 0 2 0 7 . 0 4 . 61 5 2 . 0 4 8 . 9 2 0 8 . 0 1 . 21 5 3 . 0 3 6 . 9 2 1 5 . 1 3 . 31 6 4 . 0 8 . 8 2 1 6 . 0 1 .41 5 5 . 0 3 . 7 2 1 7 . 0 1 . 51 5 7 . 0 1 . 2 2 2 1 . 0 8 . 51 6 3 . 0 3 . 2 2 2 2 . 0 41 . 61 6 4 . 0 6 . 3 2 2 3 . 1 1 0 . 71 6 5 . 0 6 0 . 4 2 2 4 . 1 1 . 51 6 6 . 0 2 2 . 0 2 2 8 . 0 1 . 51 6 7 . 1 1 0 0 . 0 2 2 9 . 0 1 . 81 6 0 .1 5 5 . 1 23 1 . 0 1 . 21 6 9 . 0 9 . 2 2 3 9 . 0 1 . 21 7 6 . 0 2 . 5 2 4 5 . 0 2 . 51 7 7 . 0 3 . 7 2 5 5 . 1 1 . 61 7 8 . 0 2 9 . 4 2 5 6 . 9 1 . 71 7 9 . 1 1 8 .1 2 5 6 . 1 2 0 . 11 8 0 . 1 6 . 9 2 5 3 . 1 4 . 61 8 1 . 0 5 . 7 2 6 0 . 1 1 . 21 8 2 . 0 1 . 6 2 7 2 . 0 1 .51 8 9 . 0 6 . 2 2 7 3 . 0 9 . 01 9 0 . 0 3 . 2 2 7 4 . 1 2 . 1191 . 0 5 . 7 3 6 4 . 1 2 3 . 91 9 2 . 1 3 . 5 3 6 5 . 1 6 . 41 9 3 . 0 9 . 8 3 6 6 . 1 1 . 01 9 4 . 0 6 . 61 9 5 . 0 1 0 . 21 9 6 . 0 4 . 8 LAST 41 9 7 . 0 1 . 8 3 4 6 . 1 .52 8 2 . 0 6 . 3 3 6 4 . 1 2 3 . 92 0 3 . 0 6 . 7 3 6 5 . 1 6 . 42 0 4 . 1 3 . 9 3 6 6 . 1 1 . 0

100 0 Hi300300JOO 400

e c d

01.0#0 3.03.0 3.05.0 4.0

F i g u r e 1 - 8 . 6 0 MHz NMR S p e c t r u m o f 7 - o - A n i s y 1 D i m e r K e t o n e I X ( C D C I g / T M S )

Ar

" A r

o- anisyltop trace: Xbottom trace: X = phenyl

to

3 . 4 8 3 . 1 9 2 . 7 6 2 . 2 2 PPMD i m ë ï ^ e t o n e s ^ ^ D c î y T M S ? ! S p e c t r a o-f 7 -P h en y l (V I I ) and 7 - o - A n i s y l (IX)

10

_K4000 MO10001600 1200180024002800 20003600 3200

F i g u r e 1 - 1 0 . I R S p e c t r u m o f 7 - g - A n i s y ] D i m e r K e t o n e I X ( K B r ) .

14

FIGURE I - l l

P r o t o n , C a rb o n , Oxygen, and Ci-Cj-C% Bond Angle L a b e l i n g

Scheme f o r Phenyl Ketone V I I . Bond d i s t a n c e s a r e shown in a s

d e t e r m i n e d f rom X - r ay s t u d y .

21 « 22-

AS04(3)

■He

H O JO )

ftsaa.fi'

H

Hb' I h Hb , /

00

1-961H9B I9S9L4b <

11Ho" 1Ha ^

Hf17 W W 3) IR

M74(

H,1391

s i m i l a r f e a t u r e s : C = C and C = 0 s t r e t c h i n g f o r VII ( F i g 1-6) a t 1600

and 1720 c m ' l , r e s p e c t i v e l y , and f o r IX ( F i g 1-10) a t 1600 and 1725

cm“ l , r e s p e c t i v e l y . The mass s p e c t r u m l l of VII i s shown in F ig

1 -7 .

The Hc(H c ' ) s t e r e o c h e m i s t r y a t t h e b r i d g e c a r b o n s r e m a i n s to

be d e t e r m i n e d . I n s p e c t i o n o f F i g s 1 -5 and 1-8 r e v e a l s c e r t a i n

c o m p l i c a t i o n s r e g a r d i n g the a b i l i t y t o s e l e c t i v e l y i r r a d i a t e and

o b s e r v e s p e c i f i c p r o t o n r e s o n a n c e s which i s a n e c e s s a r y c o n d i t i o n f o r

NMR d e c o u p l i n g s . F i g u r e 1-9 i l l u s t r a t e s t h e o v e r l a p of r e s o n a n c e s

( e s p e c i a l l y f o r V I I ) of two d i f f e r e n t p r o t o n s in the 3 . 0 - 3 . 3 ppm

r e g i o n f o r b o t h compounds. T h i s p r e c l u d e s NMDR i n v e s t i g a t i o n which

r e q u i r e s f i r s t o r d e r c l a r i t y in t h i s r e g i o n o f ea ch s p e c t r u m .

15

L a n t h a n i d e s h i f t r e a g e n t s (LSR's) have o f t e n been used to make

NMR s p e c t r a am enab le t o f i r s t o rd e r a n a l y s i s . l 3 " 1 5 The r e m a i n d e r

of PART I i s d e v o t e d to j u s t such an a n a l y s i s , w i t h the immedia te

need b e i n g t o r e s o l v e t h e s e s p e c t r a so t h a t s p e c i f i c r e s o n a n c e s may

be i n d i v i d u a l l y d e c o u p le d and o b s e r v e d .

In l a n t h a n i d e s h i f t r e a g e n t - s u b s t r a t e co m plexes (LmSn, where

m i s u s u a l l y 1 and n i s u s u a l l y 1 or 2) , i n t e r a c t i o n between t h e

p a r a m a g n e t i c m e ta l ion and n u c l e i of t h e s u b s t r a t e c a u s e s ch a n g es in

t h e chemical s h i f t of th e s u b s t r a t e n u c l e i . Two t y p e s of

i n t e r a c t i o n s have been d e s c r i b e d : c o n t a c t (F er mi) and p s e u d o c o n t a c t .

The p s e u d o c o n t a c t s h i f t e d a c t s t h r o u g h s p a c e , d e s c r i b e s a l l

m a g n e t i c - d i p o l a r t y p e s of i n t e r a c t i o n s between t h e n u c l e u s and t h e

e l e c t r o n s p i n m a g n e t i z a t i o n of t h e p a r a m a g n e t i c m e ta l i o n , and can be

f o r m u l a t e d a s a d i p o l a r m ag n e t i c f i e l d . Two t h e o r i e s have been

d e v e lo p e d g i v i n g e x p r e s s i o n s f o r th e m a g n i t u d e of t h e p s e u d o c o n t a c t

s h i f t and bot h t h e o r i e s may be e x p r e s s e d by Eq I - l .

LIS — — ^ i ~ ^ o i Eq I - l

= k ( 3 C o s 2 e i - l ) / ( R I i ) 3

JSj i s t h e l a n t h a n i d e - i n d u c e d (LIS) s h i f t which i s s t r i c t l y

d e f i n e d a s t h e d i f f e r e n c e between t h e r e s o n a n c e f r e q u e n c y (&oi)

of t h e ' i - t h ' p r o t o n in th e uncomplexed s u b s t r a t e (S) and t h e

r e s o n a n c e f r e q u e n c y (&j) of t h e same p r o t o n in th e l a n t h a n i d e

s h i f t r e a g e n t - s u b s t r a t e complex (LSn) . The a c t u a l o b s e r v ed

f o r a g i v e n n u c l e u s i s a w e ig h t e d t i m e - a v e r a g e d chemical s h i f t

r e s u l t i n g f rom a l l s p e c i e s ( i . e . , S, LS, LS2 , e t c . ) in t h e NMR

s o l u t i o n . i s t h e a n g le between t h e d i s t a n c e v e c t o r ( R l j )

j o i n i n g t h e m e ta l c a t i o n to t h e p a r t i c u l a r n u c l e u s (Hj) in t h e

complexed s u b s t r a t e and t h e c r y s t a l f i e l d a x i s of the complexed

s u b s t r a t e , o f t e n assumed to be t h e l i n e j o i n i n g t h e metal atom to a

lo n e p a i r - b e a r i n g Lewis base atom ( e . g . , N, 0 , S, P , e t c . ) in t h e

s u b s t r a t e ( c f . F ig 1 - 1 2 ) . In t h i s s t u d y , t h e Lewis b a se i s c a rbony l

16

F I G U R E 1 - 1 2

G e o m e t r i ca l r e l a t i o n s h i p s in a complex in which c o n f o r m a t i o n a l

f l e x i b i l i t y e x i s t s f o r eu ropium (wr) and hydrogen (W[).

tuH

©X

oxygen . The c o n s t a n t , k , i s a m e a s u r e of t h e induced m a g n e t i c d i p o l e

of t h e l a n t h a n i d e n u c l e u s and h a s a u n iq u e v a l u e fo r each L SR.17 |18

The c o n t a c t s h i f t a c c o u n t s f o r p o s s i b l e s p in d e l o c a l i z a t i o n

w i t h i n a complex which a r i s e s from d i r e c t t h r o u g h - b o n d

e l e c t r o n - n u c l eus magne t i c i n t e r a c t i o n . T h i s r e s u l t s in a s h i f t of

u n p a i r e d e l e c t r o n s p in d e n s i t y from t h e meta l c a t i o n t o t h e s u b s t r a t e

l i g a n d by p a r t i a l c o v a l e n t bond f o r m a t i o n .

I t i s g e n e r a l l y a c c e p t e d t h a t l a n t h a n i d e s i n t e r a c t p r i m a r i l y by

t h e p s e u d o c o n t a c t mechanism b e c a u s e of t h e i r h igh e l e c t r o p o s i t i v e

c h a r a c t e r and s h i e l d i n g of u n p a i r e d e l e c t r o n s of t h e ' i '

o r b i t a l s . 19 However, even w i t h l a n t h a n i d e s a smal l d e g r e e of

c o n t a c t i n t e r a c t i o n i s p o s s i b l e , 28 e s p e c i a l l y f o r p r o t o n s a t t a c h e d

t o t h e c a r b o n s n e a r e s t t h e l o n e p a i r - b e a r i n g a t o m . 21 The

o c c u r r e n c e of such c o n t a c t i n t e r a c t i o n s r e s u l t s in d e v i a t i o n s from

t h e b e h a v i o r d e s c r i b e d by Eq I - l .

Of t h e s e v e r a l s h i f t r e a g e n t s c o m m er c i a l l y a v a i l a b l e ,

t r i s ( 1 , 1 , 1 , 2 , 2 , 3 , 3 - h e p t a f 1u o r 0- 7 , 7 - d i m e t h y l o c t a n e - 4 , 6- d i o n a t o ) e u r o p i u m

( I I I ) [ E u ( f o d ) 3]22 was chosen ( F i g 1-13) be cause of i t s minimal

b r o a d e n i n g of NMR r e s o n a n c e s and i t s i n c r e a s e d Lewis a c i d i t y

( r e l a t i v e t o t h e u n f l u o r i n a t e d p a r e n t compound and d e s i r e d in

c o m p l e x a t i o n w i t h weakly b a s i c c a r b o n y l oxygen) and i t s i n c r e a s e d

17

FIGURE 1-13

T r i s ( 1 , 1 , 1 , 2 , 2 , 3 , 3 - h e p t a-fl u o r o - 7 ,7 - d i m e thy 1 o c t a n e - 4 , 6 - d i o n a t o ) -

Europium ( I I I )

Eu(-fod)3

L

:Eu

s o l u b i l i t y ( a l s o due to t h e p r e s e n c e of t h e f l u o r i n e s ) . In a d d i t i o n ,

t h e t e r t - b u t y l r e s o n a n c e of Eu(fod )3 in t h e 1-2 ppm r e g i o n of the

NMR s p e c t r u m d o es not i n t e r f e r e wi th s u b s e q u e n t s p e c t r a l a n a l y s e s .

R e t u r n i n g to t h e problem of d e c o u p l i n g , w e ig hed amounts of

s u b s t r a t e VII and s h i f t r e a g e n t were added t o an NMR t u b e . D i l u t i o n

t o a s p e c i f i e d volume w i th d e u t e r i o c h l oroform/DCTMS pro duced a s o l u ­

t i o n whose c a l c u l a t e d molar c o n c e n t r a t i o n r a t i o was d e f i n e d a s RHO

18

w i t h RHO = [Lq ] / [ S q] <[Lq] i s t h e t o t a l molar c o n c e n t r a t i o n of

Eu<fod>3 , complexed and u n c o m p l e t e d , and [SqI i s the t o t a l molar

c o n c e n t r a t i o n o f s u b s t r a t e V I I , complexed and uncomplexe d) . A 60 MHz

NMR s p e c t r u m was o b t a i n e d and che mic al s h i f t s (&i) were r e c o r d e d

r e l a t i v e t o TMS. Subsequen t s p e c t r a w e re o b t a i n e d ( s e e F i g s 1-14

t h r o u g h 1 - 1 7 ) , and s h i f t s w e re r e c o r d e d f o l l o w i n g each i n c r e m e n t a l

d i l u t i o n 2 3 of t h e sample in t h e NMR t u b e w i t h a s t o c k s o l u t i o n of

V I I . T h i s p r o c e s s began w i t h RHO = 3 .011 and was c o n t i n u e d t o RHO =

0 . 0 1 3 < c f . T a b l e 1 - 2 ) . Dur in g t h i s s e q u e n c e , RHO = 0 .2 5 ( F i g 1-18)

was fo u n d to g i v e optimum s p e c t r a l c l a r i t y and t h e f o u r 100 MHz

d e c o u p l i n g e x p e r i m e n t s which a r e n o r m a l l y n e c e s s a r y t o e l u c i d a t e the

s t e r e o c h e m i s t r y a t the b r i d g e c a r b o n ( c f . F ig 1-4) were p e r fo rm e d a t

t h a t RHO ( F i g 1 - 1 9 ) . A more a c c u r a t e d e t e r m i n a t i o n of t h e i n duced

ch em ica l s h i f t s was made a t 100 MHz in a s ec o n d i n c r e m e n t a l d i l u t i o n

e x p e r i m e n t ( t h e d e c o u p l i n g e x p e r i m e n t s we re o m i t t e d . Chemical s h i f t s

and d i l u t i o n vo lumes of t h i s e x p e r i m e n t a r e l i s t e d in T a b l e 1 - 2 .

In t h e f i r s t e x p e r i m e n t , t h e v i n y l p r o t o n s ( c e n t e r e d a t i 6 .5 )

w e re i r r a d i a t e d w h i l e t h e s i g n a l c o r r e s p o n d i n g to H [ ( H c ' ) (&

5 . 0 ) was o b s e r v e d . N e x t , Hc(H c ' ) was i r r a d i a t e d and t h e v i n y l ,

H a ( H a ' ) , and Hb<Hb') p r o t o n s we re o b s e r v e d . No s i g n i f i c a n t

c h a n g e s w e re e v i d e n t ( i . e . , no l o n g r a n g e v i n y l c o u p l i n g was see n ) .

The t h i r d and f o u r t h e x p e r i m e n t s i n v o l v e d i r r a d i a t i o n of Hb(Hb')

and H a ( H a ' ) , r e s p e c t i v e l y , w h i l e m o n i t o r i n g H c ( H [ / ) . Aga in ,

no s i g n i f i c a n t changes i n t h e o b s e r v e d r e s o n a n c e s were d e t e c t e d

( i . e . , t h e ' W - l e t t e r ' long r a n g e c o u p l i n g was n o t e v i d e n t ) !

T h e s e e x p e r i m e n t s p r o v i d e d no i n f o r m a t i o n about t h e syn o r a n t i

b r i d g e p r o t o n s t e r e o c h e m i s t r i e s . E i t h e r one of t h e s e e x p e r i m e n t s

s h o u l d have c on f i r m ed t h e p o s i t i o n o f Hc(H[/) by a p o s i t i v e

r e s u l t . The f i r s t p a i r o f e x p e r i m e n t s i n d i c a t e by n e g a t i v e e v i d e n c e

t h a t t h e H [(Hc/ ) p r o t o n ( s ) a r e a n t i w h i l e t h e s e c o n d p a i r

i n d i c a t e by n e g a t i v e e v i d e n c e t h a t H c (H [ ' ) p r o t o n ( s ) a r e syn .

T h e s e c o n t r a d i c t o r y , and in f a c t m u t u a l l y e x c l u s i v e , o b s e r v a t i o n s a r e

t h e o n l y f a i l u r e s we have e n c o u n t e r e d in syn v s . a n t i s t e r e o c h e m i s t r y

A i _ je c,d b

I I I I

S.O PfM ( I ) 4.0

F i g u r e 1 - 1 4 . 6 0 MHz NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I , I S q I = 0 . 1 9 2 M a n d[ E u ( F o d ) 3 l = 0 . 0 0 9 M ; RHO = [ L o l / t S o ] = 0 . 0 5 0 ( C D C I 3 / T M S ) .

900SOC 400 300 100 0 Hi

Hb

1.0 é.O S.O 4.0 1.0 1.0 1.0 0

ro

F i g u r e 1 - 1 5 . 6 0 MHz NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I , RHO = 0 . 1 5 0( C D C l g / T M S ) .

I f .O Ê .0 3.1

F i g u r e 1 - 1 6 . 6 0 MHz ^H NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I , RHO = 1 . 5 9 9( C D C l s / T M S ) .

TiTo i c . o

roro

F i g u r e 1 -1 7 . <60 MHz NMR Spec trum of 7 -Pheny l Dimer Ke tone V I I , RHO = 3 .01 1(CDCI3/TMS) .

400 300 300soo 100 0 Ha

9.0 3.01.0 é.O 4.0 3.0 1.07.0

roCO

F i g u r e 1 - 1 8 . 6 0 MHz NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I u p o n w h i c h t h e d e c o u p l i n ge x p e r i m e n t s w e r e p e r f o r m e d , RHO = 0 . 2 5 0 ( C D C l 3 / T M S ) .

,r I r .. r if r ■' " 'if " *'

K)

F i g u r e 1 - 1 9 . 1 0 0 MHz M1DR S p e c t r a o-f P h e n y l K e t o n e V I I a t [ S q I = 0 . 1 9 2 M a n d [ E u ( - f o d > 3 l= 0 . 0 4 8 M , I L q I / I S o I = RHO = 0 . 2 5 ( C D C I 3 / T M S ) .

2 5

TABLE 1 - 2

M at r ix o-f Obse rved S h i f t s (G;) Read In^*) and

In c rem e n ta l D i l u t i o n Volumes(b) f o r Each RHOj.

# RHO Ha Hb He Hd He Volume

0 0 .000 2.247 2 .7 1 2 3 .178 3 .2 4 6 3.453 -

1 0 .0 1 3 2.281 2 .8 0 3 3 .2 3 3 3 .2 6 5 3.510 250

2 0 .0 2 5 2.319 2 .9 0 2 3 .285 3 .2 8 5 3.573 250

3 0.050 2.388 3 .0 8 5 3 .338 3 .3 2 4 3.680 250

4 0.100 2.537 3 .4 8 2 3 .6 1 8 3 .443 3.930 167

5 0.15 0 2.690 3 .8 9 4 3.854 3.517 4.180 125

6 0.200 2.825 4 .2 4 9 4 .056 3 .6 0 8 4.398 100

7 0.250 2.969 4 .6 3 6 4.277 3 .6 9 6 4.615 83

8 0 .300 3.100 4 .9 8 5 4. 477 3 .783 4.842 72

9 0.350 3.235 5.330 4 .6 7 5 3 .8 6 5 5.055 62

10 0.400 3.360 5.640 4 .855 3.940 5.240 100

11 0.500 3.580 6.230 5.210 4.080 5.600 83

12 0.600 3.764 6.764 5 .492 4.194 5.913 72

13 0 .700 3.941 7 .2 4 3 5.761 4 .3 0 6 6.200 62

14 0.800 4.107 7.681 6.011 4 .4 0 4 6.464 56

15 0.900 4.250 8 .0 7 9 6 .2 35 4. 494 6.639 50

16 1.000 4.392 8.457 6.451 4.591 6.927 83

17 1.200 4.651 9 .1 5 6 6 .8 4 5 4.751 7.339 72

18 1.401 4.864 9 .7 28 7. 157 4.900 7.680 62

19 1.600 5.046 10.226 7.456 5 .0 0 9 7.978 43

20 1.752 5.177 10.579 7.611 5.081 8.187 63

21 2.000 5.380 11.110 7 .9 6 2 5 .1 0 8 8.503 55

22 2.251 5.584 11.641 8. 287 5 .3 2 8 8.839 50

23 2.50 0 5.744 12.125 8.530 5 .4 2 8 9.100 46

24 2 .7 5 2 5.862 12.465 8. 726 5 .5 0 2 9.306 43

25 3.011 5.999 12.850 8 .9 3 9 5 .5 7 9 9.526 0

(a ) I n s t r u m e n t a l 1 y r e c o r d e d a t 100 MHz and l i s t e d in ppm■for compar ison w i t h s u b s e q u e n t s p e c t r a o b t a i n e d a t 300 MHz,

(b) In c r e m e n t a l d i l u t i o n volumes a r e in m i c r o l i t e r s (pL) .

2 6

d e t e r m i n a t i o n s u s i n g d ec o u p l in g t e c h n i q u e s on symmet r ica l d imer

k e t o n e s u b s t r a t e s . Why the d e c o u p l i n g s , wh ich have proven so u s e f u l

i n t h e p a s t , have - f a i led f o r VII i s n o t immedia te ly a p p a r e n t .

J o h n s t o n and S h ap i ro 2 3 and o t h e r s l 4 have noted t h e e f f e c t of

added Eu< fod>3 on t h e magni tude of p r o t o n - p r o t o n c o u p l i n g c o n s t a n t s

and i n d i c a t e t h a t e r ro n e o u s d e d u c t i o n s o f m o l e c u l a r s t r u c t u r e can be

made u s i n g them. I t must be remembered t h a t the s p ec t r u m which i s

a c t u a l l y o b s e r v e d i s th e a v e r a g e o f t h e s p e c t r a o f t h e s e v e r a l

s p e c i e s i n s o l u t i o n (both complexed and uncomplexed) and t h a t each

r e s u l t i n g i n d i v i d u a l ' a v e r a g e d ' c o u p l i n g c o n s t a n t i s no t n e c e s s a r i l y

t h e same a s i t i s in t h e uncomplexed s p e c i e s .

S i n c e t h e d e c o u p l i n g e x p e r i m e n t s f a i l e d t o con f i r m t h e p o s i t i o n

o f H c ( H c ' ) , a more d i r e c t app roach was p u r s u e d . A s i n g l e - c r y s t a l

X - r a y s t r u c t u r a l d e t e r m i n a t i o n of X ( t h e o l e f i n i c double bonds o f IX

w e re s a t u r a t e d w i t h H2 over Pd /C)? was made as a more s u i t a b l e

c r y s t a l was o b t a i n e d from X than f rom e i t h e r VII or I X . 7 t l l | 2 4 The

c e l l p a r a m e t e r s a r e ; a = 9 .4 6 6 ( 1 ) S , b = 19 .413(2) S , c = 13 .095 (1 )

S , a = 9 0 . 0 0 , p = 1 0 6 . 8 2 ( 1 ) 0 , y = 90 .00 . A num ber ing

scheme and computer drawn r e p r e s e n t a t i o n of X a r e found in F ig 1 - 2 0 .

Atomic p o s i t i o n a l p a r a m e t e r s f o r c a r b o n and oxygen a r e l i s t e d in

T a b l e 1 - 3 , and a n i s o t r o p i c therma l p a r a m e t e r s a r e l i s t e d i n T a b l e

1 - 4 . Atomic p o s i t i o n a l and i s o t r o p i c the rm a l p a r a m e t e r s f o r hydrogen

a r e l i s t e d in T a b l e 1 -5 . Bond d i s t a n c e s i n v o l v i n g t h e n o n -hydrogen

atoms l i s t e d in T a b l e 1-6 a r e i l l u s t r a t e d i n Fig I - l l . Bond a n g l e s

i n v o l v i n g no n-hyd rogen atoms a r e l i s t e d in T a b l e 1 - 7 .o

C a r b o n - h y d ro g e n bond l e n g t h s r a n g e f rom 0 . 9 7 - 1 . 0 4 A w i t h an a v e r a g e

l e n g t h o f 1 .00 S . The AXTXA c o n f i g u r a t i o n i s e v i d e n t .

The d a t a o b t a i n e d from th e c r y s t a l s t r u c t u r e p r o v i d e f u r t h e r

i n f o r m a t i o n which might be u sed to a c c o u n t f o r t h e i n a b i l i t y to

d e t e r m i n e t h e syn or a n t i b r i d g e c o n f i g u r a t i o n by d e c o u p l i n g of V I I .

F i g u r e IV-21 i l l u s t r a t e s t h a t an i m p o r t a n t c o n s i d e r a t i o n r e g a r d i n g

d e c o u p l i n g f a i l u r e must be th e p r o x i m a t e geometry o f th e v i n y l %

c l o u d r e l a t i v e to ti •? back lo b e of t h e b r i d g e pro ton ( h e r e , H^) on

2 7

F I G U R E 1 - 2 0

Numbering Scheme and Computer Drawn R e p r e s e n t a t i o n o-f Compound X.

ORIEP (Johnson, 1965) d ra w ^ g o f a s in g le m olecule.

2 8

TABLE 1 - 3

Atomic P o s i t i o n a l P a r a m e t e r s -for Carbon and Oxygen.

S t a n d a r d d e v i a t i o n s -for th e l a s t d i g i t a r e in p a r e n t h e s i s .

Al l p a r a m e t e r s a r e m u l t i p l i e d by 104.

Atom

IC4aC4b

Csa

IIi

Ci4

iC20C21C22C23C24

f0 i3O20

x / a y / b z / c

9239(2 ) 7098(1) 4760( 1)9440(2) 6 3 9 8 ( 1) 4276(1)9718(2 ) 6509(1) 3073( 1)8209 (2 ) 7 2 6 2 ( 1) 2996( 1)9587( 1) 7 7 2 9 ( 1) 3245( 1)9 2 4 8 ( 1) 8 5 1 2 ( 1) 3080( 1)

10196(2) 8900( 1) 2483(1)9620(2) 9650(1) 2337( 1)

10287(2) 9 9 6 9 ( 1) 3449( 1)20 993(2 ) 8 3 5 4 ( 1) 4133(1)

9740( 1) 886 K 1) 4201(1)10293(2) 8 2 9 5 ( 1) 5004(1)1 0 2 8 5 ( 1) 7 6 0 8 ( 1) 4458( 1)7 7 2 6 ( 1) 7 344<1) 4028(1)

11671(2) 8 9 4 7 ( 1) 3369(1)6373(2 ) 6 9 5 2 ( 1) 4098( 1)5009(2 ) 7 0 6 5 ( 1) 3345( 1)3754(2) 6 7 0 5 ( 1) 3382(2)3858(2) 6241( 1) 4204(2)5169(2) 6142( 1) 4985(2)6422(2) 6 4 9 9 ( 1) 4929( 1)3659(2 ) 7 6 9 2 ( 1) 1795(2)

13002(2) 9 2 8 2 ( 1) 3158( 1)14357(2) 9 2 2 8 ( 1) 3953( 1)15623(2) 9 5 3 8 ( 1) 3836(2)15550(2) 9 9 0 1( 1) 2913(2)14254(2) 9944( 1) 2108(2)12978(2) 9630(1) 2230(1)15688(2) 8745( 1) 5645(2)1 0 6 7 5 ( 1) 8376( 1) 5963( 1)5006( 1) 7550( 1) 2586( 1)

1 4 3 2 7 ( 1) 8859( 1) 4835(1)

2 9

T A B L E 1 - 4

A n i s o t r o p i c Thermal P a r a m e t e r s f o r Carbon and Oxygen.

The a n i s o t r o p i c t e m p e r a t u r e f a c t o r s a r e e x p r e s s e d in t h e forms

T = exp[-2<2<U llhZaXZ + U22k2b*2 + U33l2c*2+

2Ui2hka*b* + 2Ui3h 1a*c* + 2U23k1b*c*)] .

Atom Ul l U22 U33 U12 U13 U23

Cl 519(8) 479(8) 45 0(8 ) 9(7) 70 (6) 29(6)C2 6 1 5 ( 10) 458(8 ) 810 (11) 20 ( 8) 176(9) - 5 ( 8 )C3 6 8 K 10) 504(8) 696( 10) -141(8 ) 294(8) -165( 8)C4 438(7) 506(8) 421(7 ) -1 06 (6 ) 120( 6) -71 (6 )C4a 399(7) 464(8 ) 441(7) -6 5 (6 ) 127(6) -79 ( 6 )C4b 382(7) 470(8) 420(7 ) -32(6) 78(5) - 4 3 ( 6 )C5 491(8) 489(8) 419(7 ) - 68 ( 6) 125(6) -63 ( 6 )C6 5 7 4 ( 10) 535( 10) 632( 18) 33(7) 164(8) 83(7)c? 6 5 8 ( 10) 449(8) 737(10) 10(7) 30 2(9 ) -69 ( 7 )Cb 456(8) 473(8) 482(8) -7 3( 6) 168(6) -1 25 (6)Csa 379(7) 458(8) 456(7) -7 ( 6 ) 131(6) - 90 ( 6 )C9 382(7) 531(8) 443(7) -23 (6 ) 87 (6) -6 4 (6 )C9a 373(7) 468(8) 482(8) 16(6) 38 (6) -5 1 (6 )C10 426(7) 462(8) 416(7) -35 (6 ) 120( 6) -1 7 (6 )C i i 421(7) 443(8) 448(7) -44 (6 ) 146(6) -82 (6 )C12 508(8) 525(8) 529(8) -50(7 ) 230(7) -37 (7 )Ci3 473(8) 563( 10) 665(10) -53(7 ) 222(7) 53(7)Ci4 5 0 8 ( 10) 745( 11) 1005( 14) -87 (8 ) 348(9) -125 (1 0)Ci5 8 0 3 ( 13) 8 1 5 ( 13) 1 2 3 2 ( 17) - 220( 11) 673(12) - 9 9 ( 12)C16 9 9 8 ( 15) 857( 13) 9 2 9 ( 14) -119(12) 613(12) 102( 11)Cl7 7 8 2 ( 12) 727( 11) 6 3 3 ( 10) -90(9) 358(9) 45(9)C18 5 2 7 ( 10) 94 1( 15) 1 0 0 7 ( 15) 90(10) - 1 7 ( 1 0 ) 1 4 7 ( 12)Ci9 498(8) 433(8) 562(9) -38 (6 ) 253 (7 ) - 101( 6)C20 465(8) 498(8) 708(10) -43(7 ) 239(7 ) -96 ( 7 )C21 489(9) 672(11) 1010(14) - 68( 8) 343(9 ) -6 5 (10 )C22 656(11) 720(11) 1 2 0 2 ( 16) -68(9) 5 6 7 ( 12) -3 0 (11 )C23 925(13) 636(11) 9 1 6 ( 13) 18(10) 616( 12) 47(10)C24 694( 10) 599( 10) 654( 10) 4(8) 348(8) -2 3 (8 )C25 4 7 6 ( 10) 9 3 0 ( 13) 8 6 9 ( 14) 89(9) 47(9 ) 29(10)O9 797(8) 720(8) 427(6) 44(6) 83(5 ) -9 8 (5 )Ü13 446(6) 769(8) 762(7 ) -39(5) 54(5) 160(6)O20 431(6) 771(8) 680(7) -62(5) 104(5) 67(6)

30

TABLE 1 - 5

Atomic P o s i t i o n a l and I s o t r o p i c Thermal P a r a m e t e r s ■for Hydrogen.

S t a n d a r d d e v i a t i o n s f o r l a s t d i g i t a r e i n p a r e n t h e s i s .

Al l p a r a m e t e r s a r e m u l t i p l i e d by 103.

Atom

IIII

x / a y / b z / c U

935(1) 710(1) 555(1) 1. 8 ( 0)893(2) 602(1) 455 (1 ) 2 .7 ( 0 )

1850(2) 628(1) 447( 1) 4 .4 ( 0 )787(2) 620( 1) 280(1) 3 .1 ( 0 )937(2) 642(1) 261(1) 3 .7 ( 0 )7 4 7 ( 1) 740( 1) 231(1) 1. 8 ( 0)

1028( 1) 758( 1) 281(1) 1 .9(0)817( 1) 857( 1) 273(1) 1 .4(0)

1022( 1) 867( 1) 181(1) 1. 6 ( 0)992(2) 991(1) 176(1) 3 .2 (0 )849(2) 964( 1) 209(1) 3 .4 (0 )953(2) 1019( 1) 372(1) 3 .1 (0 )

1107(2) 1031(1) 3 4 5 ( 1) 3 .6 ( 0 )1168(2) 947( 1) 186(1) 2 . 0 ( 0)896(2) 912( 1) 440(1) 1. 8 ( 0)

1130(2) 744( 1) 4 6 5 ( 1) 2 . 1( 0)758( 1) 784( 1) 414( 1) 1 .5(0)

1 1 9 9 (1) 847( 1) 3 6 6 ( 1) 1 . 2 ( 0)281(2) 677( 1) 2 7 7 ( 1) 4 .6 (0 )298(2) 598( 1) 4 2 3 ( 1) 5 .7 (0 )529(2) 581(1) 561(1) 5 .5 ( 0 )740(2) 642( 1) 552(2) 6 . 2 ( 0)326(2) 726( 1) 134(2) 6 .7 ( 0 )285(2) 786( 1) 212 ( 2) 8 . 6 ( 0)391(2) 805( 1) 130(2) 6 .7 ( 0 )

1660(2) 948( 1) 443( 1) 5 .3 ( 0 )1648(2) 1013( 1) 286( 1) 6 .3 ( 0 )1412(2) 1021( 1) 1 4 5 ( 1) 4 .6 (0 )1208(2) 965( 1) 163( 1) 2 .3 ( 0 )1612(2) 920( 1) 598(2 ) 7 .4 ( 0 )1540(2) 844( 1) 619(2) 8 . 1( 0)1640(2) 849( 1) 533(1 ) 6 . 0 ( 0)

3 1

T AB L E 1 - 6

Bond D i s t a n c e s <^> I n v o l v i n g Non-Hydrogen Atoms.

Atoms D i s t a n c e Atoms D i s t a n c e

C i -C ie 1.544(2) C12- C 13 1 .397(2 )

Cl-Cpa 1.538(2) C12- C 17 1 .389(2 )

C1-C2 1.536(2) C13- C 14 1 .391(2 )

C2 -C3 1.540(2) C14- C 15 1 .384(2 )

C3 -C4 1.534(2) C15- C 10 1 .37 4( 2)

C4-C4a 1.544(2) C16- C 17 1 .3 9 4 (2 )

C4-C4b 1.555(2) C19-C24 1 .38 5(2 )

C4a“ C9a 1.552(2) C20-C21 1 .388(2 )

C4b-C8a 1.561(2) C21-C22 1 .384(2 )

C4b-Cs 1.546(2) C22-C23 1 .369(2 )

C5 - C 11 1.538(2) C23-C24 1 .403(2 )

C5 -C6 1.546(2) C9-O9 1. 212 ( 2)

C6-C7 1.540(2) C13-O 13 1 .36 9(2 )

C?-Ce 1.525(2) C18-O 13 1 .41 9(2 )

C e -C i i 1 .544(2) C20-O20 1 .36 6(2 )

C0-C9a 1.546(2)

CSa-C? 1.505(2)

Cy-Cpa 1.512(2)

C10- C 12 1.515(2)

C11- C 19 1.513(2)

3 2

TABL E 1 - 7

Bond A n g l e s (Deg) I n v o l v i n g Non-Hydrogen Atoms.

S t a n d a r d d e v i a t i o n s a r e be tween 0 . 1 and 8 . 2 deg.

Atoms

Cy-Csa-CsC9-C8a“C4bCe-Cga-CdbC20-C19-C11C20- C 19-C24C 1 1 -C 1 9 -C 2 4C 10- C 12- C 13C 10- C 12- C 17C13-C12-C17C12-CI0-C4C12-C10-C1C4-CJ0-C1C20-Û2 0-C25Cii-C5-C4bC1I-C5-C6C4b-Cs-C6C8a“C9 -0 9C8a-C9-C?a09-C?-C9aC19-C20-U20C19-C20-C21O20-C20-C21C12-CI3-C14C12"*13-0 13C14-C13-O13C13-C14-C15Ci0-C4-C4aC10-C4-C3C4a-C4-C3C 9 - C 9 a - C 4 a

Angl e Atoms Angl e

112.0 C9-C9a“ Ci 111.2106.8 C4a"C9a"Cl 104.2103.9 C20- C 21-C22 119.4117.6 C19- C 11- C 5 120.7117.9 C19- C 11- C 8 114.8124.5 C5- C 11-CR 9 3 . 5120.3 C13- O 13- C 18 118.4121.9 C19-C24-C23 121.1117.8 C15- C I 6- C 17 119.4117.9 C24"C23"C22 119.7116.8 C4-C4a-C9a 102.29 3 . 3 C4-C4a-C4b 114.6

118.4 C9a"C4a"C4b 107.4100.4 C14- C 15- C 16 121.0104.4 C s a - C s - C l l 100.9106.7 C8a-C8-C7 107.9124.6 C11-C8-C7 102.3111.1 C21-C22-C23 120.7124.3 C8a-C4b-C5 101.8115.4 C8a-C4b"C4a 107.5121.3 C5"C4b"C4a 114.8123.4 C3 -C2- C 1 103. 1121.4 C8-C7-C6 103.3115.3 C12- C 17- C 16 121.3123.3 C5 -C6-C7 103.2119.0 C4-C2-C 2 103.8101.5 C i0 - C i - C 9 a 101.1101.9 C 10- C 1-C2 102.9108.4107.0

C9a-Ci-C2 107.0

3 3

F I G U R E 1 - 2 1

P r o x i m a t e Geometry o-f t h e Vinyl t Cloud R e l a t i v e t o t h e Back

Lobe o-f t h e Br id ge P r o to n t h e r e H^) on Cy.25

H

H

Cy.25 One i m p l i c a t i o n i s t h a t t h e P a u l i r e p u l s i o n between

a r o m a t i c and v i n y l e l e c t r o n s i s s u f f i c i e n t t o i n c r e a s e t h e f o u r a n t i

bond a n g l e s ( i . e . , C2- C 1- C 10 , C3-C4- C 10, C f - C g - C i i ,

and C5-C5- C 1I) l a b e l e d A, B, C, and D, r e s p e c t i v e l y ) r e l a t i v e

to t h e c o r r e s p o n d i n g syn bond a n g l e s < C ? a -C i - C i0 ,

C4a-C4~ Ci0 , C g a -C g-C i i , and C ^ b ' C g - C i i , l a b e l e d A" ,

B ' , C , and D ' , r e s p e c t i v e l y ) which a r e i l l u s t r a t e d in F ig I - l l .

T a b le 1 -8 i n d i c a t e s t h i s a l o n g w i t h t h e c o r r e s p o n d i n g non-bon de d

34

TABLE 1 - 8

S e l e c t e d Bond A n g les (Deg) and Bond D i s t a n c e s ( ^ ) .

E r r o r s -for t h e l a s t d i g i t a r e in p a r e n t h e s i s .

A n t i Bond A n g l e s Syn Bond A n g le s J (d e g )

Atoms

C2- C 1- C 10 C7-C8- C 11

C3-C4- C 10C ^ -C s -C i i

Angl e

10 2 .9 ( .15) 10 2 .3 < .15)

10 1 .9 ( .15) 1 0 4 . 4 ( . 1 5 )

Atoms

C9a-Cl-Ci0 C8a“ C8-Ci 1

C4a~C4-Ci0 C4b-C5-Ci1

Angl e A n t i -S y n

1 0 1 . K . 15) 1.81 0 0 . 9 ( . 1 5 ) 1.^

10 1 .5 ( .1 5 )10 0 .4 ( .1 5 )

0 . 44 .0

A n t i Non-bonded

Di s t a n c e

Syn Non-Bonded

D i s t a n c e

Atoms D i s t a n c e Atoms D i s t a n c e A n t i -S yn

C2- C 10 C7 - C 11

C3- C 10C^-Ci i

2 . 4 0 9 ( 3 )2 . 3 9 0 ( 3 )

2 . 3 9 9 ( 3 )2 . 4 3 7 ( 3 )

C9a-Ci0C8a - C l l

C4a"Ci0C4b“Cii

2 . 3 8 0 ( 3 )2 . 3 8 3 ( 3 )

2 . 3 4 0 ( 3 )2 . 3 6 9 ( 3 )

0 .0290.007

0 .0 2 90 .0 6 8

(a) F i g u r e I - l l i s a l a b e l i n g scheme and F ig 1-20 i s a computer

drawn r e p r e s e n t a t i o n . The bond angle e r r o r s i n d i c a t e d ar e -from T ab le

1 -7 . Non-bonded d i s t a n c e s were c a l c u l a t e d u s i n g t h e -formula;

a2 = p2 + [2 _ 2bcCos@

(where 6 i s t h e Ci-Cj-Cx a n g l e , a = Cj-Cj/ non-bonded

d i s t a n c e , b = Cj-Cj bond d i s t a n c e , and c = Cj-C% bond

d i s t a n c e ) . The bond d i s t a n c e s and bond a n g l e s l i s t e d in T a b l e s 1-6

and 1 -7 , r e s p e c t i v e l y , were us ed as n e e d e d . D e l t a i s the d i f f e r e n c e

between th e a n t i and syn v a l u e s of the p a r t i c u l a r p a r a m e t e r .

3 5

a to m ic d i s t a n c e s . The a n t i s e p a r a t i o n s a r e a l l l a r g e r th an t h e i r syn

c o u n t e r p a r t s ! Given t h e above ' a n t i > s y n ' bond a n g l e s and

n o n-b onde d d i s t a n c e s , i t may be t h a t t h i s d i s t o r t i o n removes t h e

r e q u i s i t e o r b i t a l a l ignm en t and i n c r e a s e s t h e d i s t a n c e between t h e

v i n y l t l o b e s and the back s i d e o-f t h e b r i d g e p ro ton sp^ l o b e t o

t h e e x t e n t t h a t optimum t r a n s f e r a l o f s p i n i n f o r m a t i o n v i a t h i s

t h r o u g h - s p a c e mechanism i s no t p o s s i b l e . 25 A d m i t t e d l y , t h e

d i f f e r e n c e s a r e s m a l l . S t e r i c r e p u l s i o n between t h e pheny l

s u b s t i t u e n t and o l e f i n i c m o ie ty and l i n e b r o a d e n i n g may a l s o

c o n t r i b u t e t o t h e l a ck of o b s e r v a b l e c o u p l i n g .

The i m p o r t a n t r o l e p l a y e d by t h e r e a r - l o b e p r o x i m i t y on t h e

p r o t o n c o u p l i n g c o n s t a n t s h a s been d e m o n s t r a t e d . 2^ ,27 The c o u p l i n g

c o n s t a n t s between th e p r o t o n s a t t a c h e d t o t h e b r i d g e h e a d ca rb on a toms

of t h e b i c y c l o a l k a n e s e r i e s b i c y c l o C 1, 1, l l p e n t a n e ,

b i c y c l o [ 2 , 1 , n h e x a n e , and b i c y c l o [ 2 , 2 , l l h e p t a n e were c o n s i d e r e d . I t

was assumed t h a t t h e s e l o n g - r a n g e p r o t o n c o u p l i n g s d e c r e a s e

s u b s t a n t i a l l y more than would be e x p e c t e d fo r c o u p l i n g ov e r

e s s e n t i a l l y e q u i v a l e n t f o u r - b o n d p a t h s . 28 T h i s as sum pt ion l e d t o

t h e c o n c l u s i o n t h a t non-bonded i n t e r a c t i o n s between t h e b r i d g e h e a d

c a r b o n a tom s s h o u l d o r i g i n a t e t h i s b e h a v i o r . I t was found t h a t t h e

m a g n i t u d e o f t h e pr o ton c o u p l i n g c o n s t a n t s C18 > 8 ) 1.4 Hzl and t h e

a n g l e d e f i n e d by t h e b r i d g e h e a d C-H bonds [180 ) 174.7 > 151.5®]

d e c r e a s e d th ro u g h t h e b i c y c l o a l k a n e s e r i e s a s t h e d i s t a n c e between

t h e b r i d g e h e a d ca rbon atoms [ 1 . 8 4 4 < 2 . 1 7 2 < 2 . 3 1 7 i n c r e a s e d .

Based upon t h e c o n s i d e r a b l e s i m i l a r i t y of t h e NMR and IR s p e c t r a

o f VII and IX, i t was co nc lu ded t h a t b o t h VII and IX p o s s e s s t h e same

AXTXA s t r u c t u r e a s X. M e c h a n i s t i c a l l y , f o r m a t i o n of VII (Scheme 1-2)

i s b e l i e v e d to p a r a l l e l t h a t shown in Scheme I - l , w i t h t h e added

f e a t u r e t h a t t h e syn d o u b le bond i s e f f e c t i v e l y p r e v e n t e d f rom

c o u p l i n g v i a i t s exo f a c e by t h e s t e r i c b u lk o f t h e phenyl r i n g .

S h o r t l y a f t e r t h e s t r u c t u r a l c o n f i r m a t i o n s of dimer k e t o n e s VII

and IX, t h e U n i v e r s i t y o b t a i n e d a h i g h r e s o l u t i o n V a r i an XL-300 hMR

s p e c t r o m e t e r . S in c e th e 100 MHz d e c o u p l i n g s had f a i l e d t o p r e d i c t

36

SCHEME 1-2

Mechanism o-f Format ion o-f 7 -Pheny l Dimer Ketone VII S u g g es t ed by

Marchand and Goodin.

re(C0)5-CO

Fe(C0)4

Fe(C0)4

Ph

* ^

P h Ph.

-CO

« 3 /

(00)3

(C O ).

3 7

t h e i r s t e r e o c h e m i s t r y , i t was f e l t t h a t t h e h i g h e r r e s o l u t i o n of t h e

380 MHz i n s t r u m e n t would c o n f i r m t h e p r e s e n c e o f t h e u n d e t e c t e d v i n y l

and ' W - l e t t e r ' c o u p l i n g s . A c c o r d i n g l y , t h e 300 MHz ^H NMR of VII

was o b t a i n e d . The spec t rum ( F i g 1-22) c l e a r l y s e p a r a t e s t h e p r o t o n s

in t h e c r i t i c a l 3 . 0 - 3 . 3 ppm r e g i o n . However, d e c o u p l i n g s ag a in

f a i l e d t o c o n f i r m th e AXTXA s t e r e o c h e m i s t r y , but do s u p p o r t t h e

i d e n t i t y and chemica l s h i f t a s s i g n m e n t s of each a l i p h a t i c and

o l e f i n i c p r o t o n , as l a b e l e d on t h e s p e c t r u m .

A u s e f u l f e a t u r e a v a i l a b l e in t h e s p e c t r o m e t e r ' s s o f t w a r e i s t h e

s p i n - e c h o p u l s e s equence whereby ca rb o n a toms b e a r i n g an even number

(0 or 2) of d i r e c t l y a t t a c h e d p r o t o n s ap p e a r w i th o p p o s i t e ph ase

r e l a t i v e t o c a r b o n s b e a r i n g odd <1 or 3) numbers of d i r e c t l y a t t a c h e d

p r o t o n s . 29 T h i s r e s u l t s from an a m p l i t u d e m o d u la t io n of t h e

n o i s e - d e c o u p l e d NMR s p ec t r u m by h e t e r o n u c l e a r J c o u p l i n g s which

a r e c o n v e r t e d i n t o s ign and i n t e n s i t y i n f o r m a t i o n . 30 T h ro u g h o u t

t h i s d i s c u s s i o n a l l s p i n - e c h o s p e c t r a w i t h ca rb ons b e a r i n g odd

numbers of d i r e c t l y a t t a c h e d p r o t o n s w i l l ap pear as u p r i g h t ( i . e . ,

p o s i t i v e ) a b s o r p t i o n s i g n a l s , w h i l e c a r b o n s b e a r i n g even numbers of

d i r e c t l y a t t a c h e d p r o t o n s w i l l ap p e a r a s i n v e r t e d ( d i s p e r s i o n )

s i g n a l s . For phenyl k e tone V I I , t h e r e s u l t of t h i s t e c h n i q u e and t h e

c o n v e n t i o n a l b roadband d e c o u p le d 13c s p e c t r a a r e shown in F ig

1 - 2 3 . The c a rb o n y l and q u a t e r n a r y a r o m a t i c carbon s i g n a l s ap p e a r

i n v e r t e d .

A n o t h e r i m p o r t a n t program s u p p l i e d w i t h t h e s p e c t r o m e t e r i s t h e

Homonuclear C o r r e l a t e d 2-D ( two d i m e n s i o n a l ) NMR p u l s e s e q u e n c e , 31

which makes i t p o s s i b l e t o c o r r e l a t e t h e chemical s h i f t s o f p r o t o n s

whose s p i n s a r e c o u p le d . F i g u r e s 1 -24 and 1-25 i l l u s t r a t e t h e

"HOMCOR" e x p e r i m e n t f o r k e t o n e V I I . The chemica l s h i f t a x i s l i e s on

t h e l o w e r - l e f t t o u p p e r - r i g h t d i a g o n a l . S y m m e t r i c a l l y d i s p o s e d o f f -

d i a g o n a l s i g n a l s d en o te c o u p l i n g between t h e two p r o t o n s r e p r e s e n t e d

by t h e s i g n a l s a t the c o r r e s p o n d i n g p o s i t i o n s on th e d i a g o n a l .

F i g u r e 1-24 shows t h a t t h e v i n y l p r o t o n s a r e indeed c o u p l e d to

Hc^Hq/) , w h i l e F ig 1-25 shows t h a t Hg/Ha/) and Hb(Hb/)

3 8

FI GURE 1 - 2 2

3 8 0 MHz NMR S p e c t r u m o f 7 - P h e n y l D i m e r K e t o n e V I I

( C D C I 3 / T M S ) .

1

3 9

FI G UR E 1 - 2 3

75 MHz ( lo w e r ) and Spin Echo ( u p p e r ) NMR S p e c t r a of

7-Pheny l Dimer Ketone VII (CDCl3) .

4 0

F I G U R E 1 - 2 4

H o m o n u c l e a r C o r r e l a t e d 2 - D NMR S p e c t r u m o-f 7 - P h e n y l K e t o n e V I I

J l IJljÜ.

s «

Eg

41

FIGURE 1 - 2 5

Expanded Up-f ield Region of t h e HOMCOR S pec t ru m ( F i g 1-24) of

7 -Phenyl Dimer Ketone V I I .

J”5 0 o

0 ' 8 D o

o 8SO-A

wO

Ù 09 8

C3

□ ■ cn u iî = i c = i c = : c = i o c 3 B Ç 3 ç g o □ L n c r i L n a L n D C n o L n L n r r z r m m r u r u — —

4 2

a r e c o u p l e d to which i s syn t o them. These s ee m ing ly

c o n t r a d i c t o r y o b s e r v a t i o n s i n d i c a t e t h e nee d f o r c a r e in i n t e r p r e t i n g

t h e r e s u l t s o f d e c o u p l i n g s s i n c e Hc (Hc ' ) would be c o u p le d to

Ha<Ha') and Hb<Hb') from both t h e syn and a n t i p o s i t i o n s .

The m a g n i t u d e of c o u p l i n g i s s m a l l e r in t h e syn geom et ry . F ig u r e

1-25 a l s o shows t h a t each of t h e f i v e p r o t o n s i s coup led t o each of

th e o t h e r f o u r p r o t o n s !

The 300 MHz ^H NMR spec t rum o f o - a n i s y l k e t o n e IX ( F i g 1-26)

shows t h e v e r y smal l s e p a r a t i o n o f t h e Hd(Hd' ) and Hc(Hc' )

s i g n a l s a t 3 . 2 4 and 3 . 2 6 ppm, r e s p e c t i v e l y . D e coup l in gs ag a in f a i l

t o s u p p o r t t h e AXTXA s t e r e o c h e m i s t r y b u t do a l l o w i d e n t i t y and

chemical s h i f t a s s i g n m e n t s of t h e o l e f i n i c and a l i p h a t i c p r o t o n s as

seen on t h e f i g u r e . The 75 MHz b ro a d b a n d and s p i n - e c h o s p e c t r a

a r e shown on F ig 1 -2 7 , and F ig s 1-28 and 1 -29 i l l u s t r a t e t h e HOMCOR

s p e c t r u m . The l a c k of r e s o l u t i o n d o e s n o t a l l o w o b s e r v a t i o n of

'^Ha(Ha^)-Hd(Hd' ) and JH^CHb ' ) -HgCHgO , bu t t h e

c o u p l i n g p a t t e r n s f o r k e t o n e s VII and IX a r e i d e n t i c a l .

Exper imen ta l

ALL w e i g h t s were d e t e r m in e d on a S a r g e n t b a l a n c e . P ro to n NMR

s p e c t r a w e re r e c o r d e d on V a r i an Model T6 0 , XL-100, and XL-300

s p e c t r o m e t e r s . I n f r a r e d s p e c t r a were r e c o r d e d on P e rk in -E lm er Model

IR -8 , IR -2 9 8 , and 71 0-8 s p e c t r o p h o t o m e t e r s , w h i l e t h e mass spec t ru m

of VII was r e c o r d e d on a H i t a c h i P e r k i n - E l m e r Model RMU-6E

s p e c t r o m e t e r (70 e V ) . The X - r ay s t r u c t u r e d a t a was o b t a i n e d on a

No n ius CAD-4 a u t o m a t i c d i f f r a c t o m e t e r u s i n g N i - f i l t e r e d CuKai

r a d i a t i o n ( x = 2 .5 4 1 8 S ) . ^ ) 2 4 A11 m e l t i n g p o i n t s were

d e t e r m in e d on a Thomas-Hoover c a p i l l a r y m e l t i n g p o in t a p p a r a t u s .

E lemen ta l a n a l y s e s we re per formed by C h e m a l y t i c s , I n c . , Tempe, A z .

7 - o - A n i s y l n o r b o r n a d i e n e ( V I I I ) was p r e p a r e d in t h i s

l a b o r a t o r y . ? 7 - P h e n y l n o r b o r n a d i e n e (VI) was o b t a i n e d f rom F r i n t o n

4 3

FI G U R E 1-26

3 0 0 MHz hMR S p e c t r u m o-f 7 - o - A n i s y 1 D i m e r K e t o n e IX ( C D C l g )

cH

r-

1 I r1.5

j - i u 15.0

J .

1 [ 1 1 1

2.0

4 4

FI G U R E 1 - 2 7

75 MHz <iower) and Spin Echo ( u p p e r ) S p e c t r a of

7 - o - A n i s y l Dimer Ketone IX (CDClg).

C H ,

4 5

FI G UR E 1 - 2 8

H o m o n u c l e a r C o r r e l a t e d 2 - D NMR S p e c t r u m o-f 7 - o - A n i s y l K e t o n e I X

( C D C I 3 ) .

m

ru

ib . D 2.5

4 6

FI G U R E 1 - 2 9

E x p a n d e d ü p - f i e l d R e g i o n o-f t h e HOMCOR S p e c t r u m ( F i g 1 - 2 8 ) o-f

7 - o - A n i s y l D i m e r K e t o n e I X ( C D C I 3 ) .

8

4 7

L a b o r a t o r i e s , V i n e l a n d , N J . ; I r o n p e n t a c a r b o n y l -from A lp h a - V e n t r o n ,

Andover , Ma. ; Eu<fod>3 -from A l d r i c h Chemical C o . , I n c . , Milwaukee ,

Wi . ; and CDCLg/lXTMS -from N o r e l l Chemical C o . , I n c . , L a n d i s v i l l e ,

N J . .

The r e a c t i o n s o-f 7 - o - a n i s y l n o r b o r n a d i e n e and 7-phenyl n o r b o r n a ­

d i e n e (VI) w i t h i r o n p en t a c a r b o n y l t o p r o d u c e AXTXA dimer k e t o n e s IX

and V I I , r e s p e c t i v e l y , we re c a r r i e d ou t u s i n g l i t e r a t u r e m e t h o d s . ?

High R e s o l u t i o n P ro to n NMR S p e c t r a o-f Phenyl Ketone V I I .

1h hMR s p e c t r u m (300 MHz, CDCI3 , F i g 1 - 2 2 ) : 6 7 . 5 - 7 . 0 7 (m, 5

H, A r - H ) , 6 .1 1 <dd, J = 5 . 7 Hz, J ' = 2 . 9 Hz, 2 H, a n t i v i n y l

p r o t o n s ) , 6 . 0 3 ( d d , J = 5 . 7 Hz, J ' = 2 . 9 Hz, 2 H, syn v i n y l p r o t o n s ) ,

3 .4 5 (d d , J = 2 . 9 Hz, J ' = 1.3 Hz, 2 H, syn b r i d g e h e a d p r o t o n s ) , 3 . 2 4

(d d, J = 2 . 9 Hz, J ' = 1 .3 Hz, 2 H, a n t i b r i d g e h e a d p r o t o n s ) , 3 . 1 7 (m,

2 H, b r i d g e p r o t o n s ) , AB p a t t e r n <JaB = 7 . 5 Hz) Gg 2 .7 1 (2 H,

syn c y c l o p e n t a n o n e p r o t o n s ) , and 2 . 2 5 (2 H, a n t i c y c l o p e n -

t an o n e p r o t o n s ) ;

HOMCOR NMR s p e c t r a (300 MHz, CDCL3 , F i g s 1-24 and 1 - 2 5 ) ;

IR s p e c t r u m ( f i l m . F ig 1 - 6 ) ;

Mass s p e c t r u m (70 eV, F ig 1 -7 ) ;

^3c and Soin Echo NMR s p e c t r a (20 MHz, CDCL3 , F ig 1 - 2 3 ) : G

2 2 0 . 3 6 , 1 3 9 .2 2 , 135.50, 134.03, 1 2 8 .63 , 127.75 125.94 , 6 1 . 4 7 , 5 9 . 0 5 ,

5 4 . 2 7 , 2 2 . 1 7 , 4 8 . 6 8 ;

High R e s o l u t i o n P ro to n NMR S p e c t r a of o - A n i s v l Ketone IX.

i H NMR s p e c t r u m (300 MHz, CDCL3 , F ig 1 - 2 6 ) : G 6 . 7 4 - 7 . 1 4 (m, 4

H, A r - H ) , 6 .1 0 (d d , J = 5 . 5 Hz, J ' = 2 . 9 Hz, 2 H, a n t i v i n y l

p r o t o n s ) , 6 . 0 6 ( d d , J = 5 . 5 Hz, J ' = 2 . 9 Hz, 2 H, syn v i n y l p r o t o n s ) ,

3 .77 ( s , 3 H, OCH3) , 3 .44 ( d d , J = 2 . 9 Hz, J ' = 1.3 Hz, 2 H, syn

b r i d g e h e a d p r o t o n s ) , 3 . 2 6 (dd, m, 2 H, b r i d g e p r o t o n s ) , 3 . 2 4 ( d d , J =

2 .9 Hz, J ' = 1.3 Hz, 2 H, a n t i b r i d g e h e a d p r o t o n s ) , AB p a t t e r n ( J a b

= 7 . 5 Hz) 6g 2 .7 2 (2 H, syn c y c lo p e n t a n o n e p r o t o n s ) , Ga

2 .2 7 (2 H, a n t i cy c lo p e n t a n o n e p r o t o n s ) ;

4 8

HOMCOR NMR s p e c t r a <300 MHz, CDCL3 , F i g s 1 -2 8 and 1 - 2 9 ) .

IR sp ec t r u m <KBr p e l l e t , F ig 1 - 1 0 ) ;

and Spin Echo hMR s p e c t r a <75 MHz, CDCI3 , Fig 1 - 2 7 ) : i

2 2 0 .7 6 , 15 8. 52 , 135 .63 , 134.41, 1 3 0 .3 4 , 1 2 7 .48 , 127.30, 1 1 9 .55 ,

109.71, 6 1 . 4 7 , 5 5 . 6 3 , 5 5 .1 0 , 5 3 . 4 7 , 5 1 . 4 2 , 4 8 . 7 7 ;

L a n t h a n id e S h i f t Reagent P ro ton NMR S t u d y o-f Phenyl Ketone VII

The n u c l e a r mag net i c r e s o n a n c e l a n t h a n i d e s h i f t r e a g e n t

t r i s ( 1 , 1 , 1 , 2 , 2 , 3 , 3 - h e p t a f 1u o r0- 7 , 7 -d i m e t h y l o c t a n e - 4 , 6- d i o n a t o ) e u r o p i u m

<111) [ E u ( f o d ) 3 , m o l e c u l a r w e ig h t 1 0 37 .49 g / m o l ] was o b t a i n e d a s a

ye l low m i c r o c r y s t a l 1i n e s o l i d . S i n c e Eu<fod)3 i s h y g ro s c o p ic and

decomposes upon p r o l o n g e d ex posu re t o a i r , 22 i t was p u r i f i e d v i a

s u b l i m a t i o n u n d e r re d u ced p r e s s u r e <160-170 °C, 0 . 0 3 t o r r ) p r i o r t o

use and s t o r e d in a d ry in g p i s t o l o v e r P2O5 f o r 24 h o u r s t o

ex c lu d e m o i s t u r e .

A p a r t i c u l a r mo lar c o n c e n t r a t i o n of s u b s t r a t e (CSq] = 0 .1 9 2 M)

was chosen which gave a good s i g n a l - t o - n o i s e r a t i o <S/N) in a 60 MHz

p ro ton NMR s p e c t r u m . Good S/N i s i m p o r t a n t s i n c e subsequen t a d d i t i o n

of s h i f t r e a g e n t d e c r e a s e s r e s o l u t i o n .1 3 - 1 5 T h i s optimum m o la r

c o n c e n t r a t i o n was p r e p a r e d by a d d i t i o n o f a c a r e f u l 1 y weighed amount

of p u r e s o l i d VII <0.035 g , 9 . 603x l 0 “ 5 mol) t o an NMR tu be f o l l o w e d

by d i l u t i o n t o 0 . 5 mL w i th CDCL3/ 1%TMS. The d e u t e r a t e d s o l v e n t was

p u r i f i e d p r i o r t o u s e by d i s t i l l a t i o n and was s t o r e d over m o l e c u l a r

s i e v e s t o remove t r a c e s of s c a v e n g e r s wh ich can i n t e r f e r e w i t h s h i f t

r e a g e n t s t u d i e s by compet ing w i th the s u b s t r a t e f o r com plexa t ion w i t h E u < f o d ) 3 . 2 3 , 2 9

A f t e r s e l e c t i o n of an a p p r o p r i a t e CSq ] , a c a r e f u l l y we ig hed

amount of Eu<fod) 3 <0.3 g, 2 . 8 9 2 x 1 0 ” “ mol , chosen such t h a t

RHO25 = 3 .011) was then added to a c l e a n dry NMR t u b e . A

s u f f i c i e n t volume of a s to c k s o l u t i o n o f VII <prepared by d i l u t i n g

0 .126 g , 3 . 4 5 7 x 1 0 - 4 mol , of VII t o 1 .3 mL w i th CDCL3/IXTMS,

g i v i n g a c o n c e n t r a t i o n of 0 .192 M) was added u n t i l t h e p r e c a l i b r a t e d

4 9

t u b e c o n t a i n e d 0 . 5 mL o-f LSR-VII-CDCLg/lXTMS s o l u t i o n .

A l t e r n a t i v e l y , CDCL3/ r /TMS may be added t o an NMR t u b e a l r e a d y

c o n t a i n i n g 0 . 3 g o-f Eu(-fod>3 and 0 . 0 3 5 g of V I I . Al l i n i t i a l

s o l u t i o n s w e re p r e p a r e d in a g l o v e bag u n d e r a n i t r o g e n a t m o s p h e r e .

A 60 MHz NMR s p e c t r u m was o b t a i n e d and c h e m ic a l s h i f t s were r e c o r d e d

r e l a t i v e t o i n t e r n a l IMS. By use o f a m o d i f i c a t i o n o f t h e

i n c r e m e n t a l d i l u t i o n t e c h n i q u e , 23 th e sample in th e t u b e was

d i l u t e d w i t h t h e s t o c k s u b s t r a t e s o l u t i o n t o p r e d e t e r m i n e d RHO v a l u e s

by ; <i ) removal of s l i g h t l y more t h a n a c a l c u l a t e d amount of

s o l u t i o n u s i n g a m i c r o l i t e r s y r i n g e e q u i p p e d w i t h a long n e e d l e , ( i i )

a d d i t i o n o f a c a l c u l a t e d amount o f t h e s t o c k s o l u t i o n , and < i i i )

a d d i t i o n of t h e s o l u t i o n from p a r t ( i ) above u n t i l t h e t o t a l t u b e

c o n t e n t s was a g a i n 0 . 5 mL. T h i s p r o c e d u r e was c o n t i n u e d , 60 MHz

s p e c t r a o b t a i n e d , and s h i f t s and RHO's r e c o r d e d w i t h each s t e p , u n t i l

RHO = 0 . 0 1 3 was r e a c h e d . RHO = 0 . 2 5 was chosen d u r i n g t h i s s e q u e n c e

and t h e 100 MHz d e c o u p l i n g e x p e r i m e n t s we re per fo rm ed on t h a t

s am p le . The i n c r e m e n t a l d i l u t i o n e x p e r i m e n t ( o m i t t i n g t h e

d e c o u p l i n g s ) was a l s o pe r fo rm ed a t 100 MHz (T ab le 1-2) u s i n g

i d e n t i c a l c o n c e n t r a t i o n s and vo lumes.

Appendix: Sample C a l c u l a t i o n s

The [S q ] of 0 . 1 9 2 M was found t o g i v e an a d e q u a te s i g n a l t o

n o i s e r a t i o . T h i s c o n c e n t r a t i o n was a r r i v e d a t by d i l u t i n g 0 .0 3 5 g

of s u b s t r a t e VII ( m o l e c u la r w e ig h t 3 6 4 .4 8 8 g/mol) w i th 0 . 5 mL of

CDCLg/lXTMS in a c l e a n d ry NMR t u b e (Eq 1 - 2 ) .

[ < 0 . 0 3 5 g ) / ( 3 6 4 . 4 8 B g / m o l ) 1 / 0 . 5 x 1 0 - 3 L = 0 . 1 9 2 0 5 M VII Eq 1 - 2

The s u b s t r a t e s t o c k s o l u t i o n was p r e p a r e d by d i l u t i n g 0 .1 2 6 g of

VII to 1 . 8x 10-3 L w i t h CDCL3/IXTMS (Eq 1 - 3 ) .

[ ( 0 . 1 2 6 . g ) / ( 3 6 4 . 4 8 8 g / m o l ) 1 / 1 . 8 x 1 8 - 3 L = 0 . 1 9 2 M of VI I Eq 1 - 3

5 0

For p r e p a r a t i o n o-f the i n i t i a l RHO v a l u e o-f abou t 3 . 0 , 0 . 0 3 5 g o-f

s u b s t r a t e VII was added to a c l e a n d ry NMR t u b e -followed by a d d i t i o n

o-f 0 . 3 9 o-f Eu<fod>3 , m o l e c u l a r w e i g h t 1037.49 g /m o l . T h i s was

d i l u t e d t o 0 . 5 x l 0 " 3 L w i t h CDCLg/lXTMS. The RHO v a l u e i s

c a l c u l a t e d a s in Eq 1 -4 .

RH O in i t ia l = RHO25 Eq 1-4

RHÜ25 = [ ( 0 . 3 g ) / ( 1037.49 g / m o l ) ] / [ ( 0 . 0 3 5 g ) / ( 3 6 4 . 4 8 8 g /m o l ) ]

= [Lo ] / C S q ] = 3 .011

The t w e n t y - f i v e RHO v a l u e s l i s t e d in T a b l e 1-2 were a r r i v e d a t

u s i n g c a l c u l a t i o n s s i m i l a r t o t h o s e shown below. F i r s t , i t i s

n e c e s s a r y to a p p r o x im a te t h e s u c c e e d i n g RHO v a l u e by removal o-f p a r t

0-f t h e c o n t e n t s o-f t h e NMR t u b e and r e p l a c e m e n t o-f t h e removed

- f r a c t i o n w i t h a l i k e volume o-f s t o c k s u b s t r a t e s o l u t i o n . E q u a t i o n

1-5 i l l u s t r a t e s t h e c a l c u l a t i o n of t h e volume which must be removed

f rom and added to t h e NMR tube to a c h i e v e a RHO24 v a l u e nea r 2 . 7 5 .

2[(RH025 - RH024) /RH025] ( 0 .5x10“ 3 L) = v o l . r e p l a c e d Eq 1-5

[ ( 3 . 0 1 1 - 2 . 7 5 ) / 3 . 0 1 1 1 ( 0 .5 x 1 0 - 3 l ) = 4 3 . 3 8 x 1 0 - 6 L

A f t e r r e a r r a n g i n g th e e q u a t i o n and c h o o s i n g a whole number n e a r

4 3 . 3 8 x 1 0 - 6 L, Eq 1-6 g i v e s :

RHO24 = R H 0 2 5 - ( 4 3 .0x10-6 L)(RHO25 ) / 0 . 5 x 10-3 L Eq 1-6

= 3 .0 1 1 - ( 4 3 . 0 x 1 0 - 6 L) ( 3 . 0 1 D / 0 . 5 x 1 0 -3 i_ = 2 .7 5 2

T h e r e f o r e , RHO24 = 2 .752 f o l l o w i n g removal of 43x 10-6 l f rom

RHO25 and a d d i t i o n of 4 3 .0 x 1 0 -6 L o f t h e s t o c k s o l u t i o n .

Non-bonded a tom ic d i s t a n c e s in T a b l e 1-8 were computed u s i n g t h e

t r i g o n o m e t r i c f o r m u l a shown in Eq 1 - 7 .

a2 = tj2 + [ 3 2bcCos8 Eq 1-7

5 1

With a = C2- C 10, b = C1-C2 = 1.536<2) A, c = C1- C 10 =

1 .5 44(2 ) A ( f rom T a b l e 1 - 6 ) , and 0 = C2- C 1- C 10 = 102.9°

( T a b l e 1 - 7 ) , s u b s t i t u t i o n i n t o Eq 1-7 g i v e s :

a2 = (C2- C i 0)2 = Eq 1-8

( 1.536 S ) 2 + ( 1 .544 8 ) 2 - 2( 1 .536 8 ) ( 1 . 5 4 4 8 ) Cos( 102.9°)

and

a2 = ( 5 . 8 0 2 8 ) 2 Eq 1-9

so t h a t

a = C2- C 10 = 2 .4 0 9 A Eq 1-10

The y i e l d o-f k e t o n e V I1 may be c a l c u l a t e d a s in Eq I - l l .

[2(mol o-f V I I ) / ( m o l of VI not r e c o v e r e d ) 1 ( 100) = V, y i e l d Eq I - l l

{ [ 2 ( 2 . 3 3 g ) / ( 3 6 4 . 4 8 8 g /m ol ) ] / [ ( 6 . 5 g ) / ( 168.239 g / m o l ) I ) (100) = 33.3%

The f a c t o r of 2 i s n e c e s s a r y b ec au s e two m o l e c u l e s of 7 - p h e n y l n o r b o r -

n a d i e n e (VI) a r e r e q u i r e d f o r ev e r y one m o l e c u l e of VII p roduced .

E r r o r A n a l y s i s

W e ig h t s we re r e c o r d e d t o an a c c u r a c y of ±8.800 1 g .

C a l i b r a t i o n of t h e Nt-IR tube was a c c o m p l i s h e d u s i n g a 1 mL s y r i n g e

which c o u ld be r e a d to an a c c u r a c y of ±5x l 8"6 i_. The e r r o r in

r e a d i n g th e m i c r o l i t e r s y r i n g e used in t h e i n c r e m e n t a l d i l u t i o n was

0 . 2 5 x l 0 " 6 L . M o l e c u l a r w e i g h t s we re e s t i m a t e d a s a c c u r a t e to

±0.001 g / m o l . NMR s p e c t r a were o b t a i n e d a t 100 MHz and chemical

s h i f t s in h e r t z and ppm were i n s t r u m e n t a l l y r e c o r d e d to an e s t i m a t e d

a c c u r a c y of ±0.01 ppm.

P r o p a g a t i o n of e r r o r s was used t o compute t h e f o l l o w i n g e r r o r

5 2

v a l u e s : <i ) m o l a r i t y o-f Eu<-fod>3 <0.006 M, 1 .04%), ( i i )

c o n c e n t r a t i o n o-f s u b s t r a t e (± 0 .0 02 M, 1.04%), ( i i i ) l a r g e s t e r r o r

in c a l c u l a t i o n o-f RHO; (± 0 .0 0 9 , 0 . 3 % ) , and ( i v ) l a r g e s t e r r o r in

c a l c u l a t i n g t h e non-bonded d i s t a n c e s o-f T a b l e 1-8 ( 0 . 0 0 3 § , 0 .12 %).

5 3

BIBLIOGRAPHY

1. B i r d . C. W. : CooKson. R. C . : Hudec. J . Chem. In d . (London)I 9 6 0 ! 2 0 . ----------------------------------

2 . March and, A. P . , Hayes , B. R. T e t r a h e d r o n L e t t . 1977. 1027.

3 . M a n t z a r i s . J . : W e i s s b e r o e r . E. W. J . Am. Chem. Soc. 1974. 96. 1880. “

4 . S p e e r t , A . ; Gel a n , J . : A n t e u n i s , M . ; M ar chand , A. P . ; L a z i o , P. T e t r a h e d r o n L e t t . 1973. 2271.

5 . W e i s s b e r g e r , E. W . ; L a s z io , P . Acc. Chem. R e s . 1976. 9 , 209.

6 . L a s z i o , P . ; S t o c k i s , A. J . G r o a n o m e t a l . Chem. 1976. 117. C41.

7 . Marchand , A. P . ; Goodin, D. B . : H o s s a i n , M. B . : van d e r Helm,D. J . P r o . Chem. 1984. 49, 2897.

8 . Marchand , A. P . ; Rose, J . E . J . Am. Chem. S o c . 1968. 9 0 . 3724.

9 . S n y d e r , E. I . ; F r a n z u s , B. J . Am. Chem. S o c . 1964, 8 6 , 1166.

10. (a) M ei nw a ld , J . ; Lewis , A. J . Am. Chem. S o c . 1961. 8 3 . 2769 . (b) M einw a ld . J . : Meinwald, V. C . : B a k e r , T . N. J . Am. Chem. S o c . 196 3 . 85, 2513.

11. Goodin , D. B . ; B .S . T h e s i s , U n i v e r s i t y o f Oklahoma, 1977.

12. B a i r d , W. C. ; S u r r i d g e , H. J . P r o . Chem. 1972. 3 7 . 304.

13. Mayo, B. C. Chem. Soc. Rev . 1973. 2 , 49 .

14. (a ) C o c k e r i l l , A. P . ; D a v ie s , G. L. 0 . ; H a rd en , R. C . ; Rackham,D. M. Chem. R ev . 1973. 73, 533. (b) S e r v e , P . ; Rondeau, R. E . ; R o s e n b e r g , H. H. J . r i e t e r o c v c l . Chem. 197 2 . 9 , 721. <c> F l o y d , P . ! Ho, L. J . Polymer S c i . . P a r t e r ~P o l vme‘r s ~ L e t t e r s 1971. 9 , 491. (d ) Marchand , A. P ‘‘S t e r e o c h e m i c a l A p p l i c a t i o n s of NMT?S t u d i e s in R i g i d B i c y c l i c S y s te m s" : M ar ch an d , A. P . , E d . :V e r l a g Chemie I n t e r n a t i o n a l : D e e r f i e l d Beach , F l a . , 1982; pp3 - 9 .

15. Kime, K. A . ; S i e v e r s , R. E. A l d r i c h i m i c a A c t a 1977. 1 0 . 54.

16. McCar thy , P . J . " S p e c t r o s c o p y and S t r u c t u r e of Metal C h e l a t e Compounds"; Nakamoto, K. and McC ar thy , P . J . , E d s . , W i l e y : New York, 1968; p 346.

17. M cC onnel l , H. M. ; R o b e r t s o n , R. E. J . Chem. P h v s . 1958 . 2 9 . 1361.

18. (a ) B l e a n e y , B. J . Magn. Reson. s u b m i t t e d f o r p u b l i c a t i o n .(b) R i c h a r d s o n , M. P . ; R o t h s t e i n , S . M . ; L i , Wai-Kee J . Magn. R es o n . 197 9 . 36, 69 .

19. C o t t o n , F . A . ; W i l k i n s o n , G. “Advanced I n o r g a n i c C h e m i s t r y " ; Wi ley : New Y o rk , 2nd. ed .

5 4

20. Burnbaum, E. R. ; M o e l l e r , T. J . Am. Chem. S o c . 1969. 9 1 . 7274.

21. (a) C a p l e , R . ; Kuo, B.C. T e t r a h e d r o n L e t t . 1971. 4413 .(b) H i n c k i e v . C. C. : Kl o t z . M. R. : F*ati 1 . F . J . Am. Chem. Soc. 1971. 9 3 , 2 4 Î 7 . -----------------------------

22. Rondeau, R. E . ; S i e v e r s , R. E. J . Am. Chem. S o c . 1971. 9 3 .1522.

23. <a> S h a p i r o , B. L . ; J o h n s t o n , M. D. J . Am. Chem. Soc. 1972. 9 4 .8185. (b ) J o h n s t o n , M. D . : S h a p i r o , B. L . : F r o u l x , T. W.:Godwin, A. D . ; P e a r c e , H. L. J . Am. Chem. S o c . 1975. 97 , 542.

24. Germain . G. : Main . P . : WooHson. M. A c ta C r y s t a l l o o r . . S e c t . A1971. A ^ 7 . &6B.------------------------------------- ------------- ------------

25. C o n t r e r a s , R. H . : N a t i e l l o , M. A . ; S c u s e r i a , G. E. Mao. Res.Rev. 1985 . 9 , 2 3 9 - 3 2 1 , e s p e c i a l l y pp 2 5 5 -2 6 7 .

26 . B a r f i e l d , M . ; D e l i a , E. W. ; P ig o u , P . E . ; W a l t e r , S. R. J . Am. Chem. S o c . 198 2 . 104. 3549.

27. S c u s e r i a , G. E . : F a c e l l i , J . C . ; C o n t r e r a s , R. H. ; Englemann,A. R. Chem. P h v s . L e t t . 1983. 9 6 . 560.

28. B a r f i e l d , M . ; Brown, S. E . ; Canada, E. D . ; L e d f o r d , N. D . ;M a r s h a l l , J . L . : W a i t e r , S. R . : Y a K a l i , E . J . Am. Chem. S o c .1980. 102 . 3355 .

29. S h o o l e r y , J . N. ; P a t t , S. L. J . Maon. R e s o n . 1982. 46 , 535, and r e f e r e n c e s t h e r e i n .

30. Le Cocq, C . ; L a l l em an d , J . Y. Chem. Commun. 1981. 150.

31. S h o o l e r y , J . N. J . N a t . P r o d . 1984. 47 , 226 .

32. A r m i t a g e , I . ; Dunsmore, G . : H a l l , L. D . ; M a r s h a l l , A. G. Can.J . Chem. 19 72 . 50 , 2119.

PART I I

EVALUATION OF THE EQUILIBRIUM CONSTANTS, Ki AND K2 ,

AND THE BOUND CHEMICAL SHIFTS, A i AND A Z , FOR THE

ONE AND TWO STEP (L + S # LS) AND (LS + S # LS2 ) ,

LANTHANIDE SHIFT REAGENT-SUBSTRATE INTERACTIONS

I n t r o d u c t i o n

One i m p o r t a n t prob lem -facing w o rk e r s u s i n g l a n t h a n i d e s h i f t

r e a g e n t s t u d i e s f o r m o l e c u l a r s t r u c t u r e c l a r i f i c a t i o n h a s been the

d e t e r m i n a t i o n of t h e e q u i l i b r i a t a k i n g p l a c e in s o l u t i o n between the

l a n t h a n i d e s h i f t r e a g e n t (L) and t h e s u b s t r a t e m o l e c u l e ( S ) . l The

p ro bl em i s t h a t m u l t i p l e complexes can c o n c e i v a b l y e x i s t ( t h e

l a n t h a n i d e ion can r e a d i l y i n c r e a s e i t s c o o r d i n a t i o n ^ t o 7, 8 , or 9

by s e l f - a s s o c i a t i o n a n d / o r by b i n d i n g to s u b s t r a t e l i g a n d s ) which,

f o r t h e p u rp o s e of d i s c u s s i o n , w i l l be d e s i g n a t e d a s L^Sn (where

m and n a r e i n t e g e r s d e n o t i n g t h e s t o i c h i o m e t r y ) . T hese i n t e r a c t i o n s

a r e known to obey t h e f a s t - e x c h a n g e l i m i t ^ ( i . e . , a r e r a p i d on the

NMR t im e s c a l e ) , and so t h e l a n t h a n i d e - i n d u c e d s h i f t (LIS) shou ld

conform to Equ at ion I I - l .

LIS = J&i = t Z (n iCl ) ] < I/CSqI ) Eq I I - l

JG] i s t h e l a n t h a n i d e - i n d u c e d in c r e m e n ta l s h i f t o f th e ' i - t h '

p r o t o n , [Sq] i s t h e t o t a l molar c o n c e n t r a t i o n of s u b s t r a t e in

s o l u t i o n ( b o t h f r e e and c o m p lex e d ) , ni i s t h e number o f s u b s t r a t e

m o l e c u l e s in a g i ven complex, C] i s the t o t a l m o la r c o n c e n t r a t i o n

of t h a t complex, the ' s p e c i e s ' bound chemical s h i f t of p r o t o n Hj

5 5

5 6

( i . e . , t h e LIS o-f Hj which would be fou nd f o r 100% f o r m a t i o n of a

p a r t i c u l a r complex) i s , and N i s th e number of d i f f e r e n t

t y p e s o f com pl exes p r e s e n t .

Most a t t e m p t s t o f i t LIS d a t a t o Eq I I - l have assumed o n l y 1:1

complex f o r m a t i o n a t low RHO ( i . e . , a t low s h i f t r e a g e n t t o s u b s t r a t e

r a t i o RHO, w i t h RHO = LLo/ ISq]) , where L^Sn [w i t h m > 1 and n

> 1] s p e c i e s p re d o m in a te i n s t e a d of t h e d e s i r e d 1:1 LS com plex.

S h a p i r o and J o h n s t o n * have d e v e lo p e d t h e LISA4 ( L a n t h a n i d e Induc ed

S h i f t A n a l y s i s , v e r s i o n 4) compu ter program which u t i l i z e s b o th a

l i n e a r and a n o n l i n e a r r e g r e s s i o n a n a l y s i s of t h e t h r e e e q u i l i b r i a

d e s c r i b e d by Eqs I I - 2 , I I - 3 , and I I - 4 .

[LI + [SI [LSI j Eq 11-2

[ L S I j + [ SI 3=» [LS2 ] j Eq 11-3

2[L] [L2 l j Eq 11-4

The s u b s c r i p t ' j ' i n d i c a t e s t h e RHO v a l u e a t which t h e co n c en ­

t r a t i o n o f t h e p a r t i c u l a r s p e c i e s i s d e t e r m in e d . S i m i l a r m e th o d s of

d a t a a n a l y s i s have been d e v e lo p e d by Reuben^ and I n a g a k i .6 i t

h a s p r e v i o u s l y been shown t h a t t h e ac cu ra cy w i th which such

e q u i l i b r i u m p a r a m e t e r s can be d e t e r m i n e d i s h i g h l y d ep enden t on t h e

e x t e n t of c o m p l e x a t i o n . The r e l i a b i l i t y of t h e f i t t i n g

p r o c e d u r e i s opt ima l when t h e d a t a p o i n t s i n c l u d e m easu r em en t s

en c o m p a s s in g t h e ra nge of molar f r a c t i o n s from a p p r o x i m a t e l y 0 . 2- 0 .8

f o r each complex t h a t i s fo rmed . T h i s r e q u i r e s t h a t d a t a p o i n t s be

o b t a i n e d f o r a l a r g e number of RHO r a t i o s .

The two s t e p mechanism (Eqs I I - 2 and 1 1-3) can be r e l a t e d t o Eq

1 1-5 which i s a n o t h e r form of t h e f a s t - e x c h a n g e e q u a t i o n .

= ( l / C S o ] ) ( [ L S I j J l i + 2 [ L S 2 l j 4 2 i ) Eq 11-5

5 7

Here , J l j i s t h e bound ( f u l l y complexed) che m ic a l s h i f t of Hj

in t h e LS com plex , J 2 j i s t h e bound ( f u l l y complexed) chemical

s h i f t of Hj in t h e LS? complex, and [ L S ] j and [LS2] j a r e

t h e m o la r c o n c e n t r a t i o n s o f t h e LS an d LS2 s p e c i e s , r e s p e c t i v e l y ,a t (RHO)j. E q u a t i o n I I - 5 can be s i m p l i f i e d by making th e f o l l o w i n g

v a r i a b l e c h a n g e s :

X = [ L S ] j ; y = [ L S ^ l j i z = [L2 ] j ; Eq 1 1-6

o: = x / E S g ] ; p = 2 y / [ S o ] . Eq 11-7

E q u a t io n 11 -5 can be r e w r i t t e n a s

J S j = ( o : ) ( J l j ) + ( ^ ) ( J 2 j ) Eq 1 1-8

0: and p a r e t h e bound f r a c t i o n s ( r e d u c e d c o n c e n t r a t i o n

v a r i a b l e s ) f o r t h e LS and LS2 com plexes , r e s p e c t i v e l y .

The b e s t - f i t c a l c u l a t e d L I S , j & j c a l c , a r e found by l i n e a r

r e g r e s s i o n a n a l y s i s upon m in im iz in g t h e sum o f t h e s q u a r e s between

them and t h e e x p e r i m e n t a l 1v measured L I S . J S j o b s . T h i s

q u a n t i t y , d e n o t e d a s Q, may be w r i t t e n as

Q = S ( j & j o b s - A G j c a l c ) 2 Eq I I - 9

The number of d a t a p o i n t s f o r a g iven p r o t o n i s d e n o t e d by N, and th e

e q u i l i b r i u m c o n s t a n t s and bound s h i f t s ( J ' s ) a r e t h e p a r a m e t e r s of

t h e e q u a t i o n .

F i t s a r e p e r f o r m e d ? by ch o o s in g a s e t o f K ' s , e v a l u a t i n g th e

ccj and ^ j , and th en g e t t i n g A^ a n d / o r ^2 * The

b e s t K ' s a r e fo u n d i t e r a t i v e l y ( n o n l i n e a r r e g r e s s i o n a n a l y s i s )

w h e rea s t h e A ' z f o r a g iv e n s e t of K ' s may be found e x a c t l y and

a n a l y t i c a l l y ( v i a l i n e a r r e g r e s s i o n ) . The i t e r a t i o n in t h e

5 8

e q u i l i b r i u m c o n s t a n t s i s r e p e a t e d u n t i l t h e b e s t ag r eem en t , in t h e

l e a s t s q u a r e s s e n s e , i s o b t a i n e d between t h e c a l c u l a t e d and o b s e r v e d

LIS.

As shown by S h a p i r o and J o h n s t o n Z , t h e p a r a m e t e r s and

J 2 may be o b t a i n e d by s o l v i n g t h e s y s t e m of l i n e a r e q u a t i o n s

r e s u l t i n g f rom Eq 11-10:

( G Q ) / [ ( S ) ( j l i ) ] = 0 = ( £ Q ) / [ ( 6 ) ( J 2 i > ] Eq 11-18

In o r d e r t o e v a l u a t e x, y, and z ( i . e . , CLSIj , [ L S ^ I j , and

[ l 2] j o f Eq I I - 6) i t i s c o n v e n ie n t f i r s t t o w r i t e th e e q u i l i b r i u m

c o n s t a n t s f o r Eq 11-2 th ro u g h I I - 4 a s shown in Eq 11-11 th rough 11-13

w i t h p = RHO.

Kj = x / [ ( p S o - X - y - 2z>(Sq - x - 2 y ) 3 Eq 11-11

K2 = y / [ ( x < S o - X - 2y)3 Eq 11-12

K[ = z / ( p S o - X - y - 2z) 2 Eq 11-13

E q u a t i o n s 11-12 and 11 -13 may be w r i t t e n in t e r m s of x :

y=(K2) ( x ) ( S o - x ) / [ l + 2 (K2>x3 Eq 11-14

z= l+{4KL <pSo-x-y) - [ l+8Ki_(PSo-x-y) ]' '^}/8Kl Eq 11-15

E q u a t i o n s 11-14 and 11-15 can now be u sed t o p r o v i d e the v a l u e s of y

and z t o be u s ed in a r e a r r a n g e d form o f Eq 1 1 -1 0 :

f ( x ) = Ki(pSo - X - y - 2 z ) ( S q - x - 2y> - x Eq 11-16

The s o l u t i o n f o r x , y , and z r e s u l t s when t h a t v a l u e of x i s found

which g i v e s f ( x ) = 0 . The method chosen t o s o l v e t h e po lyno mial of

Eq 11-16 i s t h e Newton-Raphson^b method s i n c e i t g i v e s s o l u t i o n s

a c c u r a t e t o one p a r t in 10^® in s i x i t e r a t i o n s or l e s s ( p e r

5 9

p o i n t ) . Computer f i t s a r e pe r fo rm ed by f i r s t s e l e c t i n g a t r i a l s e t

o f e q u i l i b r i u m c o n s t a n t s , e v a l u a t i n g t h e a and p , and

c a l c u l a t i n g bound chemical s h i f t s , and J 2 j . I t s h o u l d

be n o t e d t h a t t h e d e g ree of a c c u r a c y of t h e bound s h i f t s o b t a i n e d in

no way de p e n d s upon t h e p r e c i s i o n w i t h which t h e e q u i l i b r i u m

c o n s t a n t s a r e d e t e r m i n e d . Most i m p o r t a n t f o r c a l c u l a t i o n of r e l i a b l e

bound s h i f t s , howe ver , i s t h e need f o r e x a c t i n g measurement of

Soi ( t h e undoped chemical s h i f t ) v a l u e s . The m a th em a t i ca l

r i g o r * of t h e t w o - s t e p method means t h a t an e x a c t s o l u t i o n can a l s o

be o b t a i n e d in c a s e s whe re LS2 i s a b s e n t , s i n c e no prob lem i s

e n c o u n t e r e d when t h e a p p r o p r i a t e e x p r e s s i o n s f o l l o w by m an u a l l y

s e t t i n g K2 and p equal t o z e r o . For E u ( f o d ) 3 , and p o s s i b l y

f o r l a n t h a n i d e s in g e n e r a l , c o n s i d e r a t i o n of K|_ does no t improve

LISA4 f i t s (Eqs 11-13 and 11-15 a r e d i s r e g a r d e d s i n c e z = Kl = 0)

and i t i s g e n e r a l l y assumed t h a t LSR s e l f - a s s o c i a t i o n i s

n e g l i g i b l e . * » 9

The p u rp o s e of t h i s s t u d y was t o e v a l u a t e t h e l a n t h a n i d e s h i f t

r e a g e n t - s u b s t r a t e ( i . e . , E u ( f o d ) 3-p h e n y l k e t o n e V I I , f rom PART I)

e q u i l i b r i a and to d e t e r m in e t h e bound chemical s h i f t s of s p e c i f i c

s u b s t r a t e p r o t o n s in t h e LSR-ketone c o m p l e x ( e s ) .

R e s u l t s dr.d D i s c u s s i o n

I n p u t t o t h e computer f o r c a l c u l a t i o n of e q u i l i b r i u m c o n s t a n t s

Kl and K2 and bound s h i f t s J l j and i n c l u d e d : ( i )

t h e c o n s t a n t s u b s t r a t e c o n c e n t r a t i o n [ S g ] , ( i i ) t h e o b s e r v ed (180

MHz) chem ica l s h i f t f o r each p r o t o n of t h e f i v e p a i r s of e q u i v a l e n t

p r o t o n s of phenyl k e to n e VII [ l a b e l e d H a (H a ' ) , H b (H b ' ) ,

H c ( H c ' ) , H d ( H d ' ) , and He(He ' ) in F ig I - l l , PART 11, and

( i i i ) t h e tw en ty f i v e d i f f e r e n t RHO v a l u e s [0 <_ RHO ^ 3 .0 ] a t which

t h e 6 i we re r e c o r d e d . T a b l e I I - l l i s t s t h e Sj v a l u e s

o b t a i n e d a t each RHO f o r each p a i r of p r o t o n s a f t e r i n c r e m e n t a l

6 0

T AB L E I 1 - 1

M a t r i x of Observed S h i f t s ( 6 j ) Read In(&)' and

I n c r e m e n t a l D i l u t i o n Volumes(b) f o r Each (RHO)j •

# RHO Ha Hb He Hd He Volumf

0 0.000 2 .2 4 7 2.71 2 3 . 1 7 8 3 .2 4 6 3 .4 5 3 -

1 0 . 0 1 3 2.28 1 2.803 3 . 2 3 3 3 .2 6 5 3.510 250

2 0 . 0 2 5 2 .3 1 9 2.90 2 3 . 2 8 5 3 .2 8 5 3 .5 7 3 250

3 0 .050 2 .3 8 8 3 .0 85 3 . 3 3 8 3 .3 2 4 3.680 250

4 0 .100 2 .5 3 7 3.482 3 . 6 1 8 3 .4 4 3 3.930 167

5 0 . 1 5 0 2 .690 3.894 3 .8 5 4 3 .5 1 7 4.180 125

6 0 .200 2 .8 2 5 4 .249 4 . 0 5 6 3 .6 0 8 4 .3 9 8 100

7 0 .2 5 0 2 .9 6 9 4.636 4 .2 7 7 3 .6 9 6 4 .6 1 5 83

8 0 .3 0 0 3. 100 4 .985 4 . 4 7 7 3 .7 8 3 4 .8 4 2 72

9 0 .3 5 0 3 .2 3 5 5.330 4 .6 7 5 3 .8 6 5 5 .0 5 5 62

10 0 .4 0 0 3.360 5.640 4 . 8 5 5 3.94 0 5.240 100

11 0 .5 0 0 3.580 6.230 5. 210 4.080 5.60 0 83

12 0 .6 0 0 3 .7 6 4 6.764 5 . 4 9 2 4 .1 9 4 5 .9 1 3 72

13 0 .7 0 0 3.941 7.243 5.761 4 .3 0 6 6.200 62

14 0 .8 0 0 4 .1 0 7 7.681 6.011 4 .4 0 4 6 .4 6 4 56

15 0 .9 0 0 4.250 8.079 6 .2 3 5 4 .494 6 .6 3 9 50

16 1.000 4 .3 9 2 8.457 6 .4 5 1 4.591 6 .9 2 7 83

17 1.200 4.651 9.156 6 .8 4 5 4.751 7 .3 3 9 72

18 1.401 4 .8 6 4 9.72 8 7 . 1 5 7 4.900 7 .6 80 62

19 1.600 5 .0 4 6 10.226 7 .4 5 6 5 .0 0 9 7 .9 7 8 43

20 1 .752 5 .1 7 7 10.579 7 .6 1 1 5.081 8 .1 8 7 63

21 2.000 5.380 11.110 7 .9 6 2 5 .1 0 8 8 .5 0 3 55

22 2 .2 5 1 5 .5 8 4 11.641 8 .2 8 7 5 .3 2 8 8 .8 3 9 50

23 2 .5 0 0 5 .7 4 4 12.125 8 .5 3 0 5 .4 2 8 9.100 46

24 2 . 7 5 2 5 .8 6 2 12.465 8 . 7 2 6 5 .5 0 2 9 .3 0 6 43

25 3 .0 1 1 5 .9 9 9 12.850 8 .9 3 9 5 .5 7 9 9 .5 2 6 0

( a) Da ta was i n s t r u m e n t a l l y r e c o r d e d in Hz on a V ar i an XL 100 NMR s p e c t r o m e t e r bu t was c o n v e r t e d to ppm f o r compar ison w i t h s u b s e q u e n t s p e c t r a t aken a t 300 MHz.

<b) The i n c r e m e n t a l volumes a r e in m i c r o l i t e r s <(iL) .

6 1

d i l u t i o n w i t h [Sg] = 0 .19205 M.

T a b l e I I - 2 c o n t a i n s t h e v a l u e s o-f th e o b s e r v e d in c re m en ta l s h i f t s

< J i o b s ) . Each of t h e s e v a l u e s r e p r e s e n t s t h e d i f f e r e n c e between

the e x p e r i m e n t a l l y measured LIS ( S j ) and t h e undoped s h i f t

<&oj> f o r each p a i r of p r o t o n s a t each <RHO)j (Eq 1 1 - 1 7 ) .

j& jo bs = Si - &oi Eq 11-17

T ab le 11-3 l i s t s t h e computer c a l c u l a t e d t h e o r e t i c a l inc re m en ta l

s h i f t s ( J & j c a l c ) found by Eq 11 - 5 , w h i l e T a b l e 1 1-4 l i s t s the

d e v i a t i o n s ( d j ' s ) between t h e e x p e r i m e n t a l l y measured

in c r e m e n t a l s h i f t s and the t h e o r e t i c a l l y c a l c u l a t e d inc re m en ta l

s h i f t s c a l c u l a t e d u s i n g Eq 11-18.

dj = [(&i - Soi) “ J S j c a l c ] Eq 11-18

= J S j o b s - J S j c a l c

F i g u r e I I - l i s t h e computer p l o t of t h e d e v i a t i o n s l i s t e d in

Tab le 11 -4 . From th e t a b l e i t may be s een t h a t pro ton H^CHb-')

d e v i a t e s most f rom th e mean a t 50% of t h e RHO v a l u e s . In a s i m i l a r

300 MHz s t u d y , t h e d e v i a t i o n s f o r H^CHb') a r e l a r g e r , o c c u r r i n g

in 75% of t h e RHO v a l u e s . L a r g e r s h i f t s f o r Hb(Hb') a r e p r e ­

d i c t e d f rom t h e p s e u d o c o n ta c t t h e o r y due t o t h e p r o x i m i t y o f th e

metal i o n , b u t t h e o b s e r v ed number and m a g n i t u d e s o f the d e v i a t i o n s

a r e n o t . As m en t io n ed e a r l i e r , I®>^ 1 t h i s i s p r o b a b l e e v id en c e f o r

c o n t a c t s h i f t i n t e r a c t i o n s i n c e Hb<Hb') a r e a l p h a t o the ca rb on yl

group where c o m p le x a t io n of the l a n t h a n i d e o c c u r s . What may be i n d i ­

c a t e d f o r Hb<Hb') i s a summing of bo th c o n t a c t and p s eu d o c o n ta c t

i n t e r a c t i o n s a s a p p l i c a b l e to Eq 11 -5 . T h i s summing would be l e s s

pron ou nc ed f o r t h e o t h e r p r o to n s s i n c e c o n t a c t i n t e r a c t i o n s f a l l o f f

r a p i d l y ( p r o p o r t i o n a l t o r"3) w i t h i n c r e a s i n g number of i n t e r v e n i n g

c a r b o n - c a r b o n b o n d s . Ther e i s e v i d e n c e t h a t t h e c o n t a c t s h i f t

c o n t r i b u t i o n f o r r e s o n a n c e s i s r a t h e r smal l and can u s u a l l y be

6 2

TABLE 1 1 - 2

E x p e r im e n ta l 1 y Measured LIS < J £ i o b s )

L es s t h e Undoped S h i f t

# RHO Ha Hb He Hd He

1 0 . 0 1 3 .034 .091 .055 .019 .057

2 0 .0 2 5 .072 .190 . 107 .039 . 120

3 0 .0 5 0 .141 .373 .210 .078 .227

4 0.100 .373 .770 .440 . 197 .477

5 0 .1 5 0 .443 1.182 .676 .271 .727

6 0.200 .578 1.537 .878 .362 .945

7 0 .2 50 .722 1.924 1.099 .450 1.162

8 0.300 .853 2.273 1.299 .537 1.389

9 0 .3 50 .988 2.618 1.497 .619 1.602

10 0. 400 1.113 2.928 1.677 .694 1.787

11 0 .5 00 1.333 3.518 2 .0 3 2 .834 2. 147

12 0.600 1.577 4.052 2 .3 1 4 .948 2.460

13 0 .7 00 1.649 4.531 2 .5 8 3 1.060 2.74 7

14 0 .8 0 0 1.860 4.969 2 .8 3 3 1.158 3.011

15 0 .9 06 2 .0 0 3 5.367 3 .0 5 7 1.248 3 .2 3 7

16 1.000 2 .1 4 5 5.74 5 3 .2 2 7 1.345 3.474

17 1.200 2 .4 0 4 6.444 3 .6 6 7 1.505 3 .886

18 1.401 2 .6 1 7 7.016 3 .9 7 9 1.654 4.227

19 1.600 2 .7 9 9 7.514 4 .2 7 8 1.763 4 .5 2 5

20 1.752 2.930 7.867 4 .4 3 3 1.835 4. 734

21 2.000 3 .1 3 3 8.398 4 .7 8 4 1.962 5.050

22 2.251 3 .3 3 7 8.929 5. 109 2 .0 8 2 5 .3 8 6

23 2.500 3 .4 9 7 9.41 3 5 .3 5 2 2 .1 8 2 5 .6 4 7

24 2 .7 5 2 3 .6 1 5 9.753 5 .5 4 8 2 .2 5 6 5 .8 5 3

25 3. 011 3 .7 5 2 10.138 5.761 2 .3 3 3 6 .0 7 3

(a ) A l l s h i f t s a r e in ppm.

6 3

TABLE 1 1 - 3

M at r ix o-f T h e o r e t i c a l l y C a l c u l a t e d I n c r e m e n t a l S h i f t s <J6 j c a l c )

# RHO Ha Hb He Hd He

1 0 . 0 1 3 .038 .096 .057 .024 .061

2 0 .0 2 5 .075 . 199 .114 .047 . 1223 0 .0 5 0 . 151 .398 .228 .948 .244

4 0.100 .299 .789 .452 . 188 .484

5 0 .1 5 0 .445 1.175 .673 .279 .720

6 0.200 .586 1.550 .887 .368 .949

7 0 .2 5 0 .723 1.916 1.096 .454 1.171

8 0 .3 0 0 .855 2.267 1.296 .537 1.384

9 0 .350 .981 2.602 1.487 .615 1.587

10 0 .4 0 0 1.100 2.921 1.669 .690 1.780

11 0 .5 0 0 1.321 3.515 2 .007 .828 2. 138

12 0.600 1.521 4.053 2 .3 13 .953 2.461

13 0 .7 0 0 1.701 4.536 2 .587 1.605 2.751

14 0 .8 0 0 1.865 4.978 2. 839 1.168 3 .016

15 0. 900 2. 013 5.380 3. 066 1.260 3. 255

16 1.000 2.151 5.754 3 .2 7 9 11.34 3 .479

17 1.200 2 .3 9 6 6.418 3 .6 5 5 1.499 3.874

18 1.40 1 2. 613 7.007 3. 989 1.634 4.224

19 1.600 2 .8 0 3 7.523 4.281 1.753 4.531

20 1.752 2 .9 3 6 7.884 4 .4 8 6 1.835 4.744

21 2.000 3 .1 3 3 8.422 4.790 1.958 5 .0 6 4

22 2.251 3 .3 14 8.914 5 .0 6 9 2.071 5.356

23 2 .5 0 0 3 .4 7 6 9.355 5. 319 2 .1 7 2 5 .6 1 7

24 2 .7 5 2 3 .6 2 8 9.769 5 .5 5 3 2 .2 6 6 5 .8 6 2

25 3.011 3.771 10.160 5 .7 7 4 2 .3 5 5 6.094

A11 s h i f t s a r e i n ppm.

2 . 8 9 0

O. C CO

- 2 . & 9 C

- 5 . 7 6 0 -0 . CCO

UL A

D CC L L

C C 6B

cDDAA L

EB A

CL

CD L U

CKX.

3 . 6 0 0 1 . 2 0 0

C

1 . c O O 2 . 4 0 0 3 . 3 0 0

F i g u r e I I - l . LISA4 computer p l o t o f t h e 100 MHz m a t r i x o f d e v i a t i o n s between t h e o b s e r v e d (&i> and t h e o r e t i c a l l y c a l c u l a t e d <6 j c a l c > chemic al s h i f t s l i s t e d in T a b l e 1 1 - 4 .

6 5

TABLE 1 1 - 4

M a t r i x o-f D e v i a t i o n s ( O i ' s ) Between E x p e r i m e n t a l l y Observed

I n c r e m e n t a l S h i f t s ( JE jobs ) and t h e T h e o r e t i c a l l y C a l c u l a t e d

In c rem en ta l S h i f t s ( J E i c a l c ) . ( a )

# RHO Ha Hb He Hd He

1 0 .0 1 3 - .0 0 4 - . 0 0 9 - . 0 0 2 - . 0 0 5 - . 0 0 4

2 0 .0 2 5 - .0 0 3 - . 0 0 9 - . 0 0 7 - . 0 0 8 - . 0 0 2

3 0 .0 5 0 - .010 - . 0 2 5 - . 0 1 8 - . 0 1 7 - . 0 1 7

4 0 .100 - . 0 0 9 - . 0 1 9 .012 .009 - . 0 0 7

5 0.150 - .002 .007 .003 - .008 .007

6 0.200 - . 0 0 8 - . 0 1 3 - . 0 0 9 - . 0 0 6 - . 0 0 4

7 0. 250 - .001 .008 .004 - . 0 0 4 - . 0 0 9

8 0 .300 - .002 .007 .003 .001 .005

9 0 .350 ,007 .0 16 .0 10 .004 .015

10 0 .400 .013 .007 .008 .004 .007

11 0 .500 .012 .003 .025 .006 .009

12 0 .600 - .0 0 4 - .001 .001 - . 0 0 5 - .001

13 0 .7 0 0 - .0 0 7 - . 0 0 5 - . 0 0 4 - . 0 0 5 - . 0 0 4

14 0 .800 - . 0 0 5 - . 0 0 9 - . 0 0 5 - .010 - . 0 0 5

15 0 .900 - .010 - . 0 1 3 - . 0 0 9 - .012 - . 0 1 8

16 1.000 - . 0 0 6 - . 0 0 9 - . 0 0 6 - .002 - . 0 0 5

17 1.200 .008 .026 .012 .006 .012

18 1.40 1 .004 .010 .0 10 .020 .003

19 1.600 - . 0 0 4 - . 0 0 9 - . 0 0 3 .010 - . 0 0 6

20 1.752 - .006 - . 0 1 7 - . 0 5 3 - .001 - .011

21 2.000 - .001 - . 0 2 4 - .006 .004 - . 0 1 4

22 2 .2 5 1 .023 .015 .040 .011 .030

23 2 .5 0 0 .021 .058 .033 .010 .030

24 2 .7 5 2 - .0 1 3 - . 0 1 6 - . 0 0 5 - .010 - . 0 0 9

25 3.011 - .0 1 9 - .022 - . 0 13 - .022 - .021

(a) A11 devi a t i o n s a r e in ppm.

66

n e g l e c t e d . 12 However, some have -found iR c o n t a c t s h i f t s up t o

about 10% o-f t h e s t i l l dominant p s e u d o c o n t a c t c o n t r i b u t i o n -for some

o-f t h e l a n t h a n i d e s . 13

An i n t e r e s t i n g s e t o-f computer g e n e r a t e d d a t a i s seen in T a b l e

11-5 . The v a l u e s o-f CLS], [LSgT, p, and a p

a t each (RHO)j a r e l i s t e d . Two 100 MHz d a t a s e t s were i n p u t to t h e

co m p u te r . The - f i r s t d a t a s e t c o r r e s p o n d s t o t h a t o-f each o-f the -five

p a i r s o-f e q u i v a l e n t p r o t o n s , w h i l e t h e s e c o n d c o r r e s p o n d s t o t h a t o-f

each o-f t h e -four p a i r s of p r o t o n s w i t h t h e a l p h a p ro t o n p a i r

[Hb<Hb') ] o m i t t e d . T h i s co m p ar i so n was made in o rd e r t o

a s c e r t a i n t h e e f f e c t of the c o n t a c t s h i f t c o n t r i b u t i o n t o the LIS.

As t h e t a b l e i n d i c a t e s , t h e r e i s no s i g n i f i c a n t d i f f e r e n c e between

the o u t p u t d a t a r e s u l t i n g from e i t h e r d a t a s e t .

As p r e d i c t e d f rom c o n s i d e r a t i o n o f t h e two s t e p e q u i l i b r i a ,

[LS2 ] i s l a r g e r a t low RHO where t h e r e i s an abundance of

s u b s t r a t e , w h i l e [LSI i s l a r g e r a t h ig h RHO w i t h E u ( f o d )3 in ex c e s s

(F ig I I - 2 ) . The i n d i v i d u a l v a l u e s of a and P, p l o t t e d a g a i n s t

RHO in F ig 11 - 3 , g r a p h i c a l l y i l l u s t r a t e t h i s w i t h f maximum a t RHO

% 1 .75 ( m i d d l e l i n e ) w h i l e a l p h a ( l o w e r l i n e ) c o n t i n u e s t o

i n c r e a s e . The upper l i n e i s a p l o t of t h e sum of a + p. The

d a t a d o es no t a c c o u n t f o r 100% of t h e l a n t h a n i d e ( a + P = 0 . 8 3

a t maximum RHO). T h i s may be an i n d i c a t i o n of t h e p u r i t y of t h e

c o n t e n t s o f t h e NMR tu b e . A v a l u e o f a -*• p = 1 would

i n d i c a t e t h a t a l l o f t h e E u ( f o d )3 added was i n v o l v e d in t h e

i n d u c t i o n o f chemical s h i f t v i a [LSI a n d / o r [LS2 l . I t may be

t h a t ; ( i ) c e r t a i n s c a v e n g e r s a r e p r e s e n t which have complexed w i th

the LSR; ( i i ) some LSR s e l f - a s s o c i a t i o n h a s o c c u r r e d such t h a t [1^1

^ (1 - 0 . 8 3 ) = 0 . 1 7 ; ( i i i ) t h e E u ( f o d ) s u s ed was i t s e l f impure;

( i v ) t h e e q u i l i b r i a in the s o l u t i o n a r e such t h a t o n ly p a r t of t h e

E u ( fo d )g i s i n v o l v e d in co m p lex a t io n ( i . e . , t h e e q u i l i b r i a do not

go t o c o m p l e t i o n b e c a u s e the s o l u t i o n s a r e t o o d i l u t e ) . The smal l

e q u i l i b r i u m c o n s t a n t s c a l c u l a t e d f o r t h i s s y s t e m ( v i d e i n f r a ) s u g g e s t

t h a t ( i v ) i s t h e most l i k e l y e x p l a n a t i o n f o r t h e l e s s than 100%

<57

T AB L E 1 1 - 5

C o n c e n t r a t i o n s and Bound F r a c t i o n s -from t h e 100 MHz I n p u t D a ta .< * )

# RHO [ L S ] ( b ) [ L S ] ' [LS2] [LS2 ] ' c) p (c ) (a+p) (d) (a+P)

1 0 . 0 1 3 0 .0 3 3 0.033 0 .1 6 3 0 . 1 6 3 0.002 0 .0 1 7 0 .0 1 9 0 . 0 1 9

2 0 . 0 2 5 0 .0 6 7 0.067 0 .3 2 2 0 .3 2 1 0 .0 0 3 0 .0 3 4 0 .0 3 7 0 .037

3 0 .0 5 0 0 .1 3 7 0.138 0 .6 3 3 0 .6 3 1 0 .0 0 7 0 .0 6 6 0 .0 7 3 0 . 0 7 3

4 0.100 0 .2 8 2 0. 283 1.209 1.205 0 .8 1 5 0 .1 2 5 0.141 0 .1 4 1

5 0 .1 5 0 0 .4 3 5 0.438 1.733 1.727 0 .0 2 3 0.18 0 0 .2 0 3 0 . 2 0 3

6 0.200 0 .5 9 4 0.597 2 .1 97 2 .1 9 0 0.031 0 .2 2 9 0.260 0 .2 5 9

7 0 .2 5 0 0 .7 5 8 0.762 2 .6 0 8 2 . 5 9 9 0 .0 3 9 0 .2 7 2 0.311 0 .3 1 1

B 0 .3 0 0 0 .9 24 0 .928 2. 9 6 7 2 . 9 5 6 0 .0 4 8 0 .3 0 9 0 .3 5 7 0 . 3 5 6

9 0 .3 5 0 1.090 0.095 3 .2 7 6 3 . 2 6 5 0 .0 5 7 0.34 1 0 .3 9 8 0 . 3 9 7

10 0 .4 0 0 1.254 1.259 3 .5 4 3 3 .5 3 0 0 .0 6 5 0 .3 6 9 0 .434 0 . 4 3 3

11 0 .5 0 0 1.575 1.582 3 .9 6 9 3 .9 5 5 0 .0 8 2 0 .4 1 3 0 .4 9 5 0 . 4 9 4

12 0 .6 0 0 1.881 1.888 4 .2 83 4 .2 6 9 0 .0 9 8 0 .4 4 6 0.54 4 0 .543

13 0 .7 0 0 2 . 168 2.176 4 .5 1 5 4 .5 0 0 0 .1 1 3 0.470 0 .5 8 3 0 . 5 8 2

14 0 .8 0 0 2.440 2.449 4.688 4 .6 7 3 0 .1 2 7 0 .4 8 8 0 .6 1 5 0 .6 1 4

15 0 .9 0 0 2 .6 9 3 2.702 4 .8 1 6 4 . 8 0 2 0 .140 8 .5 0 2 0 .6 4 2 0 .641

1<5 1.000 2 .9 3 3 2.944 4 .9 14 4 .9 0 0 0 .1 5 3 0 .5 1 2 0 .6 6 5 0 .6 6 4

17 1.200 3.371 3.382 5.041 5 . 0 2 6 0 .1 7 6 0 .5 2 5 0.70 0 0 .7 0 0

18 1.401 3 .7 6 8 3.780 5.110 5 . 0 9 6 0 .1 9 6 0 .5 3 2 0 .7 2 8 0 . 7 2 8

19 1.600 4 .1 2 3 4.13 6 5 .1 4 2 5 . 1 2 8 0 .2 1 5 0 .5 3 6 0.75 0 0 . 7 4 9

20 1.752 4 .3 7 4 4.389 5.151 5 . 1 3 6 0 .2 2 8 0 .5 3 6 0 .7 64 0 . 7 6 3

21 2.000 4 .7 5 3 4 .768 5 .1 4 5 5 .1 3 0 0 .2 4 7 0 .5 3 6 0 .7 8 3 0 . 7 8 3

22 2 .2 5 1 5 . 103 5.120 5. 121 5 . 1 0 6 0 .2 6 6 0 .5 3 3 0 .7 9 9 0 . 7 9 8

23 2 .5 0 0 5.421 5 .438 5 .0 8 7 5 . 0 7 3 0 .2 8 2 0.530 0 .8 1 2 0 .8 1 1

24 2 . 7 5 2 5.720 5 .7 38 5 .0 4 6 5 .0 3 1 0 .2 9 8 0 .5 2 5 0 .8 2 3 0 . 8 2 3

25 3 .0 1 1 6 .0 0 5 6.024 4 .9 9 9 4 .9 8 4 0 .3 1 3 0 .521 0 .8 3 3 0 . 8 3 3

<a) A l l c o n c e n t r a t i o n s i n s q u a r e b r a c k e t s a r e in m o l e s / l i t e r and h a v e been m u l t i p l i e d by 100 .

<b) S u p e r s c r i p t p r im es < ' ) i n d i c a t e f o u r p r o t o n - p a i r d a t a w h i l e un p r im ed v a l u e s c o r r e s p o n d to f i v e p r o t o n - p a i r d a t a .

<c) The a and p v a l u e s f rom bo th d a t a s e t s were v i r t u a l l y i d e n t i c a l <d) The v a l u e of ( a + p) = [ L S I j / C S g ] + 2 [LS2 l j / I S o ]

and i s t h e t o t a l LSR in LS and LS2 co mplexes a t t h a t ( RHO) j .

I .»(L S )

(LS )

OB m N m

RHO - (L ) / ( 5 )

(XCO

0 0

F i g u r e 1 1 - 2 . P l o t o f RHO v s . [ L S 3 / E L S 2 3 f r o m t h e d a t a i n T a b l e 1 1 - 5 ,

l.H rRLPHfl a ( L 5 ) / ( 5 )

flLPHR t BETHBCTB a ZtLS J / tS )

B.8*

I.G V

N(L5 )/(5 JBETA

Na| FOR LS N-2 FOR LS

i . a

RHO = (L ) / ( 5 )

CK■o

0 0

F i g u r e 1 1 - 3 . P l o t o f a , a n d a + ^ f r o m t h e d a t a i n T a b l e I I - 5 .

70

invo lvem en t of l a n t h a n i d e in t h e e q u i l i b r i a and in t h e i n d u c t i o n of

chemical s h i f t . S i n c e t h e d a t a a r e c o m p l e t e l y r e p r o d u c i b l e

s u g g e s t i n g a v e r y good f i t , e x p l a n a t i o n s ( i ) - ( i i i ) a r e v e r y u n l i k e l y .

F i g u r e 11-4 i s a p l o t of the e x p e r i m e n t a l l y o b t a i n e d s h i f t

<6j) v e r s u s RHO from t h e d a t a in T a b l e I I - T , w h i l e Fig 11 -5 i s

t h e compu te r c a l c u l a t e d LIS <9 g a l e ) p l o t t e d a g a i n s t RHO f o r t h e

same p a i r s o f p r o t o n s . The c a l c u l a t e d s h i f t s l i s t e d in T a b l e 11-6

were c a l c u l a t e d u s i n g Eq 1 1 -1 9 .

S j c a l c = J G i c a l c + &oj Eq 11-19

= a ( J l i ) + + Goi

G jca lc i s t h e c a l c u l a t e d p o s i t i o n of t h e NMR re s o n a n c e in ppm,

Gqj i s t h e undoped chemical s h i f t o f Hj , and a. and ^

a r e th e bound f r a c t i o n s which were d i s c u s s e d f o r Eqs 11-7 and 11 -8 .

The co m par i son between F ig s 11-4 and 11-5 i s e x c e l l e n t .

T h e o r e t i c a l l y , p l o t s f o r each p a i r of p r o t o n s f rom a RHO v a l u e of 8.8

to 0.6 s h o u l d be l i n e a r , w i t h maximum c u r v a t u r e o c c u r r i n g between 0 .6

and 2 .0 RHO. At h igh RHO v a l u e s , each g ra p h s h o u l d approach i t s

maximum s h i f t v a l u e a s y m p t o t i c a l l y . C u r v a t u r e i s a problem t h a t may

occur a t low L S R c o n c e n t r a t i o n s [ a t t r i b u t e d to c o m p e t i t i o n between

s u b s t r a t e and t r a c e s of w a t e r a n d /o r a c i d i c i m p u r i t i e s ( s c a v e n g e r s )

f o r t h e L S R ] 14 and a t h igh LSR c o n c e n t r a t i o n s ( a t t r i b u t e d to

i n c o m p l e t e s o l u t i o n of t h e LSRlS and to medium and a s s o c i a t i o n

e f f e c t s ) . 16,17 None of t h e s e pro b lems a r e a p p a r e n t from t h e d a t a

in t h e f i g u r e s .

T a b l e 11-7 l i s t s t h e e q u i l i b r i u m c o n s t a n t s , 0 , and the w e ig h t e d

s t a n d a r d s h i f t d e v i a t i o n s ( c a l c u l a t e d u s i n g u s i n g Eq 1 1 -2 0 ) .

= [ Q / ( m N - l > ] ^ Eq 11-28

The l e t t e r m d e s i g n a t e s t h e number of p r o t o n s whose chemical s h i f t s

were m easu red in t h e p a r t i c u l a r ex pe r i m en t and N i s t h e number of RHO

1.2*

I.Il

I .*

i.a*I.B*

A1.7*

(HZ)I.Ei'

1 .5 1

1.3#

I. II

m m m M

RHD » (L ) / ( 5 )

F i g u r e 11 - 4 . P l o t of t h e e x p e r i m e n t a l l y o b s e r v e d 180 MHz l a n t h a n i d e - i n d u c e d chemic al s h i f t s (&i) of t h e f i v e p a i r s of p r o t o n s v s . RHO from t h e d a t a in T a b l e I I - l .

(L ) / ( S )

NIro

7 3

TABLE 1 1 - 6

Computer C a l c u l a t e d S i c a l c from

M a t r i x of C a l c u l a t e d Inc rem en ta l S h i f t s (TABLE I I - 3 )

# RHO Ha Hb He Hd He

1 0 . 0 1 3 2 . 2 8 5 2 .812 3 .2 3 5 3 .2 7 0 3.514

2 0 . 0 2 5 2 . 3 2 2 2.911 3 .2 9 2 3 . 2 9 3 3 .575

3 0 .050 2 . 3 9 8 3.110 3 .4 0 6 3 .3 4 1 3.69 7

4 0.100 2 . 5 4 6 3.501 3 .630 3 . 4 3 4 3 .937

5 0 .1 5 0 2 . 6 9 2 3 .887 3.851 3 . 5 2 5 4 .173

6 0.200 2 . 8 3 3 4 .2 6 2 4 .0 6 5 3 . 6 1 4 4 .402

7 0 .250 2 .970 4 .628 4 .2 7 4 3 .7 0 0 4.624

8 0 .3 0 0 3 . 1 0 2 4 .979 4 . 4 7 4 3 . 7 8 3 4 .837

9 0 .350 3 . 2 2 8 5 .314 4 . 6 6 5 3 .8 6 1 5.040

10 0 .400 3 .3 4 7 5 .633 4 .8 4 7 3 . 9 3 6 5 .233

11 0 .500 3 .5 6 8 6 .227 5. 185 4 .0 7 4 5.591

12 0 .6 0 0 3 .7 6 8 6 .765 5 .491 4. 199 5 .914

13 0 .700 3 .9 4 8 7 .248 5 .7 6 5 4 .311 6.204

14 0 .800 4 . 1 1 2 7.690 6 . 0 1 7 4 . 4 1 4 6 .4 6 9

15 0 .9 0 0 4 .260 8 .092 6 .2 4 4 4 . 5 0 6 6 .708

16 1.000 4 .3 9 8 8 .466 6 .4 5 7 4 . 5 9 3 6.932

17 1.200 4 .6 4 3 9.130 6 .8 3 3 4 . 7 4 5 7 .327

18 1.401 4 .8 6 0 9 .719 7 .1 6 7 4 .8 8 0 7 .677

19 1.600 5 .050 10.235 7 .4 5 9 4 . 9 9 9 7.984

20 1.752 5 . 183 10.596 7 .6 6 4 5 .0 8 1 8 .198

21 2.000 5 .380 11.134 7 .9 6 8 5 . 2 0 4 8 .517

22 2 .2 5 1 5 .561 11.626 8 .2 4 7 5 . 3 1 7 8.809

23 2 .500 5 . 7 2 3 12.067 8 .4 9 7 5 . 4 1 8 9.070

24 2 . 7 5 2 5 . 8 7 5 12.481 8 .731 5 . 5 1 2 9 .315

25 3 .011 6 .0 1 8 12.872 8 .9 5 2 5 .601 9 .547

(a) Al l s h i f t s a r e in ppm.

7 4

TABLE 1 1 - 7

E q u i l i b r i u m C o n s t a n t , Q, and We igh te d S t a n d a r d S h i f t D e v ia t io n V a lu e s f rom t h e 100 MHz and 300 MHz Eu<fod>3- K e t o n e LSR S t u d i e s . (&)

Expt Ki<M-l) % E r r o r ( c ) K2 (M-1) V. E r r o r Q<d) ds<e)

A4 4 . 0 1 1.93 25.76 2 1 .0 8 0.016 0 .8129

BS 4 .0 1 1.93 26.03 20.88 0 .0 2 5 8.0141

C5 7 . 6 3 - 0.0 - 0 .670 0.0250

D4 3 . 6 2 2 .1 3 48 .16 10.02 0.031 8 .8158

ES 3 . 7 2 2 . 0 8 54.20 11.27 0.047 0.8177

F6 3 . 6 2 2 .1 3 46 .26 11.73 0.027 0.8124

G7 3 . 6 2 2 .1 3 54 .69 9 . 9 3 0.053 8.8160

H7 4 . 2 9 - 0.0 - 1.254 0.8775

S ta n d a r d Ave Rel !

e r r o r ( b )% e r r o r ( c )

0 .0 82 .0 5

5 . 4 314.15

N o t e ; Maximum d i f f e r e n c e in co m p l e x a t i o n e n e rg y f o r Kj and K2 i s 0 .1 2 and 0 .22 k c a l / m o l , r e s p e c t i v e l y , w h i l e t h e d i f f e r e n c e b et ween t h e ave rage Kj and K2 v a l u e s i s 1 .16 K c a l / m o l . (?)

( a ) V a lu e s in t h e t a b l e were c a l c u l a t e d by LISA4 from t h e e x p e r i m e n t s as l i s t e d below:A4 : 100 MHz four p r o t o n - p a i r i n p u t d a t a s e t N LLSQ-c al cu la t ed

o u t p u t v a l u e s w i th i n p u t d a t a f rom 0: p r o t o n s Hb(Hb' ) and v i n y l p r o t o n s H f ( H f ' ) and Hg(Hg') o m i t t e d f rom t h e c a l c u l a t i o n s .

8 5 : Same a s Exp A4 e x c e p t t h a t i n p u t d a t a f o r Hb<Hb')p r o t o n s were i n c l u d e d , g i v i n g a f i v e p r o t o n - p a i r d a t a s e t .

C5 ; Same a s Exp B5 ex c e p t t h a t Ko was s e t equal to z e r o .D4 : Same a s Exp A4 ex c e p t t h a t t h e 300 MHz d a t a were u s ed .E5 : Same a s Exp Bg e x c e p t t h a t t h e 300 MHz d a t a were u s e d .

: Same a s Exp D4 e x c e p t t h a t i n p u t d a t a f rom v i n y l p r o t o n sH f ( H f ' ) and Hg(Hg/ ) w e r e i n c l u d e d , fo rm in g a s i x p r o t o n - p a i r d a t a l e t .

6 7 ; Same a s Exp e x c e p t t h a t i n p u t d a t a f o r Hb(Hb' )w ere i n c l u d e d , fo r m in g a s ev e n p r o t o n - p a i r d a t a s e t .

Ho: Same a s Exp 67 e x c e p t t h a t Ko was s e t equal to z e r o .<b) S t a n d a r d e r r o r = { [ S ( x j - x > 2 ] / [ n ( n - l ) w h e r e n i s

t h e number of independent d e t e r m i n a t i o n s , Xj i s t h e v a l u e of K f o r a p a r t i c u l a r d e t e r m i n a t i o n , and x i s t h e mean v a l u e of K f o r a l l d e t e r m i n a t i o n s . Data from Exps C5 and H7 were e x c lu d e d .

( c) R e l a t i v e p e r c e n t e r r o r = ( s t a n d a r d e r r o r / e q u i l i b r i u m c o n s t a n t ) m u l t i p l i e d by 100. Exp C5 and H? d a t a w ere e x c lu d e d .

(d) V a lu e s of Q ( i n ppm^) a r e g iven by Eq 11- 9 .(e ) V a lu e s of ( i n ppm) a r e g iven by Eq 11 -2 0 .( f ) A h u n d r e d f o l d v a r i a t i o n in a s s o c i a t i o n c o n s t a n t s ( c o r r e s p o n d i n g

to a b o u t 1 kca l /mol d i f f e r e n c e i n co m p l e x a t i o n ene rgy) has been s u g g e s t e d f o r K e to nes .* However, b a s e d on a more r e c e n t s t u d y , ! * ? t h e v a l u e s shown h e r e c o r r e s p o n d to 1 Kcal/mol d i f f e r e n c e in com plexa t ion e n e rg y f o r each t e n f o l d i n c r e a s e in e q u i l i b r i u m c o n s t a n t .

7 5

v a l u e s a t w h ich t h o s e s h i f t s were m e a s u r e d . The v a l u e o-f Q i s v e r y

s i g n i f i c a n t s i n c e i t i s t h e term m in imized in Eq 1 1 - 9 .

E q u i l i b r i u m c o n s t a n t s f o r the f i v e - p r o t o n p a i r d a t a s e t (Exp

85) a r e 4 . 8 1 and 26 .00 f o r Kj and K2 ,

r e s p e c t i v e l y . The f a c t t h a t Kj i s s m a l l e r t h an K2 seems

u n r e a s o n a b l e b e c a u s e i t means t h a t b i n d i n g of t h e f i r s t s u b s t r a t e t o

form t h e 1:1 LS complex i n c r e a s e s t h e l i k e l i h o o d t h a t a second

s u b s t r a t e w i l l b i n d t o LS and form t h e 1 :2 LS2 com plex . The s i z e

and s t e r i c b u l k o f t h e ' f o d ' l i g a n d and s u b s t r a t e m o l e c u l e and a l s o

t h e weak Lewis b a s i c i t y of the k e t o n e c a r b o n y l o f t h e s u b s t r a t e

s h o u l d i n h i b i t t h i s v e r y r a r e ' c o o p e r a t i v e b i n d i n g ' . *8 S ince ou r

i n i t i a l d i s c o v e r y o f t h i s 'K2 ) K j ' r e s u l t , o t h e r s have found a

s i m i l a r phenomenon f o r t h e two s t e p e q u i l i b r i u m be tween 2-Adamantanol

and E u ( f o d >3 i n CDClg. l? T h i s p r o c e s s h a s been t e n t a t i v e l y

a t t r i b u t e d t o l i g a n d r e a r r a n g e m e n t a r o u n d t h e c e n t r a l m e ta l atom of

t h e s h i f t r e a g e n t b e c a u s e of the i n i t i a l s u b s t r a t e b i n d i n g . The new

a r r a n g e m e n t may en ha nce t h e a f f i n i t y o f t h e 1:1 ad d u c t toward a

s ec ond s u b s t r a t e m o l e c u l e . 8

In o r d e r t o t e s t f o r t h e p r e s e n c e of t h e c o o p e r a t i v e p r o c e s s ,

a n o t h e r e x p e r i m e n t was s u g g e s t e d : ^ ^ run t h e e x p e r i m e n t a t a lower

s u b s t r a t e c o n c e n t r a t i o n ( e . g . , 0 .1 M> and r u n RHO h i g h e r ( i n t h i s

c a s e up t o a b o u t RHO = 6 . 0 ) . The p r e s e n t d a t a may be i n c o n c l u s i v e in

t h a t t h e a l p h a bound f r a c t i o n ( T a b le 1 1-5) h a s n o t ex c e ed e d 50% ( i t

o n ly goes up t o 0 . 3 1 ) . G e n e r a l l y i t i s n e c e s s a r y t o go to much

h i g h e r v a l u e s t o o b t a i n good r e s u l t s . 8

A c c o r d i n g l y , t h e e x p e r i m e n t was p e r f o r m e d ( t h i s t i m e a t 300 MHz)

wi th [Sc,] = 0 .0 9 9 8 7 M and 0 .01336 < RHO < 6 . 0 0 1 , i n s t e a d o f 0 .01252

< RHO < 3 . 0 1 1 2 9 ( a s in t h e 100 MHz e x p e r i m e n t ) . The number of RHO

v a l u e s was i n c r e a s e d to t h i r t y . W hi le n o t p o s s i b l e a t 100 MHz,

s p e c t r a l r e s o l u t i o n a t 300 MHz was s u f f i c i e n t t o p e r m i t measurement

of t h e c h e m i c a l s h i f t s of the two s e t s of v i n y l p r o t o n s [H f (H f ' )

and Hg(H g/) ] which we re i n c l u d e d in t h e new e x p e r i m e n t . The

r e s u l t s a r e l i s t e d in T a b l e I I -8 and p l o t t e d i n F ig I I - 6 . A p l o t of

7 6

T AB L E 1 1 - 8

M at r ix of Observed S h i f t s <&j) Read In and In c r e m e n ta l D i l u t i o n Volumes f o r Each

# RHO Ha Hb He Hd He Hf Hg Volume!

0 0 . 0 0 0 2 . 2 5 2 . 7 1 3 . 1 7 3 . 2 4 3 . 4 5 6 . 0 2 6 . 1 1 -

1 0 . 0 1 3 2 . 3 0 2 . 8 0 3 . 2 3 3 . 2 9 3 . 5 2 6 . 0 6 6 . 14 250

2 0 . 0 2 7 2 . 3 3 2 . 8 6 3 . 2 7 3 . 3 0 3 . 5 6 6 . 0 7 6 . 1 5 250

3 0 . 0 5 3 2 . 3 8 2 . 9 9 3 . 3 4 3 . 3 4 3 . 6 4 6 . 0 8 6 . 17 250

4 0 . 1 0 7 2 . 4 8 3 . 2 7 3 . 5 0 3 . 4 0 3 . 8 1 6 . 1 2 6 . 2 2 150

5 0 . 153 2 . 5 7 3 . 5 2 3 . 6 5 3 . 4 6 3 . 9 7 6 . 1 5 6 . 2 5 125

6 0 . 2 0 4 2 . 6 8 3 . 8 0 3 . 8 1 3 . 5 2 4 . 1 4 6 . 1 8 6 . 2 9 100

7 0 . 2 5 4 2 . 7 8 4 . 0 7 3 . 9 7 3 . 5 9 4 . 3 0 6 . 2 1 6 . 3 3 75

8 0 . 2 9 9 2 . 8 7 4 . 3 2 4 . 1 1 3 . 5 5 4 . 4 5 6 . 2 4 6 . 3 7 75

9 0 . 3 5 2 2 . 9 7 4 . 5 8 4 . 2 6 3 . 7 1 4 . 6 0 6 9 . 2 8 6 . 4 1 75

10 0 . 4 1 4 3 . 0 8 4 . 8 8 4 . 4 3 3 . 7 8 4 . 7 8 6 . 3 0 6 . 4 5 100

11 0 . 518 3 . 2 6 5 . 3 6 4 . 7 9 3 . 8 9 5 . 0 6 6 . 3 6 6 . 5 2 75

12 0 . 609 3 . 4 0 5 . 7 3 4 . 9 1 3 . 9 8 5 . 0 9 6 . 4 0 6 . 5 8 75

13 0 . 7 1 7 3 . 5 6 6 . 16 5 . 1 5 4 . 0 8 5 . 5 3 6 . 4 5 6 . 6 4 50

14 0 . 7 9 6 3 . 6 7 6 . 4 5 5 . 3 2 4 . 1 5 5 . 7 0 6 . 4 8 6 . 6 8 75

15 0 . 9 3 7 3 . 8 5 6 . 9 4 5 . 5 9 4 . 2 6 5 . 9 8 6 . 5 4 6 . 7 5 120

16 1 . 2 2 5 4 . 2 4 7 . 9 6 6 . 1 7 4 . 5 0 6 . 5 7 6 . 6 5 6 . 9 0 75

17 1. 441 4 . 4 5 8 . 5 3 6 . 4 9 4 . 6 4 6 . 9 0 6 . 7 2 6 . 9 8 50

18 1 . 601 4 . 6 1 8 . 9 5 6 . 7 3 4 . 7 4 7 . 1 5 6 . 7 7 7 . 0 5 50

19 1 . 7 7 9 4 . 7 8 9 . 4 0 6 . 9 9 4 . 8 4 7 . 4 0 6 . 8 2 7 . 1 1 75

20 2 . 0 9 3 5 . 0 2 10 . 0 2 7 . 3 3 5 . 0 0 7 . 7 6 6 . 8 9 7 . 2 0 50

21 2 . 3 2 5 5 . 1 9 10 . 49 7 . 6 0 5 . 1 0 8 . 0 3 6 . 9 5 7 . 2 7 50

22 2 . 5 8 3 5 . 3 7 10 . 98 7 . 8 6 5 . 2 1 8 . 2 9 7 . 0 0 7 . 3 4 50

23 2 . 8 7 6 5 . 5 6 11 . 47 8 . 1 5 5 . 3 3 8 . 5 7 7 . 0 7 7 . 4 2 50

24 3 . 1 8 9 5 . 7 7 12 . 04 8 . 4 6 5 . 4 6 8 . 8 9 7 . 1 4 7 . 5 0 50

25 3 . 5 3 4 5 . 9 7 12 . 5 8 8 . 7 6 5 . 5 9 9 . 1 9 7 . 1 9 7 . 5 8 50

26 3 . 9 3 7 6 . 2 0 13 . 1 9 9 . 0 9 5 . 7 2 9 . 5 2 7 . 2 6 7 . 6 7 50

27 4 . 3 7 5 6 . 41 13 . 7 5 9 . 4 1 5 . 8 6 9 . 8 5 7 . 3 3 7 . 7 5 50

28 4 . 8 6 1 6 . 4 9 14 . 29 9 . 7 1 5 . 9 9 10. 15 7 . 4 0 7 . 8 3 50

29 5 . 4 0 1 6 . 8 3 14 . 87 1 0 . 0 3 6 . 1 2 10. 47 7 . 4 6 7 . 9 2 50

30 6 . 0 0 1 7 . 0 7 15 . 54 10 , 41 6 . 2 7 10 . 85 7 . 5 3 8 . 0 1 0

( a) (ppm) were r e c o r d e d at 300 MHz and v o l ume s are 1 i s t e d in pL

H .B B t XliH 3

1.2*

RHO

•NjXI

F i g u r e 1 1 - 6 . P l o t of t h e e x p e r i m e n t a l l y o b s e r v e d 300 MHz LIS ( 6 ; ) o f t h e seven p a i r s of p r o t o n s v s . RHO from t h e d a t a in T a b l e I I - 8 .

7 8

t h e d e v i a t i o n s between the o b s e r v e d and t h e o r e t i c a l l y c a l c u l a t e d

s h i f t s i s s een F ig I I - 7 . C o n c e n t r a t i o n s and bound f r a c t i o n s a r e

l i s t e d in T a b l e 1 1 - 9 . Beta i s maximum a t RHO % 3 . 2 5 , w h i l e a l p h a

c o n t i n u e s t o i n c r e a s e . As in t h e 100 MHz e x p e r i m e n t , t h e d a t a d o es

no t a c c o u n t f o r 100% of t h e l a n t h a n i d e ( a + p = 0 . 8 4 a t

maximum RHO), p r o b a b l y f o r t h e same r e a s o n a s men t ioned above d u r i n g

t h e d i s c u s s i o n of T a b l e 11 -5 . A p p a r e n t l y , t h e e q u i l i b r i a have n o t

gone t o c o m p l e t i o n b e c a u s e the s o l u t i o n s a r e to o d i l u t e .

E q u i l i b r i u m c o n s t a n t s , Q, and w e i g h t e d s t a n d a r d s h i f t d e v i a t i o n s

a r e i n c l u d e d in T a b l e I I - 7 w i t h t h o s e of t h e 100 MHz d a t a s e t .

A g a in , Ki < K2 ! Other v a l u e s of K j , K2 , Q, and t h e w e ig h t e d

s t a n d a r d s h i f t d e v i a t i o n f rom e x p e r i m e n t s A4 , D4 , E5 , and

w ere c a l c u l a t e d f o r co m par i so n . The v a l u e of Kj v a r i e s o n l y

s l i g h t l y among e x p e r i m e n t s < 3 . 6 2 - 4 .0 1 M " l ) , w h i l e K2 r a n g e s f rom

2 5 . 7 6 - 5 4 . 6 9 M"l . F u r t h e r s i m i l a r i t y between e x p e r i m e n t s i s

o b s e r v e d upon s e t t i n g K2 equal t o z e r o ( e x p e r i m e n t s C5 and

H7) . Kj , Q, and a l l i n c r e a s e which i n d i c a t e s t h a t K2

must be g r e a t e r th an ze ro ( i . e . , K2 e x i s t s and t h e r e f o r e LS2 i s

d e f i n i t e l y p r e s e n t ! ) .

T a b l e 11-10 l i s t s th e bound chem ica l s h i f t s fo r t h e 100 MHz (A4

and 85) and 300 MHz (D4 , Eg, F^ , and 67) e x p e r i m e n t s as

c a l c u l a t e d by LISA4. T h ere i s a l a r g e d i f f e r e n c e in t h e m agn i tude of

t h e bound s h i f t s f o r i n d i v i d u a l p r o t o n s between t h e two g e n e r a l

e x p e r i m e n t s , bu t good c o r r e l a t i o n o f t h e bound s h i f t s w i t h i n e a c h .

The r e p r o d u c i b i l i t y of th e e x p e r i m e n t s i s d e m o n s t r a t e d by th e r a t i o s

in t h e t a b l e . The 100 MHz 67:65 and Eg:Bg r a t i o s a r e

e q u i v a l e n t and c o n t a i n bound chemic al s h i f t c o n t r i b u t i o n s from a l p h a

p r o t o n s Ht) and Hg/ . The 300 MHz F6*^4 D4 :A4 r a t i o s

a r e e q u i v a l e n t and do not i n c l u d e c o n t r i b u t i o n s f rom H b ( H b ' ) .

Al l f o u r r a t i o s a r e q u i t e s i m i l a r which s u g g e s t s a r e l a t i v e e r r o r

( r a t h e r th an a random e r r o r ) whose v a l u e i s a p p r o x im a te ly 1 .42 f o r

J l v a l u e s and 0 . 3 7 f o r J2 v a l u e s . F u r t h e r c o n f i r m a t i o n of t h e

c o m p a r a b i l i t y of t h e s e e x p e r i m e n t s i s see n in T a b l e 1 1 -1 1 .

L urr ft‘ “"‘ |.*^DDCa F®

:&[r -

8“ C1 0 .1 0 0

1 .1 0 0 9 .900 6 .6 0 02 . 2 0 00 . 0 0 0

■SivO

F i g u r e I I - 7 . L1SA4 compu ter p l o t of t h e d e v i a t i o n s between t h e o b e r v e d <Cj> and t h e o r e t i c a l l y c a l c u l a t e d < £ j c a l c ) chemic al s h i f t s f rom t h e 300 MHz e x p e r i m e n t .

TABLE I I -9

Concentrations and Bound Fractions -from the 308 MHz Input Data.(a)

# RHO [LS](b) [LSI' 1LS2] [LS2l ' (j(c) o' P P' (oPp)(d)(c+p)'

1 8.813 8.815 8.816 8.878 8.873 8.881 8.882 8.816 8.815 8.817 8.8162 8.027 8.829 8.832 8.154 8.143 8.883 8.883 8.831 8.829 8.834 8.8323 8.853 8.859 8.864 8.388 8.279 8.886 8.886 8.868 8.856 8.866 8.8624 8.187 8.119 8.138 8.578 8.529 8.812 8.813 8.114 8.186 8.126 8.1195 8.153 8.172 8.187 8.777 8.722 8.817 8.819 8.156 8.145 8.173 8.1636 8.284 8.231 8.249 8.984 8.913 8.823 8.825 8.197 8.183 8.228 8.2887 8.254 8.298 8.312 1.166 1.883 8.829 8.831 8.234 8.217 8.263 8.2488 8.299 8.341 8.366 1.318 1.217 8.834 8.837 8.262 8.244 8.296 8.2889 8.352 8.488 8.429 1.468 1.358 8.848 8.843 8.292 8.272 8.332 8.315

18 8.414 8.469 8.581 1.613 1.582 8.847 8.858 8.323 8.381 8.378 8.35111 8.518 8.578 8.617 1.823 1.782 8.858 8.862 8.365 8.341 8.423 8.48312 8.689 8.671 8.714 1.971 1.844 8.867 8.871 8.395 8.369 8.462 8.44113 8.717 8.773 8.822 2.111 1.988 8.877 8.882 8.423 8.396 8.588 8.47914 8.796 8.845 8.898 2.196 2.862 8.885 8.898 8.448 8.413 8.524 8.58315 8.937 8.966 1.825 2.317 2.181 8.897 8.183 8.464 8.437 8.561 8.53916 1.224 1.187 1.259 2.486 2.348 8.119 8.126 8.498 8.478 8.617 8.59617 1.441 1.336 1.417 2.568 2.431 8.134 8.142 8.514 8.487 8.648 8.62918 1.688 1.438 1.525 2.613 2.476 8.144 8.153 8.523 8.496 8.667 0.64919 1.779 1.544 1.637 2.651 2.515 8.155 8.164 8.531 8.584 8.686 8.66828 2.893 1.717 1.921 2.698 2.562 8.172 8.182 8.548 8.513 8.712 8.69521 2.325 1.834 1.945 2.728 2.585 8.184 8.195 8.545 8.518 8.726 8.71222 2.583 1.956 2.875 2.736 2.681 8.196 8.288 8.548 8.521 8.744 8.72923 2.878 2.883 2.289 2.746 2.611 8.289 8.221 8.558 8.523 8.759 8.74424 3.189 2.214 2.347 2.751 2.616 8.222 8.235 8.551 8.524 8.773 8.75925 3.554 2.349 2.498 2.749 2.614 8.235 8.249 8.551 8.523 8.786 8.77326 3.937 2.489 2.638 2.742 2.687 8.249 8.264 8.549 8.522 8.798 8.78627 4.375 2.633 2.798 2.729 2.594 8.264 8.279 8.547 8.519 8.818 8.79928 4.861 2.781 2.946 2.711 2.576 8.279 8.295 8.543 8.516 8.822 8.81129 5.481 2.934 3.187 2.689 2.552 8.294 8.311 8.538 8.511 8.832 8.82238 6.881 3.891 3.272 2.661 2.524 8.318 8.228 8.533 8.585 8.842 8.833

(a) All concentrations (in square brackets) are in moles/liter and have been multiplied by 168.

(b) Superscript primes (') indicate six proton-pair data while unprimed values correspond to seven proton-pair data.

(c) Values ot a and p are quite similar to those in Table II-5.

<d) Values of (a + p) are also similar to those in Table II-5.

81

TABLE 1 1 -1 0

360 MHz Undoped (So;) and Bound Chemical Shifts

Bound Chemical Shifts (ppm)(b) Ratios(c)

Proton &oi A4 85 84 E5 F 6 67 67/B5 E5/B5 FyA* D4/A4

Ha(Ha') 2.25 10.03( 1.20)

10.06( 1.20)

14.79(0.39)

14.69(0.38)

14.08(6.40)

14.89(0.39)

1.48(0.33)

1.46(0.32)

1.40(0.33)

1.42(0.33)

Hb(Hb') 2.71 27.38(3.07)

39.34(0.87)

39.88(8.89)

1.46(0.29)

1.44(0.28)

3.17 15.46(1.78)

15.50(1.78)

22.11(0.64)

21.96(0.63)

21.05(8.66)

22.26(8.65)

1.44(0.37)

1.42(8.35)

1.36(8.37)

1.38(0.36)

Hd(Hd') 3.24 6.24(0.76)

6.27(0.76)

9.19(8.30)

9.13(0.30)

8.75(0.31)

9.25(0.31)

1.48(6.41)

1.46(8.39)

1.40(0.41)

1.42(0.39)

H g t H g / ) 3.45 16.19(1.95)

16.24(1.95)

22.26(0.85)

22.11(8.83)

21.19(0.88)

22.41(8.85)

1.38(0.44)

1.36(0.43)

1.31(0.45)

1.33(0.44)

H f ( H j ' ) 6.02 4.31(8.18)

1.56(0.17)

H g ( H g / ) 6.11 5.45(8.22)

5.76(0.21)

.0129 .0141 .0158 .0177 .8124 .0160

j l ratio averages(e) 1.45 1.43 1.37 1.39

j 2 ratio averages (0.37) (0.35) (0.39) (0.38)

(a) Bound chemical shifts were determined by LISA4 in the corresponding experiments

listed in Table II-7.

(b) Values in parenthesis correspond to £L bound chemical shifts, while those not

in parenthesis are Jl bound chemical shifts.

(c) Bound chemical shift ratios are for inter-experiment comparison.

(d) Weighted standard shift deviations are as listed in Table 11-7.

(e) The overall normalized i \ ratio average is 1.42, while that for £ is 0.37.

82

TABLE 11-11

N o r m a l i z e d 300 MHz Bound Chemical S h i f t s .

P ro ton Sq Aq(b) D4 E5 67

Ha(Ha' ) 2 . 2 5 1.61 1.61 1.61 1.61 1.61 1.612 . 2 5 <1.58) ( 1 .5 8 ) ( 1 . 2 7 ) ( 1 . 2 8 ) ( 1 . 2 7 ) (1 .2 8 )

Hb(Hb') 2 . 7 1 4 .3 7 4 .3 1 4 .312 . 7 1 (4 .0 4 ) ( 2 . 8 9 ) (2 .9 1 )

H r ( H r ' ) 3 . 1 7 2 . 4 7 2 .4 7 2 .40 2 .4 1 2 .4 1 2 .413 . 1 7 ( 2 . 3 4 ) (2 .3 4 ) ( 2 . 0 9 ) ( 2 . 1 0 ) ( 2 . 0 9 ) (2 .1 0 )

Hd(Hd') 3 . 2 4 1 .00 1.00 1.00 1 .00 1.00 1.003 . 2 4 (1 .0 0 ) (1 .0 0 ) ( 1 . 0 0 ) ( 1 . 0 0 ) ( 1 . 0 0 ) (1 .0 0 )

Hg(He') 3 . 4 5 2 . 5 9 2 . 5 9 2 . 4 2 2 . 4 2 2 . 4 2 2 .4 23 . 4 5 ( 2 . 5 6 ) (2 .5 6 ) ( 2 . 7 9 ) ( 2 . 7 8 ) ( 2 . 7 9 ) (2 .7 8 )

Hf(Hf / ) 6 . 0 2 0 . 4 9 0 .4 96 . 0 2 ( 0 . 5 7 ) (0 .5 7 )

Hq(HqO 6.11 0 . 6 2 0 .6 2^ ^ 6.11 ( 0 . 68) ( 0 . 68)

( a ) V a lu e s ( i n ppm) w i t h i n each ex p e r im e n t w e re n o r m a l i z e d t o p ro ton

Hd(Hd') in t h a t same ex pe r i m en t u s i n g t h e a p p r o p r i a t e bound

chemical s h i f t s l i s t e d in T ab le 11-10 .

(b) V a lu e s in p a r e n t h e s i s c o r r e s p o n d t o J2 bound ch emical s h i f t s ,

w h i l e t h o s e n o t in p a r e n t h e s i s c o r r e s p o n d t o J l bound chemical

s h i f t s .

8 3

N o r m a l i z a t i o n o f t h e bound s h i f t s of a l l p r o t o n s in an e x p e r i m e n t t o

p ro t o n in t h a t same e x p e r im en t p r o v i d e s a method f o r

compar ison of t h e bound chemical s h i f t s of an i n d i v i d u a l p r o t o n among

e x p e r i m e n t s . A g a i n , 100 MHz e x p e r i m e n t s A4 and 85 compare wel l

as do 300 MHz e x p e r i m e n t s D4 , E5 , F^, and 6 7 . The l a r g e s t

d i f f e r e n c e s between 100 MHz and 300 MHz e x p e r i m e n t s a r e t h e v a l u e s of

M . The 100 MHz J2 v a l u e s a r e l a r g e r th an t h e i l v a l u e s of

t h e 300 MHz e x p e r i m e n t s , w h i l e t h e J l v a l u e s f o l l o w t h e o p p o s i t e

t r e n d . The J2 v a l u e s a r e r e a s o n a b l e in t h a t t h e y i n d i c a t e smal l

d o w n f i e ld s h i f t s f o r p r o t o n s in t h e LS2 complex (d u e t o t h e f a c t

t h a t two Lewis b a s e s a r e complexed t o one Lewis a c i d ) . F o r t u n a t e l y ,

J l i s t h e more e a s i l y d e t e r m in e d and more a c c u r a t e bound chemica l

s h i f t of t h e two s i n c e i t depends on t h e f e w e s t d e g r e e s of m o l e c u l a r

f reedom of any LIS p a r a m e t e r .

Some i n v e s t i g a t o r s have used b e s t - f i t l i n e a r l e a s t s q u a r e s p l o t s

s i m i l a r t o t h e n o n l i n e a r l e a s t s q u a r e s p l o t shown in F ig 11-8

( d e r i v e d f rom t h e d a t a in T ab le I I - l , from RHO = 0 .0 1 3 t o 0 .600) f o r

th e p u r p o s e of <i ) m o l e c u l a r s t r u c t u r e d e t e r m i n a t i o n , ( i i ) e v a l u a t i o n

of t h e e q u i l i b r i u m c o n s t a n t s , ( i i i ) c a l c u l a t i o n of bound chemical

s h i f t s , and ( i v ) l o c a t i n g th e p o s i t i o n of p a r t i c u l a r r e s o n a n c e s in

u n r e s o l v e d s i g n a l s of undoped s p e c t r a (by e x t r a p o l a t i o n t o RHO = 0 ) .

Al though t h e r e l a t i v e m a g n i tu d e s of the s h i f t s , &oi v a l u e s of

c o m p l i c a t e d s p e c t r a , and i d e n t i f i c a t i o n of i n d i v i d u a l r e s o n a n c e s t h a t

e n t e r and emerge f rom a ' l a n t h a n i d e - i n d u c e d ' o v e r l a p o f s i g n a l s can

be e s t i m a t e d f o r s p e c i f i c p r o t o n s u s in g t h i s method , e v a l u a t i o n of

j ' s , K ' s , and m o l e c u l a r s t r u c t u r e i s l e s s c e r t a i n . 21 A s id e from

th e e r r o r i n h e r e n t in a l i n e a r l e a s t s q u a r e s f i t t i n g p r o c e d u r e , th e

g r e a t e s t u n c e r t a i n t y a r i s e s b e c a u s e a o n e - s t e p e q u i l i b r i u m h a s been

assumed. The s t r u c t u r e ( s ) b e in g e v a l u a t e d a t low RHO must in g e n e r a l

be LS2 o r a c o m b i n a t i o n of LS2 , LS, and S, and n o t t h e LS complex

which p r e d o m i n a t e s a t h ig h RHO ( c f . the d i s c u s s i o n c o n c e r n i n g F ig s

11-2 and 11-3 and T a b l e I I - 5 ) . j 2 and K2 and t h e i r c o n t r i b u t i o n

to t h e LIS a r e u s u a l l y d i s r e g a r d e d in s t r u c t u r a l i n t e r p r e t a t i o n s .

84

FIGURE I I - 8

P l o t o-f RHO v s . t h e E x p e r im e n ta l l y M ea su red L a n t h a n i d e Induced

S h i f t f rom t h e Data L i s t e d in T a b l e I I - l f o r

RHO from 0.0 t o 0 . 6 .

7Jr

U

u

<u

I I

I I

ij

RHD = CL J/CS )D D

8 5

The p r e s e n t s t u d y t a k e s i n t o a c c o u n t t h e o b s e r v e d m u l t i - s t e p

e q u i l i b r i a i n v o l v e d in L S R - s u b s t r a t e i n t e r a c t i o n s and t h u s a l l o w s a

much more a c c u r a t e e v a l u a t i o n of t h e q u a n t i t i e s d e r i v a b l e from them.

Tha t th e p r e s e n t s t u d y i s an example of ' c o o p e r a t i v e b i n d i n g ' i s sup­

p o r t e d by t h e e x c e l l e n t i n t e r n a l c o n s i s t e n c y of t h e d a t a which i s

ev i d e n c e d by t h e h i g h p r e c i s i o n s and s t a n d a r d d e v i a t i o n s . The v a l u e s

o f Ki ( 4 . 0 1 M-1) and of K2 ( 2 5 . 7 6 - 2 6 . 0 M ' l ) in t h e 100 MHz [0

< RHO ^ 3 . 0 ] e x p e r i m e n t s and Kj ( 3 . 6 2 M“ b and K2 ( 4 6 . 2 6 - 4 8 . 1 6

M“ l) in t h e 300 MHz [0 ^ RHO (. 6 . 0 ] e x p e r i m e n t s d e m o n s t r a t e th e

r e p r o d u c i b i l i t y of t h e 'K 2 ) K j ' r e s u l t s . F u r t h e r s u p p o r t f o r

t h i s c o n c l u s i o n w i l l be r e v e a l e d d u r i n g t h e d i s c u s s i o n of th e

' c o l l i s i o n co m p lex ' i n PART I I I .

Exper imen ta l

P ro ton NMR s p e c t r a were o b t a i n e d on V a r i a n Model T - 6 0 , XL-100,

and XL-300 s p e c t r o m e t e r s . Al l w e ig h t s w e re d e t e r m i n e d on a S a r t o r i u s

a n a l y t i c a l b a l a n c e ( p r e c i s i o n 000.1 mg) in a n i t r o g e n - f i l l e d g love

bag , and i n i t i a l s o l u t i o n s were a l s o p r e p a r e d under n i t r o g e n in a

g l o v e bag . A l l NMR t u b e s were r i g o r o u s l y c l e a n e d and w ere d r i e d a t

110 °C f o r 24 h o u r s p r i o r t o u s e .

Two g e n e r a l e x p e r i m e n t s were p e r f o r m e d w i t h phenyl k e t o n e VII

( f rom PART I ) . The f i r s t e x p e r im e n t u t i l i z e d t h e same LSR,

s u b s t r a t e , an d s t o c k s o l u t i o n c o n c e n t r a t i o n s and volum es a s used in

PART I . The 100 MHz p r o t o n NMR s p e c t r a we re t a k e n i n s t e a d of t h e 60

MHz s p e c t r a , and chemical s h i f t s w ere r e c o r d e d a f t e r each of t h e

twen ty f i v e i n c r e m e n t a l d i l u t i o n s ( T a b le I I - l ) .

In t h e s e c o n d e x p e r i m e n t 0 .31 g ( 2 . 997x 10*4 mol) o f E u ( fo d )3

and 0 .0182 g ( 4 .9 9 x 1 0 * 5 mol) of phenyl k e t o n e VII in an NMR tube

were d i l u t e d t o 0 . 5 mL w i th CDCL3/IXTMS, g i v i n g an i n i t i a l RHO30

v a l u e of 6 . 0 0 1 . A 300 MHz p ro to n NMR s p e c t r u m was t ak en and chemical

s h i f t s w ere r e c o r d e d . A 9 .987x10*2 M s t o c k s o l u t i o n of V (0 .1 0 9 2 g

of VII d i l u t e d t o 3 .0 mL w i th CDCL3/IXTMS) was used t o increm en t

8 6

a l l y d i l u t e RHO30 down to RHOi = 0 .0 1 3 4 , and a 300 MHz p r o t o n NMR

s p e c t r u m was t a k e n a f t e r each d i l u t i o n (T a b le 1 1 - 8 ) .

The chem ic a l s h i f t s r e c o r d e d d u r i n g t h e s e e x p e r i m e n t s were inpu t

t o t h e LISA4 compu te r program and e x e cu te d a s d i s c u s s e d below.

The 100 MHz i n p u t d a t a s e t s were t h e o b s e r v e d chemica l s h i f t s

(G;) of s p e c i f i c p r o t o n s from 0 <. RHO < 3 . 0 ( d i s c u s s e d under

T a b l e I I - 7 ) and co m p r i s e e x p e r i m e n t s A4 , 8 5 , and C5 a s shown

below in Eqs 11-21 th ro ugh 11-23.

Ex per im en t A.a : Eq 11-21

G Ha(Ha'), Hc(Hc'), Hd(Hd'), He(Hg/);Ex per im en t Bs i , [q 11-22

same a s Exp A4 , bu t G Hb(Hb') was i n c l u d e d ;

E x per im en t Cs ; Eq 11-23

same a s Exp 8 5 , bu t K2 was r e s t r i c t e d t o z e r o .

The 300 MHz i n p u t d a t a s e t s were t h e o b s e r v e d chemical s h i f t s

(G;) of s p e c i f i c p r o t o n s from 0 < RHO < 6 . 0 ( a l s o d i s c u s s e d

under T a b l e 11-7) and co m p r i se e x p e r i m e n t s D4 , Eg, F^, 67 ,

and H7 a s shown below in Eqs 11-24 through 11 -2 8 .

E x per im en t D4 ; Eq 11-24

G Ha(Ha/>, H [ ( H c ' ) , Hd(H d ' ) , H e (H g/ ) ;

Ex per im en t E s ; Eq 11-25

same a s Exp D4 , b u t Hb(Hb') was i n c l u d e d ;

E x per im e n t F x : Eq 11-26

same a s Exp D4 , bu t H f ( H f ' ) and Hg(HgO were

i n c 1uded;

Exper im e n t 67 : Eq 11-27

same a s Exp Eg, bu t H f ( H f ' ) and Hg(HgO were

i n c l u d e d ;

Exper im e n t H-7 ; Eq 11-28

8 7

same a s Exp 6 7 , but K2 was r e s t r i c t e d t o z e r o .

E r r o r A n a l y s i s

E r r o r a n a l y s i s on t h e d a t a c o n t a i n e d in T a b l e s 11 -3 , I I - 5 , 11-6 ,

and I I - 9 i s n o t m a t h e m a t i c a l l y s t r a i g h t - f o r w a r d s i n c e J E j c a l c ,

[LS] , a , [LS2 ] , à l , J 2 , and Q a r e c a l c u l a t e d by

i t e r a t i v e l i n e a r r e g r e s s i o n a n a l y s i s o-f Eq I I - 5 and I I - 9 , and Kj

and K2 a r e computed by i t e r a t i v e non l i n e a r r e g r e s s i o n a n a l y s i s o-f

Eq 1 1 - 1 6 . The o r i g i n a t o r s o f t h e LISA4 computer program used to

d e t e r m i n e t h e above p a r a m e t e r s h av e r e p o r t e d J l v a l u e s as a c c u r a t e

t o ±0 .0 2 ppm, j 2 e r r o r s of l e s s th an 1% when K2 l i e s between

5 . 0 and 5 0 0 .0 , and Kj and K2 t o an a c c u r a c y of from l e s s than

±2 . 0% t o ±2 0 . 0%.4

The v a l u e of Q ( c a l c u l a t e d v i a Eq 11-9 and l i s t e d in Tab le I I - 7 )

may be u s e d a s a g u id e to e r r o r e s t i m a t i o n ( s t a t i s t i c a l l y , Q/N =

v a r i a n c e ! ) in t h e T ab le 11-4 m a t r i x of d e v i a t i o n s . The s t a n d a r d

d e v i a t i o n (#%) was d e f i n e d in Eq 1 1 - 2 0 . The l a r g e s t v a l u e s of Q

and < s f o u n d in T a b l e 11-7 a r e f o r Exp H7 where K2 was

a r b i t r a r i l y s e t equal t o z e r o . More r e a l i s t i c maximum v a l u e s a r e

fo und f o r Exp Eg, where Q = 0 .047 ppm^ and dg = 0 .0 1 8 ppm.

L e a s t s q u a r e s a n a l y s i s of t h e T a b l e 11-8 d a t a and th e a s s o c i a t e d

p l o t of F ig 11-8 were pe r fo rm ed w i t h t h e e r r o r in RHO <. 0 . 002

( c a l c u l a t e d a s in PART 1) and w i t h t h e e r r o r in % 0.01

ppm. The a v e r a g e e r r o r s in t h e s l o p e and y - i n t e r c e p t were 0 .02 ppm

and 0.01 ppm, r e s p e c t i v e l y , w h i l e t h e s t a n d a r d d e v i a t i o n s f o r th e

f i v e l i n e s w e re between 0 .0 3 ppm and 0 .1 0 ppm. I t i s i n t e r e s t i n g to

n o t e t h a t t h e l a r g e s t e r r o r s in s l o p e , y - i n t e r c e p t , and s t a n d a r d

d e v i a t i o n a l l co r r e s p o n d to p r o t o n Hb/ H g / ) . T h i s may be a r e s u l t

o f t h e f a c t t h a t Hb/Hg/) i s c l o s e enough t o t h e l a n t h a n i d e

b i n d i n g s i t e t o s u f f e r from c o n t a c t a s we l l a s p s e u d o c o n ta c t LIS.

T h i s wo uld y i e l d e r r o n e o u s v a l u e s of t h e p s e u d o c o n t a c t s h i f t as

c a l c u l a t e d u s i n g Eq 11-5.

8 8

BIBLIOGRAPHY

1. R a b e r , D. J . ; J o h n s t o n , M. D . ; Campbe l l , C. M . ; G u id a , A . :J a c k s o n I I I , G. F . ; Yanks , C. M.; P e r r y , J . W.; P r o p e c k , G. J . : R a b e r . N. K. ; Sch w alk e , M. A . : S u t t o n . P. M. M ona t sn . Chem. 19 8 0 , M l , 43 . --------------------------------------------------------------------------------

2 . (a) C h a r l e s , R. G . ; Dhlmann, R. C. J . I n o r o . Chem. 1965. 27 ,119. (b ) S c h w a r t z b e r g , J . t . ; Gere , u . K. ; b i e v e r s , k . E . :E i s e n t r a u t , K. J . I n o r o . Chem. 1969. 6 , 1933.

3 . <a) H a r t , F . A. : Newbery, J . E . : Shaw, D. N a t u r e . 1967 . 2 1 6 .261 . (b ) H o r r o c k s . W. De W, : S io e . I . P. J . Am. Chem. Soc.1971. 9 3 , 6800.

4 . (a) S h a p i r o , B. L . ; J o h n s t o n , M. D. J . Am. Chem. Soc. 1972. 9 4 .8185 . (b ) J o h n s t o n , M. D . : S h a p i r o , B. L . : P r o u l x , 1. W . :Godwin, A. D. ; P e a r c e , H. L. J . Am. Chem. S o c . 1975. 9 7 , 542. The h e l p f u l s u g g e s t i o n s and k ind a s s i s t a n c e o f M. D. J " i n f u r n i s h i n g a copy of t h e LISA4 computer p ro gr am i s g r a t e f u l l y ac k n o w led g ed .

5 . (a) Reuben , J . P ro p . N u c l . Maqn. R e s o n . S p e c t r o s c . 1973. 9 , 1.(b) Reuben , J . J . Chem. S o c . 1973. 9bT 3b3 4 . “

6 . (a ) I n a g a k i , F . ; T a k a h a s h i , S . ; Tasum i , M.; Miyazawa, T . B u l l .Chem. S o c . J o n . 1975. 48 , 853. (b) I n a g a k i , F . : T asu m i , RTjMiyazawa, I . Bui I . Lnem. Soc. J o n . 1975. 4 8 . 1427.

7 . D e r a n l e a u , D. A. J . Am. Chem. S o c . 1969. 9 1 . 40 44 , 4050 .

8 . L e n k i n s k i . R. E . : E l o a v i s h . G. A . : Reuben. J . J . Maon. Reson.1978. ^ , 367. --------- ----------------

9 . E ra smus . C. S . . Boevens . J . C. A. A c ta C r y s t a l l o o r . S e c t . 81970. 8 2 6 . 1843. ----------- -------------------

10. Burnbaum, E. R . ; M o e l l e r , T. D. Am. Chem. S o c . 1969. 9 1 . 7274.

11. (a) C a p l e , R . ; Kuo, S. C. T e t r a h e d r o n L e t t . 1971. 4413.<b) H i n c k l e y . C. C . : K I o t z . M. R . : P a t i 1 . F . J . Am. Chem. Soc.1971. 9 3 , 2 4 Ï ? . -----------------------------

12. <a) H o f e r , 0 . Too. S t e r e o c h e m . 1976. 9 , 111. (b) Cramer , R.E . j D u b o i s , R . : S e t f . K. J .~Sm. Chem. S o c . 197 4 . 9 6 . 4125 .<c5 H o r r o c k s J r . , W . ; S io e 111. J . P. S c i e n c e 1972. 177 . 994.

13. (a) D a v i s , R. E . : W i l l c o t t I I I , M. R. " N u c l e a r M ag ne t i cR eso n an ce S h i f t R e a g e n t s " ; S i e v e r s , R. A . , E d . ; Academic; New York, 1973; p 143. <b) J o hnson , B. F . G . ; L e w is , J . ; McArdle, P . ; N o r t o n , J . R. Chem. Commun. 1972. 535. ( c ) T o r i , K. : Y o s h im u ra , Y. : K a i n o s h o , , M . ; A j i s a k a , K. T e t r a h e d r o n L e t t .1973. 3 1 2 7 . (d) Hirayama, M . ; Edagawa, E . : Hanvu. Y. Chëm.Commun. 1972. 1343. (e) Chalm ers , A. A . ; P a c h l e r , K. G. K.T e t r a h e d r o n L e t t . 1972. 4033. ( f ; R ab e r , D. J . j J o h n s t o n , M.D. S p e c t r o s c . LTett. 1982. 15, 287. (g) R a b e r , D. J . ; J o h n s t o n ,M. D . ; Campbel1 , C. M . ; Yaïïïïs, C. M. ; S u t t o n , P. M. P r o . Maon. R es o n . 1978. 11, 323.

8 9

14. (a ) S h a p i r o , B. L . ; H u lb eck , J . R . : S u l l i v a n , G. R . ; J o h n so n ,L. F. J . Am. Chem. S o c . 1971. 9 3 , 3281. (b) A r m i t a g e , I . ;H a l l , L. D. Can. J . Chem. 1 9 / 1 . 49 , 2778 . <c) S a n d e r s , J . K . ;W i l l i a m s , D. H. j l Am. Chem. S o c . 1972. 94, 5325 . (d) Demarko,P . V . : E l z e y , T . K . : Lew is , K. B . ; WenkerT, E. J . Am. Chem.S o c . 1970. i i , 5734.

15. G o l d b e r g , L . ; R i t c h e y , W. M. S p e c t r o s c . L e t t . 1972. 5 , 201.

16. Rondeau, R. E , ; S i e v e r s , R. E. J . Am. Chem. S o c . 1971. 9 3 .1522.

17. (a ) C o c k e r i l l , A. F . ; Rackham, D. M. T e t r a h e d r o n L e t t . 1970.5149 . <b) R a b e r , D , J . ; J o h n s t o n , M. D. ; Y a n k s , ti. M. : P e r r y ,J . W . ; J a c k s o n I I I , 6 . F . P r o . Maon. R es o n . 1980. l 4 . 32 .

18. M a i e r , T . P . ; Drago, R. S. I n o r o . Chem. 1972. 11. 1861.

19. M. D. J o h n s t o n p r i v a t e com m unica t ion .

20. M. D. J o h n s t o n p r i v a t e com m unica t ion .

21. R a b e r , D. J . ; H a rd ee , L. E. P r o . Maon. R e s o n . 1982. 2 0 . 125.

PART I I I

A DETERMINATION OF THE POSITION OF THE

LANTHANIDE METAL ION IN THE LANTHANIDE SHIFT

REAGENT-SUBSTRATE 'COLLISION COMPLEX'

I n t r o d u c t i o n

W i t h i n t h e l a s t few y e a r s , much e f f o r t has been d i r e c t e d tow ar d

t h e e l u c i d a t i o n of m o l e c u l a r s t r u c t u r e u s i n g l a n t h a n i d e s h i f t

r e a g e n t s in n u c l e a r m ag net i c r e s o n a n c e s p e c t r o s c o p y . M o s t such

s t u d i e s have been per formed a t low l a n t h a n i d e s h i f t - r e a g e n t : s u b s t r a t e

r a t i o s (RHO) where t h e 1:2 LS? complex p r e d o m i n a t e s r a t h e r th a n t h e

1:1 LS complex . T h e r e f o r e , r i g o r o u s s t r u c t u r a l a n a l y s i s of t h e 1:1

' c o l l i s i o n com pl ex ' must of n e c e s s i t y be c o n d u c te d a t h igh RHO where

LS s h o u l d be t h e p re dom inan t s p e c i e s . A n a l y s i s of t h e 1:1

' c o l l i s i o n ' complex i s th e s u b j e c t of t h i s c h a p t e r .

R e s u l t s and D i s c u s s i o n

From t h e s i m p l i f i e d ( d i p o l a r ) form of t h e p s e u d o c o n ta c t e q u a t i o n

(PART I , Eq I - l ) ,

L IS = J6 i = k ( 3 C o s 2 e i - l ) / ( R I j ) 3 Eq I I I - l

The m a g n i t u d e of th e i n d u c e d i n c r e m e n t a l s h i f t <4Sj) f o r

p r o t o n Hi depend s on t h e d i s t a n c e v e c t o r s R l j and Re q * ^ i ,

and t h e c o n s t a n t k , as i l l u s t r a t e d in F ig I I I - l f o r a eu rop ium

co m p lex . Many have used c o m p u t e r i z e d p r o c e d u r e s in which th e a n g l e

6 j and d i s t a n c e s Rgg and Rl j a r e v a r i e d s i m u l t a n e o u s l y u n t i l

90

9 1

F I G U R E I I l - l

R e p r e s e n t a t i o n of t h e g e o m e t r i c a l r e l a t i o n s h i p between europium and

hydrogen atom ' i ' in terms of d i s t a n c e and a n g l e from the m a g n e t i c

a x i s f o r a complex in which ' X ' i s t h e b i n d in g s i t e .

EX

FIGURE I I I - 2

R e p r e s e n t a t i o n o f th e g e o m e t r i c a l r e l a t i o n s h i p s in a complex in

which c o n f o r m a t i o n a l f l e x i b i l i t y e x i s t s f o r both europium ( % )

and hyd rogen ( 0%).

- H i

9 2

the c o r r e l a t i o n between the in d u ced i n c r e m e n t a l s h i f t and th e

g e o m e t r i c f a c t o r ( 3Cos2@i - 1) f o r c e r t a i n p r o t o n s i n t h e

s u b s t r a t e i s m i n i m i z e d . 5 A s i m i l a r NLLSQ (Non L i n e a r L ea s t

Squ ares ) compu te r program , a d a p te d f o r s o l u t i o n of Eq I I I - l , was

u t i 1 i z e d h e r e . ^

In o r d e r t o s o l v e Eq I I I - l , t h e v a r i a b l e s w i t h i n i t must be

d e f i n e d in m a t h e m a t i c a l terms which can be a d a p t e d to NLLSQ. T hese

v a r i a b l e s a r e e x p r e s s e d in F ig s I I I - l and I I 1 - 2 . Bond a n g l e s

Hj-Eu-X and Eu-X-C ( i . e . , ©j and 0 ^ , r e s p e c t i v e l y ) , and

R l j , 0)Hs V, $ , and a r e a l l unknowns, In o r d e r

to o b t a i n r e l i a b l e v a l u e s of t h e p a r a m e t e r s 0^ and R l j , i t i s

n e c e s s a r y to s p e c i f y t h e g eo m e t r i c c o o r d i n a t e s of the europ ium ion

and hydrogen n u c l e i of i n t e r e s t r e l a t i v e t o t h e h e t e r o a to m X. Choice

of s u b s t r a t e e l i m i n a t e s f and (i.'h as v a r i a b l e s and s o l u t i o n of

Eq I I I - l in terms of C a r t e s i a n c o o r d i n a t e s e l i m i n a t e s $ and

. In t h e a p p l i c a t i o n of Eq I I I - l , i t must be emphasized t h a t

t h e a r e b e s t r e p r e s e n t e d by t h e bound chemical s h i f t s

( i . e . , a s d e t e r m i n e d by th e LISA4 l i n e a r r e g r e s s i o n a n a l y s i s in PART

II ) o f p r o t o n s in t h e molecu le i n s t e a d of th e r e l a t i v e i n c r e m e n t a l

induced che m ic a l s h i f t s . ^>8 The r e s u l t s of such a s t u d y a l l o w

d e t e r m i n a t i o n of t h e p o s i t i o n of t h e m e ta l ion in the L S R - s u b s t r a t e

complex. The f i n a l l a n t h a n i d e ion p o s i t i o n , a s d e t e r m in e d in

i t e r a t i v e p r o g r a m s , may depend on t h e c h o i c e of t h e i n i t i a l p o s i t i o n ,

s i n c e l o c a l minima in the e r r o r f u n c t i o n o f t e n o c c u r . A g lo b a l

s e a r c h ( c o m p l e t e s e a r c h of a l l p o s s i b i l i t i e s ) a v o i d s t h i s d a n g e r , bu t

l a r g e amounts o f computer t ime a r e r e q u i r e d .

A s o l u t i o n to t h e problem b e g i n s by making th e f o l l o w i n g m a th e ­

m a t i c a l s t a t e m e n t s w i t h r e f e r e n c e to F ig I I I - l ( f o r a l a b e l i n g

scheme) and t o F ig I I I - 3 ( f o r a number in g scheme):

Red = RoE “ Eu to 09 bond d i s t a n c e Eq 111-2

= [ ( x 0 9 - x E ) 2 + (y09 - y E ) 2 + (z 09 - z E ) 2 ] %

k = c o n s t a n t Eq 111-3

9 3

FI GURE I I I - 3

Computer Drawn R e p r e s e n t a t i o n and Number ing Scheme -for

7 -Pheny l Dimer Ketone V I I .

ORTEP (Johnson, 1965) draw ing o f a s in g le m olecu le .

9 4

RCO = C9 to 09 bond d i s t a n c e ( X - ray of V I , PART I) Eq I I I - 4

= [ ( x C 9 - x 0 9 )2 + (y C 9 -y 0 9 ) 2 + (zC 9 -z 0 9 )2 ]% = 1 .212 (2 ) A

R = (Reo + Rco) /Rco Eq1 11 1 - 5

x09 = X c o o r d i n a t e of 09 ( X - r a y s t r u c t u r e of VI , PART I) Eq I I I - 6a

y09 = y II " 09 R B Eq I I I - 6b

z09 = z II . 09 H H Eq I I I - 6C

xC9 X II . 09 Eq I I I - 7 a

yC9 = y H " C9 Eq I I I - 7 b

zC9 - z " C9 Eq I I I - 7 C

xE = X n of europ ium = (x09 - xC9)(R) + xC9 Eq I I I - 8a

yE = y II (y09 - yC9)(R) + yC9 Eq I I I - 8b

zE = z n ■ " = (z09 - zC9)(R) + zC9 Eq I I I - B c

Rec = europ ium t o C9 d i s t a n c e Eq1 I I I - 9

[ ( x C9 -xEu) 2 + (yC 9-yEu )2 + ( z C 9 - z E u ) 2]%

Rli = eu ropium to Hj d i s t a n c e Eq I I I - 1 0

Having w r i t t e n R^g, t h e eu rop ium p o s i t i o n , R [c , and Rl j in

t e r m s of C a r t e s i a n c o o r d i n a t e s x , y , and z , o n l y ôj and ©o

re m a in t o be d e f i n e d . E q u a t i o n s 111-11 and I I 1-12 e x p r e s s ©j

and ©o in t e rm s of v e c t o r s . ?

Cos©i = Cos(Hi-Eu-C9 a n g l e ) Eq 111-11

= a R Q E * a R I j / l l a R o E l I ■I l a R I i 1 I

Cos©o = Cos(Eu-09-C9 a n g l e ) Eq I I I - 1 2

= aREO' aRcg/ l l aREOl l ' l l aRcol l

T h e s e two e q u a t i o n s r e p r e s e n t t h e s c a l a r , d o t , or i n n e r p r o d u c t of

v e c t o r s aRgc ( e q u i v a l e n t t o -aRgo) and a R I j , and of v e c t o r s

aR[o and aRgg, r e s p e c t i v e l y ( c f . F ig I I I - l ) . In te rm s of

C a r t e s i a n c o o r d i n a t e s ,

aRoE = (x09 - x E ) , ( y 0 9 - y E ) , ( z 0 9 - zE) Eq I I 1-13

à- ,

a

a-

a= :

9 5

aR î j = <xHj - x E ) , ( y H i - yE) ,<zHj - zE> Eq I I 1-14

l l a R o E l l = [ ( x 0 9 - x E ) 2 + ( y 0 9 - y E ) 2 + ( z 0 9 - z E ) 2 ] % Eq I I 1-15

l l a R I i l l = [ ( x H i - x E ) 2 + ( y H i - y E ) 2 + ( z H i - z E ) 2 ] % Eq I I 1-16

a R E 0 F (x E -x 0 9 ) , ( y E - y 0 9 ) ,< z E - z 0 9 ) Eq I I 1-17

aRco=<xC9-x09>,<yC9-y09) ,<zC9-z09) Eq I I 1-18

l l a R E o l l = [ ( x E - x 0 9 ) 2 + ( y E - y 0 9 ) 2 + ( z E - z 0 9 ) 2 ] % Eq I I 1-19

l l a R c o l l = [ ( x C 9 - x 0 9 ) 2 + ( y C 9 - y 0 9 ) 2 + ( z C 9 - z 0 9 ) 2 ] % Eq I I 1-20

aRoE*aRli=<x09-xE)<xHj-xE> Eq I I 1-21

+<y09-yE)<yHj-yE)

+ (z 0 9 -zE ) < z H j -z E )

l l a R o E l l ' l l a R I i l l = Eq I I 1-22

= {[< x 0 9 -x E )2+ (y09-yE) 2+( z 0 9 - z E ) 2]%}

<[xHi-xE)2+(yHi-yE) 2+(zHi -zE)2 ]%}

aR E0 'aRc0= (xE-x09) (xC9-x09 ) Eq I I 1-23

+(y E-y0 9 ) (y C 9 -y 0 9 )

+ < zE -z09) (zC 9-z09)

I I a R ^ o l I • 1 I a R c o I 1= Eq I I 1-24

= { [ ( x E - x 0 9 ) 2 ( y E - y 0 9 ) 2 ( z E - z 0 9 ) 2 ] % } ( 1.212 A)

A f t e r s u b s t i t u t i o n o-f Eqs I I I - 2 1 and I I 1-22 i n t o Eq I I I - l l , and

s u b s t i t u t i o n o-f Eqs I I I - 2 3 and I I I - 2 4 i n t o Eq I I 1-12, t h e f o l l o w i n g

e x p r e s s i o n s a r e o b t a i n e d :

Cos@i = Cos(Hj-E u-C9 an g le ) Eq I I 1-25

= [ (x 0 9 - x E ) < x H i - x E ) + ( y 0 9 - y E ) ( y H i - y E ) + ( z 0 9 - z E ) < z H j - z E ) 3 /

{ C ( x 0 9 - x E ) 2+(y 0 9 -y E ) 2+ < z09-zE) 2]%

[ ( X Hj -xE) 2+ ( yH i -yE) 2+(z Hi-zE )2] %)

Co s 6 q = Cos(Eu-09-C9 an g le ) Eq I I 1-26

= C <xC9-x09)(xE-x09) + (y C 9 -y 09) (y E -y 09) + ( z C 9 - z 0 9 ) ( z E - z 0 9 ) 3/

{ [ ( x E - x 0 9 ) 2 + 9 y E - y 0 9 ) 2 + ( z E - z 0 9 ) 2 ] % ( 1.212 A ) )

The e x p r e s s i o n f o r Eq I I I - l becomes:

96

J&i = l a n t h a n i d e - i n d u c e d s h i f t Eq 111-27

= k [ 3 ( a R o E - a R I i / H a R o E l I • I» aRIj 11) 2 - n / n aRI j I 13

A f t e r s u b s t i t u t i n g t h e c a r t e s i a n c o o r d i n a t e e x p r e s s i o n s f o r t h e

c o r r e s p o n d i n g v e c t o r e x p r e s s i o n s , Eq 111-27 becomes

J&j = l a n t h a n i d e - i n d u c e d s h i f t Eq 1 1 1-28

= k { 3 ( [ (x 0 9 - x E ) < x H j - x E ) + <y09-yE> (yHj-yE) + < z 0 9 - z E ) ( z H j - z E ) 3/

[<XÜ9-XE)2+ < y 0 9 - y E ) 2+ < z09-zE) 2]%

[ < xHi -XE) 2+ ( yHi -yE) 2+ < zH i - 2E) 2] %) 2 - 1} /

{ [ ( x H i -x E )2 + ( y H i -y E )2 ( zH i -z E )2 ]% } 3

Eq I I 1-28 i s t h e l a n t h a n i d e - i n d u c e d s h i f t w r i t t e n in terms o f t h e

C a r t e s i a n c o o r d i n a t e s of 09 and H j , and a l s o of k , xE, yE, and zE

(a f o u r - p a r a m e t e r ' f r e e ' f i t , which a l l o w s eu ropium to assume a

p o s i t i o n away from th e ca rb on yl a x i s ) . S u b s t i t u t i o n of Eqs I I I - 8a ,

b, and c f o r xE, yE, and zE, r e s p e c t i v e l y , i n t o Eq 111-28 g iv es

J&i = l a n t h a n i d e - i n d u c e d s h i f t Eq 1 1 1-29

= k { 3 ( [ ( x 0 9 - [ ( x 0 9 - x C 9 ) <R)+xC<3) <xHi-C <x09-xC9XR)+xC93)

+ (y 0 9 - [ ( y 0 9 -y C 9 ) ( R ) + y C 9 3 ) (yHi- [ <y09-yC9) <R)+yC93)

+ (z 09 -C < z0 9 -zC 9 X R ) + zC 9 ] ) (z H j -[ <zD9-zC9XR) +zC93) 3 /

[ < x 0 9 - [ < x0 9 - xC 9 X R ) + xC 9 3 ) 2

+ ( y 0 9 - [ ( y 0 9 - y C 9 ) (R)+yC93)2

+ ( z 0 9 - [ ( z 0 9 - z C 9 ) ( R) +z C9 3 ) 2 ] %

l ( x H i - [ ( x 0 9 - x C 9 ) ( R ) + x C 9 ] ) 2

+ ( y H i - [ ( y 0 9 - y C 9 ) (R>+yC93)2+ ( z H i - [ ( z 0 9 - z C 9 ) ( R ) + z C 9 ] ) 2 ] % ) 2 _ i ) /

{[ ( x H j - [ (x09-xC9XR ) +xC93) 2

+ < y H j- [< y 0 9 -y C 9 ) ( R) + y C 9 3 ) 2

+ ( z H i - [ ( z 0 9 - z C 9 ) ( R ) + z C 9 3 ) 2 ] % } 3

Eq 111-29 i s t h e l a n t h a n i d e - i n d u c e d s h i f t w r i t t e n in terms of K,

9 7

Reo ( a tw o - p a r a m e t e r ' f i x e d ' f i t of Eq I I I - l , w i t h the europium

atom r e s t r i c t e d t o t h e ca rbony l a x i s ) , t h e c a r t e s i a n c o o r d i n a t e s of

09, C9, H j , and t h e X - r ay d e t e r m in e d v a l u e of t h e C9-09 bond l e n g t h

Rco <1.212 8 ) . R e s u l t s of t h e s e f i t s w i l l be d i s c u s s e d below.

may be d e t e r m in e d v i a Eq I I I - 2 5 , Ôq v i a Eq I I I - 2 6 ( c f .

F ig I I I - l ) , or both may be d e t e r m in e d a s shown in Eqs 111-30 th ro u g h

I I 1 -3 9 .

Xft! Xa = xHi - xE Eq I I I - 3 0 a

Xb = x09 - xE 30b

X[ = xE - x09 30c

Xd = xC9 - x09 30d

Y^: Ya = yHj - yE Eq 1 1 1 - 3 la

Yb = y09 - yE 31b

Y[ = yE - y09 31c

Yd = yC9 - y09 3 Id

ZA: Za = zHi - zE Eq I I I - 3 2 a

Zb = 209 - zE 32b

2[ = zE - z09 32c

2d = zC9 - z09 32d

Xa = [ ( X a ) 2+(Y a)2+ ( Z a ) 2 ]% = Rli Eq I I I - 3 3 a

Xb [ ( X b ) 2+(Yb)2+ ( 2b ) 2 ]% = Roe 33b

xc = [ ( X c ) 2+(Y c)2+ ( 2c ) 2 ]% = Red 33c

Xd [<Xd)2+(Yd)2 + ( 2d ) 2 ]% = Rco 33d

Xa = Xa/XA Eq I I I - 3 4 a

^ a = Ya/XA 34b

Za ” Za/XA 34c

9 8

Xp = X t /X e Eq I I I - 3 5 a

Yp = Yb/Xe 35b

Zp = Zb/Xg 35c

Xy = Xc/Xc Eq I I I - 3 6 a

Yy = Yc/Xc 36b

Z y = Z[ /Xg 36c

Xg = Xfj/Xo Eq I I I - 3 7 a

Yg = Yy/Xo 37b

Zg = Zj /Xq 37c

Cos6 j = Cos(Hi-Eu-C9 a n g l e ) Eq I I I - 3 8

— X(j;"Xp +Yq; 'Y p +Z o;*Zp

CosQq = Cos(Eu-09-C9 a n g l e ) Eq 111-39

= Xy-Xg+Y; -Yg + Zy'Zg

H in ck ley lO h a s shown t h a t e r r o r s in t h e assumed c o o r d i n a t e s can

h ave a d r a m a t i c e f f e c t on t h e s t r u c t u r e e v a l u a t i o n p r o c e s s . Workers

in t h e f i e l d a lm os t i n v a r i a b l y have r e s o r t e d t o t h e a p p r o x im a t io n

t h a t t h e s t r u c t u r e o f t h e s u b s t r a t e m o i e t y i n t h e complex i s

u n changed from t h a t of t h e f r e e s u b s t r a t e , a n d , g iv en t h a t b a s i c

a s s u m p t i o n , a v a r i e t y of p r o c e d u r e s have been u s e d . Some have used

c o o r d i n a t e s d e r i v e d from X - r a y c r y s t a l s t r u c t u r e s ( f ro m e i t h e r t h e

same or of a r e l a t e d com pound) ,11;12 w h i l e o t h e r s have used

s t a n d a r d geom etry p a r a m e t e r s , 13 or even such c r u d e methods as

m ea su r em en t from D r e i d i n g model s . 14 O t h e r s h ave c a l c u l a t e d th e

s t r u c t u r e of t h e s u b s t r a t e m o lecu le by m e th o d s such a s e m p i r i c a l

f o r c e f i e l d c a l c u l a t i o n s l ^ w i t h f u l l g eo m e t ry o p t i m i z a t i o n u s i n g

A l l i n g e r ' s MMI and MMII p r o g r a m s . 16 The l a t t e r a p p ro ach has been

p a r t i c u l a r l y s u c c e s s f u l . 1 5 d

However , r e c a l l t h a t a s i n g l e c r y s t a l X - r a y s t r u c t u r e of dimer

9 9

k e t o n e X h as been done (PART I) and t h a t t h e hffiR and IR s p e c t r a o-f

VII and IX a r e v e r y s i m i l a r ( b o t h p o s s e s s AXTXA s t e r e o c h e m i s t r y ) .

S i n c e b o t h compounds a r e i d e n t i c a l e x c e p t -for t h e two o-methoxy

g r o u p s o-f V I , t h e as sum pt ion was made t h a t t h e c a rb o n , h y d ro g e n , and

oxygen s k e l e t o n s ( e x c l u d i n g t h e a r o m a t i c s u b s t i t u e n t s ) were

g e o m e t r i c a l l y i d e n t i c a l . The a tom ic c o o r d i n a t e s (-from PART I) o-f t h e

atoms u s e d in c a l c u l a t i n g t h e n e c e s s a r y C a r t e s i a n c o o r d i n a t e s

( d e t e r m i n e d by th e Mean P l a n e P ro g ra m )^ were r e a d i l y a v a i l a b l e -for

use in t h e above e q u a t i o n s , and both a r e l i s t e d in T a b l e I I I - l . Some

s l i g h t e r r o r i n t h e p r o t o n C a r t e s i a n c o o r d i n a t e s i s e x p e c t e d s i n c e

X - r a y s t r u c t u r e s a r e known to a f f o r d s h o r t C-H bond l e n g t h s . 1?

Having e l i m i n a t e d a l l v a r i a b l e s e x c e p t t h e c o n s t a n t (k) and t h e

eu r op iu m -o xygen bond d i s t a n c e (ReO>» t h e c o r r e l a t i o n between t h e

l a n t h a n i d e - i n d u c e d s h i f t [ i . e . , t h e bound chemical s h i f t s ( J l j )

a s d e t e r m i n e d by LISA 4 in PART I I ] and th e of Eq I I I - l

can now be maximized f o r each p a i r of e q u i v a l e n t p r o t o n s u s i n g th e

NLLSQ p ro gram .

The two g e n e r a l d a t a s e t s d i s c u s s e d in PART I I ( i . e . , f rom th e

100 MHz and 300 MHz ex p e r i m e n t s ) p r o v i d e d t h e bound chemical s h i f t s

( T a b le 1 1 - 1 0 ) . Exper im en ts C5 and H7 we re o m i t t e d f rom t h e

c u r r e n t d i s c u s s i o n because of t h e a r t i f i c i a l n a t u r e o f t h e i r o u t p u t

d a t a which r e s u l t e d from s e t t i n g K2 equa l t o z e r o . The r e m a i n i n g

e x p e r i m e n t s w e re hand led in two ways; f i r s t i s t h e ' f r e e ' ( f o u r -

p a r a m e t e r ) f i t where europium i s n o t r e s t r i c t e d to t h e ca rb o n y l a x i s

and w he re k , xE, yE, and zE a r e a l l o w e d t o v a r y w i t h i n Eq I I 1 -2 8 .

Second i s t h e ' f i x e d ' ( t w o - p a r a m e t e r ) f i t where eu ropium i s

r e s t r i c t e d to t h e ca rbonyl a x i s and where Rgg and k a r e a l l o w e d to

v a r y w i t h i n Eq 111-29. The fo rmer method a l l o w s a s o l u t i o n which i s

i n d e p e n d e n t of p r i o r knowledge of t h e p o s i t i o n of europ ium and th e

eu rop iu m -o xygen bond d i s t a n c e , and t h e r e f o r e s h o u ld p r o b a b l y a f f o r d a

more r e a l i s t i c s o l u t i o n .

I n p u t to t h e NLLSQ program was t h e X - r ay d e t e r m in e d v a l u e of

Rco ( 1 . 2 1 2 ± . 0 0 2 ^ ) , and th e C a r t e s i a n c o o r d i n a t e s and bound

1 0 0

TABLE I I I - l

Atomic ( x / a , y / b , z / c ) and C a r t e s i a n <x, y , z) C o o r d i n a t e s f o r Carbon,

Hydrogen, and Oxygen Atoms. C e l l : a=9.466 S , b=1 9 .4 1 3 A, c=13.095 S;

0 = 9 0 .0 0 , f k i 0 6 . 8 2 O , and y = 9 0 . 0 0 . The s t a n d a r d d e v i a t i o n

i s ( ± 1) u n l e s s o t h e r w i s e s p e c i f i e d i n p a r e n t h e s i s .

Nuc leus

IC4aC4b

Cl0

I .H4b=Ha'H9a=Hb

Hg-He''

x / a X y / b y z / c z

1.029 3(2) 7 .847 .8295 16. 103 .5004 6 .2 7 21.0675 7.845 .8376 16.260 .5963 7 .4 7 41.0285 8.047 .7608 14.769 .4458 5 .5 8 80. 9740 7.628 .8661 17.202 .420 1 5 .2 6 60 .9 2 3 9 (2 ) 6 .942 .7898 13.779 .4760 5 .9 6 70 .9 4 4 0 (2 ) 7 .316 .6398 12.420 .4276 5.3600 .8 7 1 8 ( 2 ) 7 .088 .6509 12.636 .3073 3 .8 5 20 .8 2 0 9 ( 2 ) 6 .635 .7262 14.098 .2996 3 .7 5 50 .9 5 8 7 7.845 .7729 15.004 .3245 4 .0 6 80 .9248 7.587 .8512 16.524 .3080 3.8611.0196 (2 ) 8 .711 .8900 17.278 .2483 3 .1 1 20 .9 6 2 0 (2 ) 8 .221 .9650 18.734 .2337 2 .9 2 91 .0287 (2 ) 8.431 .9969 19.353 .3449 4 .3 2 32 .0 9 9 3 ( 2 ) 18.306 .8354 16.218 .4133 5. 1810 .7 7 2 6 5.787 .7344 14.257 .4028 5 .0 4 91.1671 (2 ) 9.771 .8947 17.369 .3369 4 .2 2 30 .6 3 7 3 ( 2 ) 4 .480 .6592 13.496 .4098 5. 1371 .300 2(2 ) 1.111 .9282 18.019 .3158 3 .9 5 81.0280 8 .6 6 6 .7580 14.715 .2810 3 .5 2 20.8170 6.699 .8570 16.637 .2730 3 .4 2 21.1302(2 ) 8 .935 .7440 14.443 .4650 5 .8 2 90 .8 9 6 0 ( 2 ) 6 .814 .9120 17.705 .4400 5 .5 1 50 .7580 5.606 .7840 15.220 .4140 5 .1 8 91.1990 9.963 .8470 16.443 .3660 4 .5 8 80.7470 6.196 .7400 14.366 .2310 2 .8 9 61.0220 8.988 .8670 16.831 .1810 2 .2 6 90.9350 6.748 .7100 13.783 .5550 6.9571 .16 80 (2 ) 9 .215 .9470 18.384 .4860 6 .0 9 2

1 0 1

s h i f t s o f t h e p a i r s o f e q u i v a l e n t p r o t o n s t o be c o n s i d e r e d in th e

p a r t i c u l a r e x p e r i m e n t . The computer was a l s o p r o v i d e d w i th i n i t i a l

e s t i m a t e s of Rgg and K in t h e ' f i x e d ' c a s e , and e s t i m a t e s of k , xE,

yE, and zE in t h e ' f r e e ' c a s e , and a l l o w e d t o i t e r a t e them u n t i l

maximum ag ree m en t between t h e o b s e r v e d bound s h i f t s and th e

c o r r e s p o n d i n g J&j v a l u e s i s o b t a i n e d . The r e s u l t s of th e

' f r e e ' and ' f i x e d ' f i t s f o r c a l c u l a t i o n of t h e b e s t f i t J l j ' s

( l i s t e d i n T a b l e I I I - 2 ) and th e c o r r e s p o n d i n g v a l u e s o f k , europium

c o o r d i n a t e s , Rgo» 001 and e r r o r p a r a m e t e r s a r e l i s t e d in T ab le

I I 1 - 3 . V a l u e s f o r p r o t o n s H f ( H f / ) and Hg(Hg/) a r e o m i t t e d

b e c a u s e t h e X - r a y s t u d y , which was done on t h e s a t u r a t e d an a lo g of

IV, d i d n o t p r o v i d e t h e i r a tomic c o o r d i n a t e s .

T h e r e i s no u n i v e r s a l ag r eem en t on t h e p o s i t i o n of europium in

c o m p lex e s w i t h k e t o n e s . S ev e r a l i n v e s t i g a t o r s ha ve s u g g e s t e d t h a t

l a n t h a n i d e s complex w i t h k e t o n e s v i a t h e l o n e p a i r s of e l e c t r o n s on

t h e oxygen atom in a t w o - s i t e model (Eu-O-C a n g l e % 12 0° ) .

Chadwick h a s used t h e computer p ro g ram LIRAS to d e t e r m in e a

y t t e r b i u m - o x y g e n d i s t a n c e of 2 . 8 0 - 3 . 0 0 ^ and a Eu-O-C an g l e nea r

159° in a Y b(f od>3- adamantanone complex in which th e l a n t h a n i d e

was a l l o w e d t o occupy fo u r s i t e s o f equ a l p o p u l a t i o n ( i . e . ,

r e f l e c t i o n in t h e two m i r r o r p l a n e s p a s s i n g t h ro u g h the ca rbony l

g r o u p ) . ! ? O t h e r s a r e co n v inced t h a t eu rop ium complexes a lo n g th e

c a r b o n y l a x i s (Eu-O-C an g le % 180 . 0° ) . ! # 2 , 2 0 C a l c u l a t i o n s f o r

a number o f o x y g e n a te d h y d ro c a rb o n s g av e a r e a s o n a b l e p o s i t i o n of th e

l a n t h a n i d e and a r a n g e of 1a n t h a n i d e - o x y g e n d i s t a n c e s of 2 .5 t o 3 . 5

A , 20 O t h e r s s u g g e s t th e most a c c u r a t e eu rop iu m -o xygen d i s t a n c e in

k e t o n e co m p lex e s t o be 2 .5 S b a s e d on a s e a r c h o f th e c r y s t a l l o -

g r a p h i c l i t e r a t u r e on t r i s ( p - d i k e t o n a t e ) l a n t h a n i d e ( I I I ) com­

p l e x e s . 2 2 , 2 3 A no the r r e p o r t l i s t s a eu rop iu m -o xygen d i s t a n c e of

2 . 8 S and a Eu-O-C bond a n g l e of 109° f o r a s e r i e s of homologous

c y c l i c k e t o n e s by an a lo g y w i t h R2C0-HgCl2 »^® For the l a n t h a ­

n i d e y t t e r b i u m w i t h t h e s y m m et r i ca l compounds 2 - i n d a n o n e and f l u o -

r e n o n e , a Yb-0 bond d i s t a n c e and Yb-O-C a n g l e of 1 .5 & and 120°,

162

TABLE 1 I I - 2

NLLSQ Calculated 'Best-tit ' Bound Chemical Shifts (Jlj 's) from the 188 MHz and 388 MHz

'Collision-Complex' LSR Studies of the 'Free'(^) and ' F i x e d ' D a t a Sets.

Experiments

A4<c,d) B5 04 E5 F6 67

Hi So free fixed free fixed free fixed free fixed free fixed free fixed

Si- 2.252.25

18.8718.82

18.6511.82

11.6111.71

11.4811.87

15.8115.73

15.4816.81

16.6916.88

16.5117.88

15.8514.98

14.7415.25

16.9217.11

16.7417.31

2.712.71

26.6426.14

26.5726.28

38.2937.55

38.1437.68

38.8138.86

38.6638.28

3.173.17

14.6814.47

15.1314.88

15.7115.33

16.1215.88

21.1828.92

21.8128.26

22.5421.88

23.8121.48

28.8919.92

28.7719.29

22.8522.17

23.3221.78

53. 3.243.24

6.756.79

6.876.71

7.267.22

7.327.17

9.779.78

9.989.69

18.3718.38

18.4618.25

9.389.31

9.439.23

18.5118.44

18.6818.39

Si- 3.453.45

16.2716.24

16.3816.83

16.1816.39

16.1716.18

22.3622.34

22.3722.23

21.9822.36

21.8922.26

21.2821.26

21.2921.16

22.2822.66

22.1822.55

RMSD(e> .9457 .8436 1.136 1.113 1.122 1.828 1.658 1.486 1.868 .9714 1,682 1.587

d / f ) 8.8129 8.8141 8.8158 8.8177 8.8124

(a) 'Free' Jlj values (in ppm) were calculated from the four-parameter best-fit to Eq III-28 by NLLSQ.

(b) 'Fixed' Jli values (in ppm) were calculated from the two-parameter best-fit to Eq 111-29 by NLLSQ.

(c) As in Table II-7 PART II, A4 and B5 are 188 MHz experiments, and D4, Eg, F,j, Gy are 388 MHz experiments.

(d) All i l j values (in ppm) which served as input to NLLSQ for calculation of the best-fit ' free' and 'fixed' bound chemical shifts listed here are from Table 11-18, PART II.

(e) RMSD values were computed by NLLSQ.

(f) Weighted standard shift deviations (in ppm) are repeated here from Table II-7 for comparison.

163

TABLE I 1 I - 3

Parameters Calculated Using the 'Free' and 'Fixed' ij Values ot Table 1II-2.

Experiments :)

A4 B5 D4 ES F6 67Parameter free fixed free fixed free fixed free fixed free fixed free fixed

K(b) 1496.8 1495.8 1528.6 1518.6 2888.3 2681.5 2187.5 2187.4 1988.1 1981.2 2135.9 2135.8

xEu(c) 7.671 7.841 7.744 7.842 7.699 7.842 7.776 7.842 7.766 7.842 7.778 7.842

yEu 16.618 16.539 16.561 16.522 16.596 16.526 16.547 16.511 16.596 16.526 16.547 16.511

zEu 9.582 9.611 9.469 9.477 9.483 9.514 9.389 9.398 9.482 9.513 9.388 9.398

RMSD(d) 8.946 6.844 1.236 1.113 1.122 1.826 1.658 1.486 1.868 8.971 1.682 1.567

R£0<e) 2.144 2.155 2.626 2.628 2.642 2.857 1.938 1.948 2.841 2.656 1.937 1.948

@o<<) 175.8 186.8 177.8 188.8 175.5 188.6 177.6 188.8 175.5 186.8 177.6 188.8

R-factor(Q) 8.853 6.658 6.857 8.668 6.644 6.849 8.854 8.656 8.844 8.649 6.654 6.656

8.6129 6.8141 6.6158 6.8177 6.8124 6.8166

(a) As discussed under Table 111-2, A4 and 85 are 186 MHz experiments and D4, E5, F , and 67 are 368 MHz experiments.

(b) Both 'free' and 'fixed' values of K were calculated by NLLSQ.

(c) 'Free' values of the europium coordinates were calculated by NLLSQ, while 'fixed' values were calculated using Eqs l l l -8a, b, and c.

(d) The RMSD values were calculated by NLLSQ.

(e) 'Free' Rgg values (in & were calculated using the 'free' europium coordinates and Eq 11-2, while 'fixed' values were NLLSQ calculated.

(f) 'Free' values of Oq (in ppm) were calculated using Eq 111-39.

(g) The agreement factor (R) is given byR=[E(ijobs - iicalc)vZ(JiObs)2]', where ijobs is the LISA 4determined bound chemical shift of proton Hj, and Jjcalc is the NLLSQ calculatedbest-fit bound chemical shift of proton Hj.

(h) The values of dj (in ppm) are given by Eq 11-19, and are repeated here (from Table 111-2) for comparison with the RMSD and R-factor error values.

1 0 4

r e s p e c t i v e l y , have been r e p o r t e d . 24 The l a t t e r ' f i x e d ' complex­

a t i o n ( c f . Eq 111-29) w i th t h e sy m m et r i ca l d imer ke tone V ( f rom PART

I) was i n i t i a l l y assumed (F ig I I I - l ) , b u t a ' f r e e ' com plexa t ion was

a l s o c o n s i d e r e d ( c f . F ig I I I - 2 and Eq 111 - 2 8 ) . Two v a l u e s of k have

been r e p o r t e d f o r E u ( f o d ) 3 in 1:1 co m p lex e s w i th n i t r i l e s (760 and

9 7 6 . 6 ) 1 2 , 15c and t h e v a l u e of c a . 102 has been c a l c u l a t e d in

work w i t h t h e symmet r ica l compound ad a m an tanone .25 a r e c e n t r e p o r t

on t h e s i m i l a r sym m et r i ca l compound 1- a d a m a n t a n e c a r b o n i t r i 1 e in a 1:1

complex w i t h E u ( f o d )3 s u g g e s t s a v a l u e of c a . 103 f o r k, 2 .10 S

fo r t h e e u r o p iu m - n i t ro gen bond d i s t a n c e , and a l i n e a r C-N-Eu

a n g l e . 1 1

T h e r e a r e s e v e r a l e r r o r f u n c t i o n s t o be found in t h e r e l e v a n t

l i t e r a t u r e which have been used t o a s s e s s t h e co r re sp o n d e n c e between

bound ch emic al s h i f t s and c a l c u l a t e d bound chemical s h i f t s . The most

o f t e n used e r r o r f u n c t i o n i s th e one chose n by W i l l c o t t , L en k in s k i

and D a v i s . 26 T h e i r agreement f a c t o r ' R ' i s d e f in e d by Eq 111-4 0 .

R = C 2 ( j j o b s - J j c a l c ) 2 / 2 ( j j o b s ) 2 ] ^ Eq 1 11-40

J j o b s i s t h e LISA 4 c a l c u l a t e d bound s h i f t (J&j) of

p ro ton Hj , and J j c a l c i s t h e NLLSQ c a l c u l a t e d ' b e s t - f i t ' bound

chemical s h i f t of p r o t o n Hj in t h e L S R - s u b s t r a t e complex. Othe r

e x p r e s s i o n s e x p r e s s i o n s f o r R in t h e l i t e r a t u r e i n c l u d e

c r y s t a l 1o g r a p h i c d i sag reem en t f a c t o r , r e l i a b i l i t y f a c t o r , Hamil ton

agreement f a c t o r , or s imply R - f a c t o r . In Eq I I 1-40, w e i g h t i n g

f a c t o r s (w j) may be i n t r o d u c e d . For e v e r y s ig n a l y i e l d i n g a LIS

v a l u e W i= l . Use of w e i g h t i n g f a c t o r s i s ad van ta geous f o r

symmetr ica l m o l e c u l e s , or more g e n e r a l l y f o r any m olecu le where one

obse rved NMR r e s o n a n c e s ig n a l c o r r e s p o n d s to two or more n u c l e i

p l a c e d a t d i f f e r e n t s i t e s in the c o o r d i n a t e sy s tem . The a p p l i c a t i o n

of t h e ag r e e m e n t f a c t o r ( c o r r e s p o n d i n g to t h e l e a s t s q u a r e s f i t of a

model) in a s s e s s m e n t of h y p o t h e s i s r e l i a b i l i t y has been s t u d i e d

e x t e n s i v e l y by H a m i l t o n . 27 V a lu e s of R up to 0 .10 have been

1 0 5

c o n s i d e r e d t o r e p r e s e n t a good f i t , 3 w h i l e t h e 0 .04 to 0 . 0 6 r a n g e

f o r R h a s be en c o n s i d e r e d t o be a c c e p t a b l e f o r europium L S R ' s . 2 8

An R v a l u e o f 0 . 0 3 has been c o n s i d e r e d by some to be a c o n v e n i e n t

upper l i m i t f o r a c c e p t a b i l i t y o f a p r o p o s e d s t r u c t u r e . 16 However ,

s t r u c t u r e f i t s which r e l y o n ly on a m i n i m i z a t i o n of t h e ag reem en t

f a c t o r do n o t n e c e s s a r i l y a f f o r d an a c c e p t a b l e method f o r e v a l u a t i o n

of t h e bond l e n g t h between a d o n o r atom and a l a n t h a n i o e

n u c l e u s . 19 T h r e e q u e s t i o n s must now be a n sw e re d : ( i ) Shou ld d a t a

s e t s which i n c l u d e c o n t r i b u t i o n s f rom t h e a - h y d r o g e n s (which may

be u n d e r g o i n g c o n t a c t s h i f t ) be c o n s i d e r e d in d e t e r m i n i n g t h e

b e s t - f i t s t r u c t u r e ? ; < i i ) Are t h e ' f r e e ' or ' f i x e d ' d a t a s e t s m os t

a c c u r a t e ? ; ( i i i ) Which d a t a s e t b e s t r e p r e s e n t s t h e c o l l i s i o n

complex?

S i n c e t h e p o s s i b i l i t y of c o n t a c t s h i f t c o n t r i b u t i o n t o t h e bound

chemical s h i f t of p ro ton HyCHb') i s v e r y r e a l [ r e c a l l t h e

d i s c u s s i o n o f t h e i n f l u e n c e of t h e c o n t a c t s h i f t on th e d e v i a t i o n s

between t h e o b s e r v e d and c a l c u l a t e d chem ica l s h i f t s f o r Hb(Hb' )

in PART I I ] , e x p e r i m e n t s B5 , E5 , and Gy may not be a s a c c u r a t e

as a r e t h e r e l a t e d e x p e r i m e n t s A4 , D4 , and F^. The l a r g e r

v a l u e s o f t h e w e ig h t e d s t a n d a r d s h i f t d e v i a t i o n s f o r B5 , E5 , and

Gy < 0 . 0 1 4 , 0 . 0 1 8 , and 0 .016 ppm, r e s p e c t i v e l y ) a s opposed to t h o s e

f o r A4 , D4 , and ( 0 . 0 1 3 , 0 . 0 1 6 , and 0 . 0 1 2 ppm, r e s p e c t i v e l y )

s u p p o r t t h i s c o n c l u s i o n . A d m i t t e d l y , t h e d i f f e r e n c e s a r e smal l and

may be due i n p a r t t o the f a c t t h a t t h e e x t r a d a t a p o i n t s i n t r o d u c e

e r r o r . However , expe r i m en t F^ h a s m ore d a t a p o i n t s and a l s o h a s a

s m a l l e r s t a n d a r d d e v i a t i o n than e i t h e r A4 or D4 .

The q u e s t i o n of which d a t a s e t ( ' f r e e ' o r ' f i x e d ' ) i s most a c c u ­

r a t e c a n n o t be d e t e r m in e d u s i n g t h e w e i g h t e d s t a n d a r d s h i f t d e v i a t i o n

which was p r e v i o u s l y c a l c u l a t e d by LISA4, b e c a u s e the L I S A 4 - c a l c u -

l a t e d J j o b s chemical s h i f t s i n p u t t o NLLSQ a r e th e same f o r b o th

' f r e e ' and ' f i x e d ' c a l c u l a t i o n s w i t h i n an e x p e r i m e n t . I n s t e a d , one

m igh t r e l y on t h e r e s u l t s of t h e NLLSQ f i t t i n g p r o c e d u r e . In p a r t i c ­

u l a r , t h e RMSD and R - f a c t o r v a l u e s may p r o v i d e t h e b a s i s f o r j u d g e -

1 0 6

ment . However, t h e t r e n d s in T a b l e 11 1-3 a r e c o n t r a d i c t o r y in t h a t ,

w i t h i n each e x p e r i m e n t , t h e ' f r e e ' f i t g i v e s l a r g e r RMSD and s m a l l e r

R—f a c t o r v a l u e s . T h e r e f o r e , r e c a l l i n g th e d i s c u s s i o n o f t h e u se of

Eq 111-28 in which no a p r i o r i knowledge o f or r e s t r i c t i o n on t h e

p o s i t i o n of eu ropium in t h e c o l l i s i o n complex was n e c e s s a r y , i t was

f e l t t h a t t h e p o s i t i o n of eu rop iu m would most a c c u r a t e l y be d e t e r ­

mined by a ' f r e e ' e x p e r i m e n t which u t i l i z e d t h e most a c c u r a t e NLLSQ

i n p u t d a t a ( i . e . , t h e ' o b s e r v e d ' bound chemical s h i f t s d e t e r m i n e d by

th e LISA4 e x p e r i m e n t which gave t h e s m a l l e s t w e i g h t e d s t a n d a r d s h i f t

d e v i a t i o n ) and which y i e l d e d t h e s m a l l e s t R - f a c t o r . ' F r e e ' e x p e r i ­

ment most c l o s e l y f i t s t h e s e q u a l i f i c a t i o n s .

C lo se i n s p e c t i o n of T a b l e I I 1 -3 shows r e m a r k a b l e e x p e r i m e n t a l

c o n s i s t e n c y f o r a l l v a l u e s e x c e p t k . The v a l u e o f k does rema in

c o n s t a n t w i t h i n t h e 100 MHz e x p e r i m e n t s and a l s o w i t h i n t h e 300 MHz

e x p e r i m e n t s . The v a l u e of t h e 09-Eu d i s t a n c e in ' f r e e ' e x p e r i m e n t s

A4 , D4 , and F6 r a n g e s f rom 2. 041 to 2 .1 4 4 A ( a v e = 2 .8 7 6 S ) ,

w h i l e ©0 r a n g e s from 175.0 to 175.5° ( a v e = 1 7 5 . 3 ° ) . In

' f i x e d ' e x p e r i m e n t s A4 , D4 , and F^, R^g r a n g e s f rom 2 .0 5 6 t o

2.155 A ( a v e = 2 . 0 8 9 ^ ) . The o v e r a l l ' f r e e ' v a l u e s of Rgg and

60 a r e 2 .0 20 I and 1 7 6 . 4 ° , r e s p e c t i v e l y ( o n l y 3 . 6 ° o f f t h e

ca rb o n y l a x i s ! ) . The o v e r a l l ' f i x e d ' v a l u e of Rgg i s 2 . 0 2 8 %.

The c o n v e n t i o n a l r e p r e s e n t a t i o n o f t h e l o n e p a i r s o f e l e c t r o n s

bound t o europium in a e u r o p i u m - k e t o n e complex, shown in Eq I I 1 -4 1 ,

u s u a l l y a ss um es a Eu-O-C a n g l e n e a r 120°. However , t h e d bond

between ca r b o n and oxygen r e q u i r e s a h y b r i d o f o n l y t h e 2s and a

s i n g l e 2p o r b i t a l on oxygen, and a second p o r b i t a l i s nee ded f o r t h e

c o r r e s p o n d i n g t b o n d . 29 T h i s l e a v e s an sp h y b r i d a v a i l a b l e f o r

i n t e r a c t i o n w i t h eu ropium v i a a 1 i n e a r ( bond (Eq I I 1 - 4 2 ) . 3 0

A l s o , t h e empty 5d o r b i t a l s on europium have t h e a p p r o p r i a t e symmetry

and s i z e f o r i n t e r a c t i o n w i t h t h e r e m a i n in g p o r b i t a l on oxygen in a

t f a s h i o n . 31 The p r e s e n c e o f two n o n e q u i v a l e n t l o n e p a i r s of

e l e c t r o n s on s y m m e t r i c a l c a rb o n y l g ro u p s i s b o r n e o u t by t h e o r y 3 2

and e x p e r i m e n t .33

107

While t h e e v i d e n c e f o r c o o r d i n a t i o n w i th H+ i n d i c a t e s a

geometry c o r r e s p o n d i n g to Eq 111-41 (H-O-C = 115° ) , 3 4

c a l c u l a t i o n s i n d i c a t e t h a t Li'*’ p r e f e r s a l i n e a r geometry ( c f . Eq

I I 1 - 4 2 ) . 3 5 E x t e n s i v e c a l c u l a t i o n s a t t h e ST0-3G and ST0-3/21G

l e v e l s f o r t h e i n t e r a c t i o n of f o r m a ld e h y d e w i t h v a r i o u s f i r s t and

secon d row Lewis a c i d s i n d i c a t e t h a t a l i n e a r geometry i s p r e f e r r e d

when th e c a t i o n can a c t a s bo th 0 and t a c c e p t o r s . 36 Recent

MNDO c a l c u l a t i o n s 3 7 on t h e i n t e r a c t i o n of t r a n s - 1 , 2 - d i m e t h y l c y c l o -

p ropanone (DMCP) w i t h s e v e r a l b e r y l l i u m compounds have been

p e r f o r m e d . T h e s e c a l c u l a t i o n s i n d i c a t e e s s e n t i a l l y l i n e a r Be-O-C

bond a n g l e s of 179.98 and 179.94° f o r [DMCP-Be-HI"'’ and

[DMCP-Be-CHg]* c a t i o n i c complexe s , r e s p e c t i v e l y , and a Be-0 bond

l e n g t h of 1 .62 A in b o t h . N e u t r a l DMCP-BeH2 and DMCP-Be(CH3>2

complexes p o s s e s s e d c a l c u l a t e d Be-O-C bond a n g l e s of 150.98 and

151 .80° , and Be-0 bond l e n g t h s of 1.78 and 1.80 r e s p e c t i v e l y .

Conc lus ion

C o n s i d e r i n g t h e c o n s i d e r a b l e number of in c r e m e n ta l d i l u t i o n s

s t e p s (25 and 3 0 ) , t h e l a r g e number of chemical s h i f t o b s e r v a t i o n s

(&j) made (125 and 2 1 0 ) , the o b t e n t i o n of X - r a y d a t a from a

s i m i l a r bu t d i f f e r e n t compound, and i t e r a t i o n of th e d a t a th ro u g h

t h r e e s u c c e s s i v e computer p ro g ram s , t h e ag reemen t between t h e

c a l c u l a t e d v a l u e s of t h e c o n s t a n t 'V -' ( 1 9 8 0 . 1 ) , t h e europium-oxygeno

d i s t a n c e R^q ( a v e = 2 . 0 7 6 A) , and t h e Eu-C9-09 bond a n g l e 00

(1 7 5 . 3 ° ) and t h e i r i n d e p e n d e n t l y r e p o r t e d v a l u e s ( v i d e s u p r a ) i s

v e r y e n c o u r a g i n g . The s t r u c t u r e of t h e 1:1 E u ( f o d ) g - s u b s t r a t e

' c o l l i s i o n co m p lex ' a p p e a r s to be such t h a t t h e europium atom b i n d s

al o n g th e c a r b o n y l a x i s ( a c t u a l l y c a . 4 . 7 ° o f f t h e C9-09 a x i s ) ando

o c c u p i e s a p o s i t i o n c a . 2 .10 A from th e c a r b o n y l ca rbon (F ig 111 - 4 ) .

However, t h i s c o n c l u s i o n does n o t r u l e o u t th e f a c t t h a t a s i m i l a r

p o s i t i o n can be a c c o u n t e d f o r by an a v e r a g i n g of e q u i l i b r i u m

p o s i t i o n s one of which l i e s above and t h e o t h e r below t h e p l a n e

formed by t h e eye 1 o p en tan o n e r i n g and which a r e s y m m e t r i c a l l y

d i s p o s e d ab o u t t h e e x t e n d e d C2 ca rb ony l a x i s .

108

E x p er im e n ta l

I n p u t t o t h e 'G e n e r a l NLLSQ' co m pu ter program c o n s i s t e d of t h e

J j O b s che mic al s h i f t s o b t a i n e d in PART I I ( T a b le 11-10) and t h e

c a r t e s i a n c o o r d i n a t e s (T a b le I I I - l ) o f t h e f i v e p a i r s of m a g n e t i c a l l y

e q u i v a l e n t p r o t o n s [Ha(Ha-’ ) • • *He(He'> ] . The c o o r d i n a t e s of

CBa, C9, C9a, and 09 were a l s o i n p u t a s was t h e 09-09 bond d i s t a n c e

( R c o ) . The a tom ic c o o r d i n a t e s ( T a b l e I I I - l ) and the 09 -0 9 bond

d i s t a n c e ( T a b le 1-5) were o b t a i n e d a s d i s c u s s e d in t h e e x p e r i m e n t a l

s e c t i o n of PART I . O a r t e s i a n c o o r d i n a t e s we re c a l c u l a t e d f rom t h e

a t o m i c c o o r d i n a t e s by th e Mean P l a n e p r o g r a m . 4

E r r o r A n a l y s i s

E r r o r s in c a l c u l a t i o n of t h e o b s e r v e d bound s h i f t s as d e t e r m i n e d

by LISA4 we re d i s c u s s e d in PART I I . E r r o r s in t h e O a r t e s i a n c o o r d i ­

n a t e s i n p u t to NLLSQ were d i s c u s s e d in PART I . The av e rag e e r r o r in

t h e N L L SQ -c a lcu la ted v a l u e s of k, Re q , and t h e europium c o o r d i n a t e s

a r e , r e s p e c t i v e l y , 58 .13 ( c a . 3%), 0 . 0 3 9 i§ ( c a . 4%), and 0 . 0 9 9 S ( c a .

1%) .

1 0 9

BIBLIOGRAPHY

1. Mayo, B. C. Chem. Soc. Rev. 1973. 2 , 49.

2 . C o c k e r i l l , A. F . : Dav ies , G. L. 0 . ; Harden, R. C . ; Rackham, D.M. Chem. Rev. 1973. 73, 533.

3 . Ho-fer, 0. Too. S te reo c h em . 1976. 9 , 111.

4 . W i l l c o t t , M. R . ; Davis , R. E. S c i e n c e 1975. 190. 850 .

5 . (a) K r i s t i a n s e n , P . ; L e d a a l , T . T e t r a h e d r o n L e t t . 1971. 2817 .<b) Rondeau, R. L . : Berwick , M. A. A i r Force M a t e r i a l s L a b o r a t o r y T e c h n i c a l R e p o r t , AFML-TR-71 -2 82(1972) .<c) ApSimon, J . W . ; B ierbecK, H. T e t r a h e d r o n L e t t . 1973, 581 .(d) F a r i d , S . ; A tey a , A . ; M agg is , M. Chem. Commun. 197 1. 1285. <e) B r i g g s , J . ; H a r t , F. A . ; Moss , G. P. Chem. Commun. 1970, 1506. ( t ) R o b e r t s , J . D . ; Hawkes, G. E . : Hussar , J . ; R o b e r t s ,

A. W . ; R o b e r t s , D. W. T e t r a h e d r o n 1974. 30, 1833.<g) Tr i - f unac , A. D. ; Ka tz . J . J . J . ^ . üiïem. S o c . 197 4, 96 , 523 3 . <h) L a v a l e e . D. K. : Z e l t m a n . A. H. J . Am. Chem. Soc.1974. 96, 5552.

6 . The 'G e n e ra l NLLSQ' and 'Mean P l a n e ' computer p ro g ram s w ere p r o v i d e d by Dr. E r i c En wa l l , U n i v e r s i t y o-f Oklahoma.

7 . (a) S h a p i r o , B. L . ; J o h n s t o n , M. D. J . Am. Chem. S o c . 1972.94 , 8185. (b) J o h n s t o n , M. D . ; S h a p i r o , B. L . ; P r o u l x , T. W. ; ï ïôdwin, A. D . ; P e a r c e , n H. L. J . Am. Chem. Soc . 1975. 9 7 . 542 .

8 . J o h n s o n , B. F . G . : Lewis , J . : McA rd le , P . ; N o r t o n , J . R. Chem.Commun. 1972. 535

9 . (a ) S a l a s , S . L . ; H i l l e , E. " C a l c u l u s : One and S e v e r a lV a r i a b l e s ' ; 2nd e d . , M cu or k le , M. , E d . ; Xerox C o l l e g e P u b l i s h i n g : L ex in g to n , M a s s . , 1974; chp 12. (b) "CRC Handbooko-f C hem is t r y and P h y s i c s " ; 5 9 th e d . , W eas t , R. C. E d . ; CRC P r e s s I n c . : West Palm Beach, F l a . , 1979; p F -124.

10. (a) H i n c k l e y , C. C . ; Brumley, W. C. J . Maon. Reson . 1976. 2 4 .239. <b) H i n c k l e y . C. C. Brumley . W. C. J . Am. Chem. S o c .1976. 98, 1331.

11. R a b e r , D. J . ; Yanks, L. M . ; J o h n s t o n , M. D . ; Raber , N. K. P r o . Maon. R eso n . 1981. j s , 57 .

12. (a) Ammon, H. L . ; Mazzochi , P . H . ; C o l i c e l l i , E. J . P r o . Maon.R e s o n . 1978. 11, 1. (b> Abraham, R. J . ; Chadwick, D. J .S a n c a s s a n , R."T e t r a h e d r o n L e t t . 197 9 . 265. (c) Ammon, H. L . ;M az zo ch i , P. H . : Liu . L. ChemT L e t t . 1980. 879.

13. (a ) R ab er , D. J . ; J o h n s t o n , M. D . ; P e r r y , J . W.j J a c k s o n I I I ,G. F . J . P ro . Chem. 1978. 43, 2 2 9 . (b) Raber , D. J . ; J o h n s t o n ,M. D . ; Schwalke , M. A. J . Am. Chem. S o c . 1977. 99, 7671 .<c) Jo h n s to n M. D . ; Raber , D. J . ; De Gennaro, N. K . ; D 'A nge lo , A . ; P e r r y , J . W. J . Am. Chem. S o c . 1976. 9 8 . 6042. (d) H a je k , M . ; T r s k a , P . ; Vodicka . L . : H l a v a t y . J 7 P ro . Maon. R e s o n . 1 9 7 ? . j 0 , 52 . (e) Ho-fer, 0. Mona tsh . Chem. 19797 i 187 V79.

l i e

<-f) AI l i n g e r , N. J . Am. Chem. S o c . 1969. 9 1 . 337 .

14. <a) S i k i r i c a , M . ; V i k o v i c , I . : C a p l a r , V . : S eg a . A . : L i s i n i ,A. ; Kaj-fez. F. ; S u n j i c , V. J . P ro . Chem. 1979. 4 4 , 4423.(b) Gray, A. I . ; Waigh, R. D . : Waterman, F. G. 3 7 Chem. Soc.P e r k i n T r a n s . 1978. 2 , 3 9 1 . , (c) Bearden, W. H . : D a v i s , R . :Wi11c o t t , M. R . ; SnyH er , J . P . J . P ro . Chem. 1 979 . 44, 1974.

15. ( a ) R ab er , D. J . ; Y anks , C. M . : J o h n s t o n , M. D . j R a b e r , N. K.T e t r a h e d r o n L e t t . 1980. 21 , 6 7 / . (b) Abraham, R. J . ; B o v i l l ,M. J . ; UhadwicK, D. J . j G r i f f i t h s , L . ; S a n c a s s a n , F. T e t r a h e d r o n 1980. 3 6 , 279. <c) De T a r , D. F . : L u t h r a , N. P. J . P r o . Chenü~ ly79. 447 3299 . <d) Rab er , D. J . ; Y a n k s , C. M. : J o h n s t o n , M. 5 . ; S ch w a lk e , M. A. J . P ro . Chem. 1981 . 4 6 . 2528.

16. ( a ) A l l i n o e r . N. L. QCPE 1976. 11. 318. (b) A l l i n o e r . N. L . :Yuh, Y. k : 1 9 8 0 7 1 7 , ~ 3 9 5 . ~

17. A 1 l i n g e r , N. L. Adv. Phvs . P r o . Chem. 1972. 13. 2 9 .

18. ( a ) Newman, R. H. T e t r a h e d r o n 1974. 30, 969 . (b> L i e n a r d , B.H. S . ; Thomson, A. J . J . Chem. S o c . . ~ T e r k i n T r a n s . 1977. 2, 1390. (c ) L e n k i n s k i . k . E . : Reuben. J . J . Am. Chem. Soc . 1976.9 8 , 276, 4065.---------------------------------------------- -----------------------------

19. Abraham. R. J . : Chadwick. D. J . : G r i f f i t h s . L. T e t r a h e d r o nL e t t . 1979. 48, 4691 . --------------------

20 . Kime, K. A . ; S i e v e r s , R. E. A l d r i c h i m i c a A c ta 1 9 7 7 . 18 . 54 .

21 . E ra smus . C. S . ; Boyens . J . C. A. A c ta C r y s t a l 1o o r . . S e c t . B1970 . B26. 1843. ------------ ------------

23 . R a b e r , D. J . ; Yanks, C. M . : J o h n s t o n , M. D. ; R a b e r , N. K. J ■Am. Chem. Soc . 1980. 102. 6594.

24. ( a ) Wolkowsky, 2 . W. T e t r a h e d r o n L e t t . 1971. 82 1 . (b) Dahl ,S . ; G ro th , P. A c ta Chem. S c a n d . in p r e s s .

25 . ( a ) Cunningham, J . A . : S i e v e r s , R. E. J . Am. Chem. S o c . 1975.9 7 , 1586. <b> Boyens , J . C. A . : de O i l l i e r s , J . P . R. Ac taC r y s t a l 1o o r . . S e c t . B 1970. B26. 1843.

2 6 . W i l l c o t t , M. R . : L e n k i n s k i , R. E . : D av is , R. E. J . Am. Chem. S o c . 1972. 94, 1742, 1744.

27 . <a> Hami l ton , W. C. A c ta C r y s t a l 1o o r . 1965. 18, 50 2 .(b ) H ami l ton , W. C. " S t a t i s t i c s in P h y s i c a l S c i e n c e " ; Ronald :New Yor k , 1964; pp 157-162 .

2 8 . D a v i s , R . E . ; W i l c o t t , M. R . ; L e n k i n s k i , R. E . : von D o e r in g , W.;B i r l a d e a n u , L. J . Am. Chem. S o c . 1973. 9 5 . 6846.

29. C f . : J o r g e n s e n , W. L . ; Salem, L. "The Organ ic C h e m i s t ' s Booko f O r b i t a l s " ; Academic P r e s s : New York, 1973; pp 4 2 - 4 3 .

30. H o f e r , 0 . Monatsh. Chem. 1979. 110, 745. (b) F o l d e s i , P . ;H o f e r , 0 . T e t r a h e d r o n L e t t . 1980. 2137.

31 . ( a ) M o e l l e r . T. MTP I n t . Rev. S c i . ; I n o r o . Chem. S e r . One.1971. 7 , 275. <b) Mar ks , r . J . P ro p . I n o r o . Uhem. 1 9 / 8 . 24.

32. R e f e r e n c e 29. The d r a w i n g s on pp 84 , 141-142, 147-14 8 , and 213-215 i l l u s t r a t e t h e n o n e q u i v a l e n t nonbonding o r b i t a l s f o r f o r m a ld e h y d e , a c e t a l dehyde , formyl f l u o r i d e , and a c e t o n e , r e s p e c t i v e l y :

I l l

33 . <a) Hernandez , R . ; M a s c l e t , P . ; Mouvi e r , G. J ■ E l e c t r o n .S p e c t r o s c . R e i a t . Phenom. 1977. 10, 333. <b) Cederbaum, L. S . ;DomcKe. W. : v . N i e s s i n T w . Chem. ' Thvs . L e t t . 1975, 34 , 60 .

34. L a t h a n , W. A. ; C u r t i s , L. A. ; Hehre , W. J . ; L i s t e , J . B; P o p l e , J . A. P r o p . Phvs . P r o . Chem. 1974. 11 . 175.

35. (a ) Del Bene, J . E . Chem. P h v s . 1979. 40, 329. <b) Ha, T . K . ;Wi l d , U. P . ; Kuhne, k . Ü. : Loesch , C. ; Scha- f - fhauser , t . ; S t a c h e l , J . ; Wokaun, A. He l v . Chim. Ac t a 197B, 6 1 . 1193.

36. R a b e r . D. J . ; Raber , N. K . ; v . R. S c h l e y e r , P . , u n p u b l i s h e d r e s u l t s .

37 . N e l s o n , D. J . ; E a r l y w i n e , A. D. , u n p u b l i s h e d r e s u l t s .

PART I V

A CONTINUATION OF THE STUDY OF THE STEREOCHEMISTRY AND MECHANISM

OF THE IRON PENTACARBONYL-PROMOTED COUPLING OF

STRAINED OLEFINS TO CARBON MONOXIDE

I n t r o d u c t i o n

The o b s e r v a t i o n has r e c e n t l y been r e p o r t e d ^ t h a t 7 - t e r t - b u t o x y -

n o r b o r n a d i e n e ( I ) r e a c t s wi t h Fe(C0)5 to a f f o r d t h e

s y n - e x o - t r a n s - e n d o - s y n (SXTNS) dimer k e t o n e I I ( Tab l e I V - 1) a l o n g

wi t h a t l e a s t f o u r o t h e r p r o d u c t s . T h i s r e s u l t was i n t e r p r e t e d as

p r o v i d i n g e v i d e n c e f o r t he d i r e c t m e c h a n i s t i c i nvo l vement of t h e

7-Lewi s b a s e s u b s t i t u e n t in t he i r o n ca r b o n y l promoted c o u p l i n g of I

w i t h c a r b o n monoxi de . In o r d e r t o f u r t h e r d e l i n e a t e t he r o l e of

s y n - 7 - L e w i s b a s e s u b s t i t u e n t s in d i r e c t i n g t h e s t e r e o c h e m i c a l outcome

of t h i s r e a c t i o n a c o r r e s p o n d i n g s t u d y of t h e thermal r e a c t i o n s of

7-phenyl n o r b o r n a d i e n e ( V I I I ) and 7 - o - a n i s y l n o r b o r n a d i e n e (X) w i t h

Fe(C0)5 was u n d e r t a k e n ( T a b l e I V - D . 2

The r a t i o n a l e f o r choos i ng VI I I and X a s s u b s t r a t e s i n t h a t s t u d y

were a s f o l l o w s : u n l i k e lone p a i r s u b s t i t u e n t s (such a s 0 - t - B u ) , a

phenyl g r o u p l a c k s s u f f i c i e n t Lewis b a s i c i t y to c o o r d i n a t e w i t h

Fe(C0) 5 .4 Hence, t h e 7-phenyl g r oup s h o u l d f u n c t i o n on l y t o

b l ock t h e exo f a c e of t h e doub l e bond syn t o t h a t s u b s t i t u e n t in

V I I I . Co u p l i n g of VI I I wi th ca rbon monoxi de , a c c o r d i n g l y , s h o u l d

occur t h r o u g h t h e c o r r e s p o n d i n g a n t i d o u b l e bond. P r i o r e x p e r i e n c e

w i t h t h e r e s u l t s of t h e thermal r e a c t i o n of n o r b o r n a d i e n e i t s e l f w i t h

Fe(C0>5 s u g g e s t s t h a t coup l i ng t h r ough t h e a n t i double bond i n VI I I

s h o u l d p r o b a b l y occur t h rough the exo f a c e , and t he r e by a f f o r d t h e

1 1 2

1 1 3

T a b l e I V - 1

R e p r e s e n t a t i v e R e a c t i o n s of Some S u b s t i t u t e d Nor bor nad i ene

Compounds wi th I r on P e n t a c a r b o n y l .

Reac t i on R e f e r e n c e

Oo

MO ICACTIOM2 .

m3.

T - r a -B l

4. r.(co).

r.(co)5.

■CH,

(A-X-T-X-A) (26^)

OCM,

( x - r - N ) (a^oia)Z Œ

1 1 4

a n t i - e x o - t r a n s - e x o - a n t i (AXTXA) dimer k e t o n e I X . 4

The s i t u a t i o n cou l d c o n c e i v a b l y be d i f f e r e n t f o r t h e c o r r e ­

s p o n d i n g t he r ma l r e a c t i o n of X w i t h Fe(C0>5 . He re , t h e o-methoxy

g r oup p o t e n t i a l l y can e n t e r i n t o c o m p l e x a t i o n wi t h F e ( 8) and t h e r e b y

d i r e c t c o u p l i n g t h rough t h e d o u b l e bond syn t o t h e 7 - o - a n i s y l

s u b s t i t u e n t . I n d e e d , such d i r e c t i n v o l v e me n t of t h e s y n - 7 - L e w i s base

s u b s t i t u e n t was s u g g e s t e d p r e v i o u s l y t o ac coun t f o r t h e o b s e r v e d

SXTNS s t e r e o c h e m i s t r y of t h e d i mer k e t o n e formed v i a Fe(C0>5-

p r omot ed c o u p l i n g of I^ and of X I I ^ t o ca rbon monoxi de . Thus , i t

was hoped t h a t t h e s t udy mi gh t p r o v i d e f u r t h e r e v i d e n c e f o r t he

m e c h a n i s t i c i n v o l v e me n t of a Lewis b a s e s u b s t i t u e n t in a d d i t i o n a l

Fe(CO) 5 " p r o mo t e d c o u p l i n g r e a c t i o n of t h i s t y p e ( c f . T a b l e

IV-1) A

The o b s e r v a t i o n t h a t XI p o s s e s s e s t h e AXTXA c o n f i g u r a t i o n i s

n o t e w o r t h y , a s X i s t he f i r s t exampl e of a n o r b o r n a d i e n e b e a r i n g a

Lewis b a s e s u b s t i t u e n t which does no t c o u p l e t h rough t h e d o u b l e bond

syn t o t h a t s u b s t i t u e n t . T h i s o b s e r v a t i o n may have s i g n i f i c a n t

b e a r i n g on t h e mechanism of t h e c o u p l i n g r e a c t i o n . An i m p o r t a n t s t e p

in t h e F e ( 0 ) - p r o m o t e d o l e f i n - C O c o u p l i n g r e a c t i o n s u g g e s t e d by

M a n t z a r i s and We i s b e r g e r ? i n v o l v e s t h e r e v e r s i b l e r e a c t i o n of an

( o l e f i n ) F e < C 0)3 complex wi t h a m o l e c u l e of noncomplexed o l e f i n to

a f f o r d an ( o l e f i n ) 2Fe(C0>3 compl ex . T h i s complex i s b e l i e v e d to

be t r i g o n a l b i p y r a mi d a l ( F i g IV-1) w i t h t h e a l k e n e s l o c a t e d in

e q u a t o r i a l p o s i t i o n s and complexed t o i r o n v i a t h e l e s s h i n d e r e d exo

s i d e . 8 T h e r e i s c o n s i d e r a b l e e v i d e n c e which s u g g e s t s t h a t

n o r b o r n e n e s and n o r b o r n a d i e n e s b e a r i n g 7 - o x y g e n - c o n t a i n i n g

s u b s t i t u e n t s under go compl exa t i on w i t h Fe(0) in s y n - e x o f a s h i o n ( F i g

I V - 2 ) . 4 , 9 Sup p o r t f o r t h i s s u g g e s t i o n came w i t h t h e i s o l a t i o n of

t h e complex shewn in Fig IV-3 wh i ch was p r e p a r e d by L a s z l o and

S t o c k i s . 1 0 Howe'ver, t he d i s t a n c e be t ween t h e o - a n i s y l oxygen atom

and t h e syn d o u b l e bond i n X a p p e a r s t o be t oo smal l t o p e r mi t

i n c o r p o r a t i o n of an Fe(0) m o i e t y between t h e s e two g r o u p s ;

a c c o r d i n g l y , c o u p l i n g t h rough t h e exo f a c e of t h e syn d o u b l e bond in

1 1 5

F I G U R E I V - 1

T r i g o n a l Bi pyrami da l O r i e n t a t i o n o-f t h e Organomet a l 1 i c

<ole-f i n ) 2^e<C0) 3 Complex Which Leads t o Fo rmat i on o-f t h e X-T-X

Di mer i c Ketone as S u g g e s t e d by M a n t z a r i s and W e i s b e r g e r .

CO

f o

CO

FIGURE IV-2

Syn-Exo Fe(0) Complexa t i on in a 7 - O x y g e n - S u b s t i t u t e d Norbor nene or

N o r b o r n a d i e n e Which Leads to t h e X-T-N S t e r e o c h e m i s t r y .

/ /o .

.CO

CO

FIGURE IV-3

The Complex P r e p a r e d by L a s z l o Which Su p p o r t s t h e P o s s i b i l i t y o-f

Syn-Exo Compl exa t i on as Sugges t ed in F i g I V- 2 .

COCO

CO

OCH.

iCH

1 1 6

X i s u n l i k e l y on s t e r i c g r ounds .

In c o n t r a s t to t h i s r e s u l t , i n s p e c t i o n o-f mo l e c u l a r mo d e l s

s u g g e s t s t h a t t h e r e i s ample room f o r t h e u n s h a r e d e l e c t r o n s on t h e

o - a n i s y l oxygen atom t o i n t e r a c t w i t h t he exo t - l o b e s of t h e syn

d o u b l e bond in noncomplexed X ( F i g I V- 4 ) . T h i s i n t e r a c t i o n s h o u l d

FIGURE IV-4

C o n f i g u r a t i o n a l I n t e r c o n v e r t a b i l i t y of t h e A n t i a r o m a t i c and

S t e r i c I n t e r a c t i o n s Via R o t a t i o n About t h e C^-Aryl Bond.

XI I

r e s u l t in b i s h o m o c o n j u g a t i v e , a n t i - a r o m a t i c e l e c t r o n i c a c t i v a t i o n of

t h e syn d o u b l e bond by t he o - a n i s y l oxygen atom. The n e t r e s u l t of

t h i s i n t e r a c t i o n shoul d be t o r a i s e t h e ene r gy of t h e HOMO of t h e syn

d o u b l e bond r e l a t i v e t o t h a t of t h e a n t i d o u b l e bond in X . l l ;12

T h i s e l e c t r o n i c i n t e r a c t i o n in t h e noncomplexed o l e f i n mi ght e x p l a i n

t h e o c c u r r e n c e of c o u p l i n g in e . g . , I and X I I , t hrough t h e endo f a c e

of one of t h e two n o r b o r n a d i e n y l m o i e t i e s which r e s u l t s in t h e

f o r m a t i o n of an e x o - t r a n s - e n d o dimer k e t o n e in t h e r e s p e c t i v e t he rma l

r e a c t i o n s of t h e s e s u b s t r a t e s w i t h Fe(C0>5 . However, an o p t i o n

which i s open t o t he methoxy g r o u p in X which i s not a v a i l a b l e t o any

1 1 7

o t h e r 7 - Le wi s b a s e s u b s t i t u e n t in a n o r b o r n e n e or n o r b o r n a d i e n e t h u s

■far s t u d i e d i s i t s a b i l i t y to avo i d t h e ( u n f a v o r a b l e ) a n t i a r o m a t i c

b i s h o m o c o n j u g a t e d o r b i t a l i n t e r a c t i o n d i s c u s s e d above s imply by

r o t a t i n g a b o u t t h e C7-ar y l bond ( F i g I V - 4 ) . Once t h i s o c c u r s , t he

methoxy oxygen atom i s removed f rom t h e r e a c t i o n s i t e , and t he

7 - o - a n i s y l g r o u p in X becomes o p e r a t i o n a l l y i n d i s t i n g u i s h a b l e from

7 - phe ny l i n t h e c o u p l i n g r e a c t i o n wi t h Fe(C0>5 . For t h i s r e a s o n , X

r e a c t s w i t h Fe(C0)5 in t he same manner a s does V I I I , both

s u b s t r a t e s a f f o r d i n g onl y t h e c o r r e s p o n d i n g AXTXA dimer k e t o n es (IX

and XI , r e s p e c t i v e l y ) . 12

Based upon t h e s e c o n s i d e r a t i o n s . Marchand and Ha y es l ^ proposed

t h e f o l l o w i n g mechani sm (Scheme IV-1) t o e x p l a i n t h e obs e r ved s t e r i c

and e l e c t r o n i c e f f e c t s of 7 - l o n e p a i r - b e a r i n g s u b s t i t u e n t s and t he

a n t i d o u b l e bond a s t hey r e l a t e t o p r o d u c t s t e r e o c h e m i s t r y . Equa t i on

IV-2 i s t h e mechani sm proposed by L a s z l o and W e i s b e r g e r ^ f o r

f o r m a t i o n o f t he s y n - e x o - ( o l e f i n ) F e ( C 0)3 complex which i s in

e q u i l i b r i u m wi t h t h e <o1e f i n ) 2Fe(C0)3 complex (Eq IV- 5 ) .

K i n e t i c a l l y , endo- s yn f o r ma t i on (Eqs IV-4 and IV-5) i s t hought t o

be f a v o r e d s i n c e i t a l l o w s both 7-Lewi s b a s e and a n t i double bond

a s s i s t a n c e i n t h e c y c l i z a t i o n - i n s e r t i o n p r o c e s s . A l s o , s i n c e t he

7 - a l k o x y s u b s t i t u e n t i s i n c a p a b l e of r o t a t i o n away from t he syn

d o u b l e bond and t h e r e b y removing t h e a n t i a r o m a t i c e f f e c t ( c f . t he

d i s c u s s i o n o f F i g I V - 4 ) , t h e r e s u l t i n g more r e a c t i v e syn double bond

may overcome t h e u n f a v o r a b l e s t e r i c e f f e c t of endo a d d i t i o n and t hus

d r i v e t h e e q u i l i b r i u m toward t h e SXTNS p r o d u c t (Scheme I V - 2 ) .

R e s u l t s and D i s c u s s i o n

In an e f f o r t t o f u r t h e r e l u c i d a t e t h e p a r t i c i p a t i o n and d i r e c t i n g

e f f e c t of t h e 7 - Lewi s ba s e and the a n t i d oub l e bond of n o r b o r n a d i e n e -

d e r i v a t i v e c o u p l i n g t o ca rbon monoxide, t h e r e a c t i o n s in Tabl e IV-2

were p e r f o r m e d .

7 - B e n z o y l o x y n o r b o r n a d i e n e (XIV) was t h o u g h t t o p o s s e s s e l e c t r o n i c

1 1 8

SCHEME I V - 1

Mechanism o-f t he I ron P e n t a c a r b o n y l - P r o m o t e d C o u p l i n g of

S t r a i n e d O l e f i n s t o Carbon Monoxide as S ugges t ed by

Marchand and H a y e s . 3

Fe(CC), Fe(C O ). + CO

Fe(CO)- COFe(CO)j + CO

(CO)

+

•0

S-X-T-N-S

n

-f- Fe produota

1 1 9

SCHEME I V - 2

S u g g e s t e d Mechanism f o r F o r ma t i on of S-X-T-N-S

7 - t - B u t o x y Dimer Ketone I I .

Fe(CO) Fe(CO)

couples exo-syn couples endo-syn

Fe(CO)

n

p r o p e r t i e s c o mp a r a b l e enough t o I and s t e r i c p r o p e r t i e s compar ab l e

enough t o V I I I and X so t h a t a d i s t i n c t i o n c o u l d be made as t o which

e f f e c t ( s t e r i c , e l e c t r o n i c , or a c o m b i n a t : :n c f bo t h ) p r e d o m i n a t e s in

p r o d u c t s t r u c t u r e d e t e r m i n a t i o n . P r o v i d e d t h a t t h e s t e r i c f a c t o r s

r e s p o n s i b l e f o r t h e f o r ma t i o n of IX and XI do n o t p r e d o mi n a t e , i t was

b e l i e v e d t h a t an oxygen in XIV was c a p a b l e of f u n c t i o n i n g a s in

compound I (Eq IV-5) t o g i v e t h e SXTNS p r o d u c t . I t might t hen be

p o s s i b l e t o c hoos e between SXTNS or AXTXA p r o d u c t s by s u b s t i t u t i o n of

t h e a p p r o p r i a t e a l k o x y (or acy l oxy) or a l k y l ( o r a r y l ) g roup a t t he

1 2 0

TABLE I V - 2

P r o p o s e d R e a c t i o n s o-f Some S u b s t i t u t e d No r b o r n a d i e n e

Compounds wi t h I r o n P e n t a c a r b o n y l .

R e a c t i o n

AtAt

Fe(CO)q. ( n -Bu)?0 ^

7 . XIV; Ar = Benzoyloxy

8 . XVII : Ar = p - An i s oy l oxy

XV

XVII

Ar

+

XVI

XIX

Fe(CO)^, ( n - Bu ) o O

9 . XX XXI

OgEt

7 - p o s i t i o n .

R e a c t i o n 9 o-f Ta b l e IV-2 i s o-f p a r t i c u l a r i n t e r e s t . T a b l e IV-3

s ummar i ze s t h e p o s s i b l e d i me r i c k e t o n e p r o d u c t s which c o u l d r e s u l t

-from such a r e a c t i o n bec aus e o-f t h e -fact t h a t one doub l e bond

p o s s e s s e s an e l e c t r o n w i t h d r a wi n g g r o u p c a p a b l e of a l t e r i n g t he

1 2 1

TABLE I V - 3

X-T-X Dimer i c Ke t ones Which Could R e s u l t -from t h e Reac t ion o-f

2 - C a r b o e t h o x y n o r b o r n a d i e n e wi t h I r o n P e n t a c a r b o n y l .

S u b s t i t u e n t s

Cmpd

XXII

XXIII

XXIV

XXV

XXVI

XXVII

XXVIII

XXIX

XXX

XXXI

Rl R r R2 R 2 '

X X

X

R3 Rs"" R4 R4 '

X

X X

X X

X

C02Et

RZ'RZ'

R2,R3'R3 .R3 'R i . R i '

R4,R4'

Rl , R4 '

Ri ,R2 '

R21R4 '

R1.R3 'Rs,R4'

Based upon t h e e v i d e n c e a s d i s c u s s e d in t h e t e x t , t h e most l i k e l y

p r o d u c t s a r e XXII , X XI I I , and XXIV.

1 2 2

c o u p l i n g r e a c t i o n in s e v e r a l ways . F i r s t , i n t h e c y c l i z a t i o n

r e a c t i o n ( c t . Scheme I V- I , Eq IV-4) in which t h e n u c l e o p h i l i c i r o n

i n t r a m o l e c u l a r l y a t t a c k s e l e c t r o n d e f i c i e n t c a r b o n , c a r b o e t h o x y

s u b s t i t u t i o n of t h a t ca rbon would t e n d t o d e s t a b i l i z e t he p o s i t i v e

c h a r g e g e n e r a t e d t h e r e upon 0 bond f o r m a t i o n , bu t would a t t h e

same t ime t e n d t o i n c r e a s e n u c l e o p h i l i c a t t a c k a t t h a t p o s i t i o n .

Second, d i s p l a c e m e n t of CO ( c f . Eq IV-5) by a d o u b l e bond which i s a

weaker n u c l e o p h i l e ( b e c a u s e of c a r b o e t h o x y s u b s t i t u t i o n ) would be

e x p e c t e d t o be l e s s f a c i l e than in t h e c a s e of an u n s u b s t i t u t e d

d o u b l e bond. T h i r d , i t i s known t h a t t h e p r e s e n c e of e l e c t r o n

wi t h d r a w i n g g r o u p s such as t h a t in methyl a c r y l a t e improves r e a c ­

t i v i t y of an o l e f i n wi t h Fe(CO)s r e l a t i v e t o an u n s u b s t i t u t e d

d o u b l e b o n d . 14 i f t h i s o c c u r s , t h e d o u b l e bond which i s c a r b o ­

e t h o x y s u b s t i t u t e d s h o u l d p r e f e r e n t i a l l y b i n d t h e Fe(C0)4 m o i e t y

( c f . Scheme I V - I , Eq IV- 2 ) , fo rmi ng a s t a b l e complex which i s no t a s

l i k e l y t o under go f u r t h e r r e a c t i o n . F o u r t h , f o r m a t i o n of t h e new

0' bond of t h e k e t o n e would be u n f a v o r a b l e i f Fe(C0)3 i n s e r t i o n

had o c c u r r e d t h r o u g h doub l e bonds which were c a r b o e t h o x y - s u b s t i t u t e d ,

a g a i n due t o t h e e l e c t r o n w i t h d r a wi n g e f f e c t . F i f t h , s i n c e t h e

p r e s e n t s t u d y was i n i t i a t e d , i t ha s been r e p o r t e d l y t h a t

2 , 3 - d i c a r b o e t h o x y n o r b o r n a d i e n e r e a c t s w i t h Fe(C0)5 t o form an XTX

dimer k e t o n e w i t h no ca r boe t hoxy g r oups on t h e c e n t r a l c y c l o p e n t a n o n e

r i n g . The s t e r i c e f f e c t of hav i ng t h e c e n t r a l cy c l o p e n t a n o n e r i n g

t e t r a - s u b s t i t u t e d w i t h C02Et would ap p e a r t o be u n f a v o r a b l e due t o

t h e r e s u l t i n g endo s u b s t i t u t i o n of g r o u p s c o n s i d e r a b l y more bu l ky

t han hydr ogen . The l a t t e r i s b e l i e v e d t o be t h e most i mp o r t a n t

c o n s i d e r a t i o n in p r e d i c t i n g t h e outcome of t h e r e a c t i o n of Fe(C0>5

w i t h 2 - c a r b o e t h o x y n o r b o r n a d i e n e . T h e r e f o r e , t h e bulk of t h e

a v a i l a b l e e ' v idence s u g g e s t s t h a t any dimer k e t o n e p r o d u c t ( s ) of

r e a c t i o n 9 woul d be ex p e c t e d t o p o s s e s s an XTX c o n f i g u r a t i o n and a

c e n t r a l c y c l o p e n t a n o n e r i n g which i s no t c a r b o e t h o x y d i s u b s t i t u t e d

( c f . Tab l e IV-3 compounds )(XII, XXI I I , a n d / o r XXIV).

Re t u r n i n g t o r e a c t i o n 7 of T a b l e IV-2, 7- b e n z o y l o x y n o r b o r n a d i e n e

1 2 3

( F i g s IV-5 and IV-6 -for NMR and IR, r e s p e c t i v e l y ) was r e a c t e d wi t h

Fe(C0>5 and t h e p r o d u c t s i s o l a t e d v i a column c h r o ma t o g r a p h y . The

■f i rs t compound r e c o v e r e d was unchanged 7 - b e n z o y l o x y n o r b o r n a d i e n e

■fol lowed by cage d i e s t e r XVI ( F i g s IV-7 t h rough IV-11 ■for NMR, IR,

mas s , s p i n echo , and HOMCORl^ s p e c t r a , r e s p e c t i v e l y , and F i g I V - 12

■for an expanded view of t h e u p f i e l d r e g i o n of t h e HOMCOR s p e c t r u m of

F i g I V - 1 1 ) . Next t o be e l u t e d were dimer k e t o n e s XV (AXTXA, F i g s

IV-13 t h r o u g h IV-16 f o r NMR, IR, mas s , and s p i n echo s p e c t r a ,

r e s p e c t i v e l y ) , XXXII (SNTNS, F i g s IV-17 through IV-20 f o r NMR, IR,

mas s , and s p i n echo s p e c t r a , r e s p e c t i v e l y ) , and XXXIII (AXTNA, F i g s

IV-21 t h r o u g h IV-25 f o r NMR, IR, mas s , s p i n echo , and HOMCOR s p e c t r a ,

r e s p e c t i v e l y ) . Next e l u t e d was cage dimer k e t o n e XXXIV ( F i g s IV-26

t h r o u g h IV-29 f o r NMR, IR, mass , and s p i n echo s p e c t r a ,

r e s p e c t i v e l y ) . Las t t o be e l u t e d we re smal l amount s of

u n c h a r a c t e r i z e d o i l y r e s i d u e s .

Compound X"VI was a s s i g n e d i t s s t r u c t u r e based on t h e f o l l o w i n g :

( i ) c o mp a r i s o n of i t s I'JMR and IR s p e c t r a wi t h t h o s e of compound V;

( i i ) a c c u r a t e mo l e c u l a r we i g h t d e t e r m i n a t i o n by mass s p e c t r o m e t r y ;

( i i i ) e l e m e n t a l a n a l y s i s of i t s ca r bon and hydrogen c o n t e n t ; ( i v ) IR,

13c, s p i n e c h o , and HOMCOR s p e c t r a which c o n t a i n t h e a p p r o p r i a t e

a b s o r p t i o n s . That 7 p a i r s of e n a n t i o m e r i c ca rbon atoms [ c o n t a i n i n g

e n a n t i o m e r i c p r o t o n s Ha(Ha ' ) t h r ough Hg(Hg/) I a r e p r e s e n t in

cage compounds of t h i s t ype i s i n d i c a t e d by t h e i r 13c and s p i n echo

NMR s p e c t r a ( c f . F i g s IV-18 and I V - 4 6 ) . F i g u r e IV-12 i l l u s t r a t e s t h e

exp a n d ed u p f i e l d r e g i o n of t h e HOMCOR s p e c t r u m and a l l o w s

i d e n t i f i c a t i o n of t h e two d i f f e r e n t b r i d g e h e a d p r o t o n s [ i . e . ,

e n a n t i o m e r i c p r o t o n s HdCHp') and HgXHg')] by t h e i r c o u p l i n g

t o p r o t o n H c ( Hc ' ) . However , i t does not i n d i c a t e whi ch s p e c i f i c

r e s o n a n c e (& 2.62 or 2 . 75) was produced by each b r i d g e h e a d .

D i s r e g a r d i n g t h e bot tom h a l f of t he mo l e c u l e , t h e u p f i e l d r e g i o n

(£ 2 . 5 - 3 . 0 , Fig IV-12) shows t h e b r i d g e h e a d a t £ 2 . 7 5 i s

c o u p l e d t o a n o n - b r i d g e h e a d p r o t o n a t £ 2 . 9 4 and one or two

p r o t o n s a t £ 2 .62 ( t h e l a t t e r s i g n a l i s g i ven by one b r i d g e h e a d

0 Hiaoo 100500

700

t.o 1.05.0 t.o0.0 4.0#0 7.0

ro

F i g u r e I V - 5 . <60 MHz NMR S p e c t r u m o-f 7 - B e n z o y l o x y n o r b o r n a d i e n e X I V ( C D C I 3 / T M S ) .

M IC R O M E T E R S [ f im,A.O3.0 3.52.5

■60lO

40 \iC

2020 !

4001000 800 6001400 12001800 16002400 20003600 28004000 3200

rocn

FREQUENCY (CM')

F i g u r e I V - 6 . I R S p e c t r u m o f 7 - B e n z o y l o x y n o r b o r n a d i e n e X I V ( K B r )

1 2 6FI GURE I V - 7

3 0 0 MHz iH NMR S p e c t r u m o-f B e n z o y l o x y C a g e C o m p o u n d XVI

( C D C I 3 / T M S ) .

0—c

2 5 3 MICROMETERS 4 9 10 12 U 16 2 0 2

100 lOOr 100 100:

60: 60:6 0

•40 401- 40

2020

3000 (CM) 2500 1000 (CM ) 8001600 1400 1200 6002000 1800 4C4000

tv )-vj

F i g u r e I V - 8 . I R S p e c t r u m o-f B e n z o y l o x y C a g e C o m p o u n d XV I ( C C I 4 ) .

128

FI GURE I V - 9

M a s s S p e c t r u m o f B e n z o y l o x y C a g e C o m p o u n d XVI

lOOD.lM.tOO/'M.irOD ♦4‘30W «0-Ç35 YtCM t.a?S-P4'» 424 n 5 4 ::

MMPX SM.0 T?TT:!n"« rfCCTTB

**• «*w oK », tT 4.M a n . mat mm im49 N9S3 % mn t

99.1 .7 109.2 .1 194.1 .291.1 3 .4 113.9 .1 197.1 .192.2 .3 119.1 3.3 145.9 4 .993.1 114.1 1 .7 144.1 1.799.1 117.1 .4 147.1 1.342.1 .1 119.1 .1 143.1 .943.1 .2 119.1 .2 149.1 2.144.2 .1 128.1 .2 179.149.1 121.2 171.144.1 122.1 .1 174.1 .147.1 .1 123.1 .1 179.1 .774.2 .3 124.9 .1 179.1 4 .979.1 .4 127.2 9 199.1 31.974.1 1.9 120.2 1.4 19: .1 4.9^ . 1 41.1 127.9 1 .4 192.1 .47 9 .: 3 .9 130.9 .3 193,1 .177 .: 1.7 121.0 .4 les.i .19V.1 .2 1:2 .0 l?«i.ft : .9 132.9 .1 lar.t0*.: .3 135.0 .1 15: .0

O.y 1 :9 .9 .2 152,13.C

• r . : II M2.1 .7 :»5.i94.1 143.1 .3 154.1

14*.1 .1 :4-.0 i! z17:.1 .1 149.1 .9 158.9 .3102.1 .4 151.0 .3 159.9

Î .0 l.T II:*s.i 199.9 t r ï l é S .2 299.1 .1: p4 . i 9.7 194.9 3.9 299.9 .3197.1 .7 199.1 •9 219.1 • 1

211.9213.1217.9219.2222.9223.9224.1229.9234.1237.1239.1

l l î ; iÎIIÂ:%:?r4 :i294.9

399.9292.9393.0304.1 3 :9 .9

#4?.*

.1

.2

.1

. 1

.2

.3

.9

. 1

.2

.2

. 1

.9 • 1 .1 .2

•2. 1

îi7.9

‘J•i,1

%:1379.2399.9381.1434.9497.2497.9499.9423.9424.9 429.1429.9

•9

9 .91 .4

‘1:1

B» -r 4i4.riHv im iâ i ik1043,1M.30P/M,270# «499V 99 $99

S5 PEAK# ta jc OIUNSOHCE 4977 19» 69.9 WL»S09.9 WU 70.0 n2«S5#.9

tn tc fCUt 424.2 NSTRP» I

mtt % M933 %116 49 303.2 9 .4

77.9 1.1 394.2 .4193 .9 319.2 .4196.9 24.1 315.2 14.9194.9 3.2 339 2 3.9116.2 .6 321.1 .4114.9 .6 339.1 .3114.9 .3 347.1 .4139.1 .4 3 3 1.4143.9 .7 375.3 1.9164.2 .3 309.3 1.9146.1 .7 331.2 .2147.2 6 494.2 29.9149.2 .2 407.3 7.3199.1 99.6 409.1 1.9191 .1 14.7 423.2 9.3132.0 .9 424.2 199.9i ; s . 9 .3 4:5.2 25.1137.1 .2 4 :5 ,2 5.9172 .2 .2157 .3 1.0153 .22 1 5 .C

.2: :4 . i .9

3 4 .3 l . t2 3 7 .2 .7i ‘ A.2

.3: : ^ . i .52 7 : . 1 .4234.1 .2> '1 .1 .3

19.7

1 2 9

FI GURE I V - 10

20 MHz and Spin Echo NMR S p e c t r a o-f Benzoyloxy Cage Compound

XVI (CDCI3) .

J 1------- 1_____I_____I____ I 1 - 1 1____ I____ L I____ L

130

FI G UR E I V - 1 1

3 0 0 MHz HOMCOR NMR S p e c t r u m o-f B e n z o y l o x y C a g e C o m p o u n d XVI

( C D C I 3 ) .

K j ' f

131

FI G UR E I V - 1 2

E x p a n d e d U p f i e l d R e g i o n o f t h e HOMCOR NMR S p e c t r u m ( F i g I V - 1 1 ) o f

B e n z o y l o x y C a g e C o m p o u n d XVI ( C D C I 3 ) .

ru□ o [=] cu imrj czi m _□ ITa o czi □ □ czi

I T r j □ ED j n I TELI n_j — — —

1 3 2

F I G U R E I V - 1 3

3 0 0 MHz NMR S p e c t r u m o f AXTXA B e n z o y l o x y D i m e r K e t o n e XV

( C D C i y i M S ) .

2.5 3 MICROMETERS i 8 9 10 12 14 16 20

100. 100 -100100

80: 80::

60

4»I- 40

I iË Euu

\r.

1000 ICM') 8003000 (CM ') 2500 1600 1400 1200 6002000 180035004000

Wto

F i g u r e I V - 1 4 . I R S p e c t r u m o-f AXTXA B e n z o y l o x y D i m e r K e t o n e XV ( C H C I g )

1 3 4

FIGURE I V - 1 5

M a s s S p e c t r u m o-f AXTXA B e n z o y l o x y D i m e r K e t o n e XV.

l l E - s T 4 5 2 T«! i s e s . i K . s d D / ' H . s a e o 6 0 -0 0 0r i C N 7 . 6 5 C - . 6 4 » 4 5 2 n 6 4 0 c T * T P P r n f i n r t r ^ s

MrflWMMAX 0 0 0 . 0

r ÜN 1 3 5 2 50 0 SDEC7PA

4 5 2 . 0

1 2 =• 4 6 6 7 0 0 1

wc-s) 4s: itjuNii Tk----iG#9,iM,3eD/M,2eeD Ge-6@e 9 1 PE AK : r : v x : r . : . ........................

i e « s e . e n L « 6 B e » e n i » s e . e n 2 « S 3 e . eBASE AIUMDAMCE 1 7 4 * 4 BASE PEAK 1 0 5 . 6

------------------------------ H3TRP» «

01

300

UC-X9 4 » Ti--------l 0 6 O , i n , 3 B D / t l , 2 8 e S 5 0 - 0 0 0

1 6 4 PEAKS ---------------BASE Ap UNOANCt 6 5 M L " 0 @ 0 . 0 M l . I 1 0 . 6 M 2 - 5 0 6 . 6

BASE PEAK 2 6 0 . 6 NS T RP . 6

161

MASS t MASS %B I C 0 0 1 3 3 . 0 . 2

6 0 . ) . 0 1 4 6 . 9 . 26 1 . 1 2 . 0 1 4 4 . 6 1 . 66 2 . 1 . 3 1 4 4 . 9 . 25 3 . ) 1 6 2 . 0 . 2

. 0 1 5 3 . 6 . 36 3 . 1 . 2 . 70 5 . 0 1 . 1 1 6 5 . 0 . 37 4 . 1 .1 1 0 6 . 0 . 2

. 3 1 6 7 . 6 . 2

. 9 1 7 9 . 12 2 . 7 1 8 0 . 1

2 . 0 101 . 6 . 2. 0 1 0 6 . 6 1 . 1

0 1 . 6 . 3 2 0 7 . 6 . 26 3 . 0 . 2 2 0 8 . 6 1 . 40 5 . 0 . 2 2 0 9 . 6 . 38 9 . 1 . 3 2 2 5 . 1 . 60 1 . 1 1 . 0 2 2 6 . 6 . 29 2 . 1 . 3 2 6 5 . 6 . 2

. 6 2 0 6 . 6 1 . 26 0 . 0 2 6 7 . 6 . 2

7 . 0 3 1 7 . 1 . 5. 6 3 3 0 . 6 . 5

1 . 1 3 4 7 . 1 . 21 1 0 . 1 . 01 1 7 . 61 1 0 . 01 1 9 . 1

4 5 3 . 6 . 4

1 2 7 . 6 . 2 LAST 41 2 6 . 1 . 3 3 4 8 . 1 . 11 2 0 . 9 . 2 4 5 2 . 6 1 . 01 3 1 . 6 . 3 4 6 3 . 6 . 41 3 1 . 9 . 2 4 5 4 . 6 . 1

MASS t MASS tB I 6 00 1 0 7 . 1 1 2 . 31 1 5 . 1 6 0 . 2 1 9 0 . 6 4 . 61 1 0 . 1 4 6 . 6 191 , 0 3 . 11 1 7 . 6 1 6 . 4 1 9 5 . 6 7 . 71 1 6 . 6 1 0 . 9 1 9 7 . 0 7 . 71 1 9 . 6 1 9 8 . 6 4 . 61 2 7 . 1 2 0 7 . 6 2 0 . 01 2 0 . 1 2 0 0 . 0 9 2 . 3

9 . 2 2 8 9 . 01 3 1 . 6 2 1 . 6 2 2 5 . 6 3 6 . 61 3 1 . 9 1 2 . 3 2 2 0 . 0 1 3 . 01 3 2 . 9 1 3 . 0 2 4 7 . 0 3 . 1

1 0 . 9 2 4 9 . 0 7 . 714 1 . 6 1 0 . 9 2 6 4 . 6 7 . 71 4 2 . 6 1 0 . 6 2 6 5 . 6 1 3 . 81 4 3 . 0 7 . 7 2 0 0 . 6 100.01 4 4 . 6 6 4 . 6 2 0 7 . 0 1 6 . 51 4 4 . 9 1 3 . 0 3 0 1 . 6 0 . 21 5 2 . 6 1 2 . 3 3 1 7 . 0 3 3 . 01 6 3 . 0 1 3 . 0 3 1 6 . 1 0 . 21 5 4 . 6 7 . 7 3 3 6 . 6 3 2 . 31 5 5 . 6 4 . 6 3 3 1 . 6 7 . 71 01 . 0 4 0 . 2 3 4 7 . 1 1 3 . 61 0 1 . 9 4 . 0 3 4 0 . 0 4 . 01 0 4 . 9 2 0 . 6 4 0 1 . 9 7 0 . 91 0 0 . 1 1 3 . 8 4 5 3 . 0 2 4 . 61 0 7 . 11 0 9 . 1 1 7 0 . 6

■i:i0 . 2

4 5 3 . 9 4 . 6

1 7 9 . 1 1 2 . 3 LOST 41 0 0 . 1 6 1 . 6 4 3 9 . 8 1 . 5

4 S I . 9 7 6 . 92 4 . 0

4 . 0

1 3 5

FI GURE I V - 1 6

2 0 MHz 1 3 c a n d S p i n E c h o NMR S p e c t r a o-f AXTXA B e n z o y l o x y D i m e r

K e t o n e XV ( C D C l 3 ) .

1 3 6

FI GURE I V - 1 7

3 0 0 MHz ^H NMR S p e c t r u m o-f SNTNS B e n z o y l o x y D i m e r K e t o n e X X X I I

< C D C l 3 / T M S ) .

H4•Hd

-----1

2.5 3 MICRûMcTERS 4 9 to 12 14 16 20

IC OICO

60

60 60

■40;

20202020

3000 (CM') 2500 1000 (CM') 8001600 14003500 2000 1600 1200 600'4000

W-sJ

F i g u r e I V - 1 8 . I R S p e c t r u m o-f SN TN S B e n z o y l o x y D i m e r K e t o n e X X X I I ( C H C l g )

1 3 8

F I G U R E I V - 1 9

M a s s S p e c t r u m o f SN TN S B e n z o y l o x y D i m e r K e t o n e X X X I I

M U L -? 1 1 2 : J U U S 4 t k - - - - - - - - - - -r iC N 3 . é 6 C * e 4 a 4 S 2 n I I L U a E fU _ n f i lS L t_ _ I _ _

Ttik 13551 • 2 SPCCTBtt

rar-?15 53JUHB T«-------------S â - 6 ê $

tQSZ PCPK 105.«Ml" 50.0 M2-S3e

MM: 116 61

!!;!65.0

I103.1

107.0116.1 116.1117.1119.11 2 0 . 1127.11 2 0 . 2129.0131.0132.0133.0141.1142.0143.0

. 3

16.C 1 . 3

2.0.6.7

K;f.145.0152.1153.0 161 .0

169.1179.11 0 0 . 1 181.1 186.1 187.1197.0208.1209.0226.1236.1265.1266.1267.1381.1302.2330.1331.1347.2 408.1

LOST 4408.1423.2 424.1

3.01 . 0

7-.i.9

M E j : 2 5 JÜ W S 4 TV 1 3 5 5 JIOOB,1M,38D/M,280D 50-600 SRN 37

60 PCOKS insc QOUHOflNCC 469 OflSC PCRK 266.1 R7 3.8<■■110.0 nL«6oe.e m i-iio .e M2-690.0 o

-ïl » .k L K 4 , 1 1 »1 2 0 140 1 6 8 1 0 8 200 l i o <48 2tO ' 288 ' 300 ' 320 ' 3 4 0 '

5 4 0 560 580

116.1 61.0116.1

îlî:l119.11 2 0 . 1127.1128.2129.0131.0132.0133.0139.0141.1142.0143.0144.0145.0162.1153.0

155.0 161 .8165.0166.0167.1160.2169.1

178.1179.1100.1

I7!?

iii4 .9

20.6

ii'I:!

107.1196.0197.0198.1207.2 288.1

3&T226.1227.2236.1237.1

Ï

Ii1.1

265.1 100.0266.1 26.9267.1301.1392.2317.2330.1 331 .1

3 4 7 . 2488.1423.2424.1462.1

13*6

2 .6

Iii2 . 1

LOST 4 488.1

1 3 9

F I G U R E I V - 2 0

2 0 MHz 1 3 0 a n d S p i n E c h o NMR S p e c t r a o-f SNTNS B e n z o y l o x y D i m e r

K e t o n e X X X I I ( C D C l 3 ) .

I.

i - X . i l l ] — I ■ I ■ 1 . I ■ 1 ■ I ■ I ■ 1 ■ 1 ■ 1 . I ■ 1 ■ I ■ I ■ I I 1 1 I— L _ L

148

FIGURE I V - 2 1

3 0 0 MHz NMR S p e c t r u m o-f AXTNA B e n z o y l o x y D i m e r K e t o n e X X X I I I

(CDCI3/TMS) .

2.5 3 MICRO,METEPS 10 12 U 16 2 0 2

lüOICO 100 100an

80}80

60

o >>- 40

! I l ,2020

3000 (CM ) 2500 1000 (CM') 80035004000 2000 1800 1600 1400 1200 600

F i g u r e I V - 2 2 . I R S p e c t r u m o-f AXTNA B e n z o y l o x y D i m e r K e t o n e X X X I I I ( C H C I g )

1 4 2

F I G U R E I V - 2 3

M a s s S p e c t r u m o f AXTNA B e n z o y l o x y D i m e r K e t o n e X X X I I I

pie-ijv : :juus4 t>;r x c H 2 . e x c * 0 4 B 4 S 2 rrct rr worsfs

Twre—ccrman w # #

PflU 13SS20 6 5 P C C T II0

lilC -1 3 V 5iJuW S4 Tk-------------S 0 t i , i n , 3 a D / n , 2 8 e o s e - t e e

IQ S C PEAK 1 0 5 . 6

« I

. O H - J 3 Y 2 2 J L W P 4 TK j r S > J T 3 5 E J “1 # # D ,I M ,3 0 D / M ,2 0 6 D 6 6 6 0 6 SRH 3 9

6 5 PC PK S S P S C RIUNDOHCE 2 1 » 9R S C PCRK 4 5 2 . 1 RT 4 . 6u « i n . i nL»6ae.o n i^ iit .e mz-eie.e n s t r p - t

ulu aie ' 3le” ïJî^

H B S J l i e I I

c a . iC l .1

11:1

ifif,21:1

1 0 7 .11 1 6 . 1 1 1 6 .11 1 7 .11 1 6 .11 1 9 . 21 2 7 . 21 2 8 . 2

1 4 1 . 61 4 4 . 61 4 5 . 6

1 . 1 . 2 .4

3 6 0 ' 3 8 0 ‘ 4 0 6 ’ 420 '« 4 4 0 ’ 4 6 0 ' 4 6 0 ' 5 6 0 ' 5 2 0 ' 5 4 0 ' 5 6 0 "^560

r?!?»1 5 3 . 0 1 6 1 , 61 6 5 . 0 1 6 6 . 6 1 6 7 . 21 7 9 .11 6 6 .1 1 6 1 . 6

1%:!2 0 7 . 6 2 0 8 .12 8 9 . 62 2 5 . 12 2 6 . 12 6 5 . 12 6 6 . 12 6 7 . 1 3 0 1 .13 1 7 .23 3 0 . 13 3 1 .13 4 7 . 24 2 3 . 24 5 2 .14 5 3 . 1

L O ST 44 2 4 . 1 .14 5 2 . 1 1 . 44 5 3 . 1 . 44 5 4 . 1 .1

MOSS t MOSS t• !C 6 6 2 0 7 . 6 2 2 . 41 1 5 . 1 6 4 . 4 2 8 6 . 1 6 4 . 31 1 6 . 1 3 4 . 2 2 0 9 . 0 1 5 . 61 1 7 . 1 1 6 .1 2 2 5 . 1 2 3 . 71 1 0 . 1 2 2 6 . 11 1 9 . 1 2 4 9 . 1 4 . 62 2 6 . 1 4 . 1 2 6 5 . 1 2 6 . 3

6 . 7 2 6 6 . 1 6 3 . 41 2 8 . 2 1 6 .1 2 6 7 . 1 1 1 . 41 2 9 . 6 6 . 7 3 6 1 . 1 9 . 61 3 1 . 6 2 3 . 3 3 8 2 . 2 5 . 01 3 2 . 0 0 . 2 3 1 7 . 2 1 9 . 21 3 3 . 0 1 4 . 2 3 1 6 . 2 4 . 61 4 1 . 0 1 3 . 2 3 3 0 . 1 3 6 . 11 4 2 . 0 6 . 6 3 3 1 . 1 9 . 11 4 3 . 0 0 . 2 3 4 7 . 2 1 9 . 61 4 4 . 0 6 3 . 4 3 4 8 . 1 6 . 41 4 6 . 0 1 3 . 2 4 2 3 . 2 8 . 71 6 2 . 0 6 . 2 4 2 4 . 1 6 . 61 6 3 . 0 1 1 . 6 4 5 2 . 1 1 0 8 . 81 6 4 . 1 6 . 4 4 5 3 . 1 3 1 . 11 6 1 . 0 3 4 . 7 4 6 4 . 1 6 . 61 6 5 . 0 1 6 . 61 6 6 . 0 1 2 . 31 6 7 . 2 9 . 61 6 9 . 0 6 . 81 7 6 . 1 6 . 51 7 9 . 1 1 6 . 51 0 6 . 1 6 3 . 91 6 1 . 0 1 6 . 4 LO ST *1 6 6 . 1 5 8 . 4 4 2 4 . 1 6 . 61 8 7 . 1 6 . 2 4 5 2 . 1 1 0 6 . 61 9 5 . 0 4 . 6 4 5 3 . 1 3 1 . 11 9 7 . 0 7 . 6 4 5 4 . 1 6 . 5

1 4 3

FI G UR E I V - 2 4

2 0 MHz 1 3 c a n d S p i n E c h o W R S p e c t r a o-f AXTNA B e n z o y l o x y D i m e r

K e t o n e X X X I I I ( C D C I g ) .

L 1 * L I l i L i 1 l I i I i I i l i - l i L . 1 l t _ L . I l I— I L. I L - I 1 i 1—

144

FI GURE I V - 2 5

3 0 0 MHz HOMCOR NMR S p e c t r u m o f AXTNA B e n z o y l o x y D i m e r K e t o n e

X X X I I I ( C D C I 3 ) .

J V

J CD

ru

-C

m

b . 5 2. 0

1 4 5

FI G U R E I V - 2 6

3 0 0 MHz I h W R S p e c t r u m o-f B e n z o y l o x y C a g e D i k e t o n e XX XI V

( C D C l s . ' T M S ) .

I l ii

20M'CRCVt-r-R:2.5

00100 100ICO ■t— 1

.8080

60:60

II lill

*040;4dI- 40

202020

1000 (CM ) 800 6001400 12003000 (CM ) 2-'0!) 16002000 180035004000

CK

F i g u r e I V - 2 7 . I R S p e c t r u m o-f B e n z o y l o x y C a g e D i k e t o n e XX XI V ( C H C I 3 )

1 4 7

FIGURE I V - 2 8

M a s s S p e c t r u m o-f B e n z o y l o x y C a g e D i k e t o n e XXXI V.

■RSTm sttf nnux c ta .eTftN“!77TS----

^ 9 SPECTRat.i'eo ee-Me

M C - 7 i 5 b C C Ô 3 T>: ' ...................iieo,in.3eDn,27BD SB-soe) • » PEAKS RA SE aSU M SO H CE 2 6 S C M : E PEOX I B S .R

C d . d p L « c s e . e n i * c d . 9 # 2 * 5 3 # . # k s t r p * #

w p w i w l i p m ■ m i w i im y i i i w p i 2è# 22a 24(« i

480

WC-7# 2SCC03 TK niH12735, SPECTRUM traST IHTtNSC ISQ

6 9 . i s t p c n c s , RT 6 . t 3 M I N . I R S C fC O K 1 0 S . R . M 6 6 R u iR H I U C . O C t l I L C g v t . ^ L O U

M R3S % MASS t MQSS % MASS X M A S* X MASS Xc a . i . 1 9 9 . 9 . 9 1 2 7 .1 . 2 1 7 1 . 0 . 9 2 3 4 . 9 . 9 3 4 9 . 9 2 . 26 l « l . 6 . * 1 . 1 . 9 1 2 8 .1 . 6 1 7 7 . 9 . 9 2 3 6 . 9 .1 3 4 9 . 1 . 36 z a . t 9 2 . 1 . 2 1 2 9 . 9 . 3 1 7 9 . 9 . 2 2 3 7 . 9 .1 3 6 0 . 1 . 9t a . t . 9 9 3 . 9 . 1 1 3 9 . 9 . 3 1 7 9 . 1 . 6 2 4 1 . 9 . 9 9 6 4 . * . 96 6 . 1 .1 9 4 . 9 .1 1 3 1 .9 . 6 I M . l 2 . 9 2 4 7 . 1 . 9 3 9 9 . 1 . 26 6 . 1 . 9 9 6 . 1 .1 1 3 2 .9 . 3 1 9 1 .9 6 2 6 9 . 9 .1 3 9 1 . 26 7 . 1 . 1 9 6 . 1 . 9 1 3 2 . 9 . 2 1 9 2 . 9 .1 2 6 4 . 9 . 9 3 0 0 . 9 . 96 6 . 1 .1 9 7 , 1 . 1 1 3 3 . 9 . 8 1 9 3 . 9 . 9 2 6 7 . 9 . 9 3 * 6 . 9 . 46 6 . 1 . 9 9 9 . 1 . 9 1 3 6 . 9 . 9 1 9 6 . 9 . 9 2 7 4 . 9 . 9 3 * 7 . 9 .16 3 . 9 . 9 9 9 . 1 . 1 1 3 9 .1 .1 1 9 9 . 9 . 9 2 7 6 . 2 .1 4 9 5 . 9 . 96 6 . 1 . 2 1 9 2 . 1 1 4 1 . 9 . 6 1 9 1 . 9 .1 2 8 1 . 9 .1 4 9 6 . 9 . 66 6 . 9 • 1 1 9 3 . 1 6 1 4 1 . 9 . 2 1 9 2 . 9 . 9 2 9 3 . 1 . 9 4 9 7 . 0 . 26 7 . 9 .1 1 9 6 . 9 1 9 9 . 9 1 4 3 . 9 • 1 1 9 3 . 8 . 2 2 9 4 . 9 . 2 4 9 8 . 1 . 26 9 . 9 • t 1 9 6 . 9 7 . 5 1 4 3 .9 .1 1 9 3 . 9 .1 2 9 6 . 9 .9 4 9 9 . 9 . 97 9 . 9 . 9 1 9 7 . 9 . 6 1 4 6 .1 . 9 1 9 5 . 9 .1 3 0 1 . 1 .1 4 2 3 . 1 1 . 19 1 . 1 .1 1 9 0 . 9 . 1 1 4 6 . 9 .1 1 9 6 . 9 . 9 3 0 2 . 1 4 2 4 . 97 3 . 9 .1 1 9 9 . 2 . 9 1 4 8 .1 • 9 1 9 7 . 9 . 3 3 9 3 . 1 4 2 5 . 0 . 87 4 . 1 .1 1 1 9 . 9 . 9 1 4 9 . 0 . 9 1 * 8 . 9 .6 3 9 4 . 1 4 2 6 . 0 . 27 6 . 9 . 2 1 1 1 . 9 . 9 1 6 1 . 9 . 1 1 9 9 . 9 .1 3 1 2 . 1 4 3 4 . 1 1 . 87 6 . 1 . 6 1 1 2 . 9 . 9 1 6 2 . 9 . 9 2 9 7 . 9 . 7 3 : 3 . 9 4 3 5 . 1 . 77 7 . 9 1 3 . 9 1 1 3 . 1 . 9 1 6 3 .9 . 6 2 8 8 . 1 3 . 7 3 1 8 . 9 . 9 4 3 6 . 1 . 27 9 . 1 1 . 3 1 1 6 . 1 . 9 1 6 4 . 9 . 3 2 9 9 . 9 9 3 : 9 . 1 1.6 4 5 2 . 0 1 6 . 37 9 . 1 . 9 1 1 6 . 1 . 4 1 6 6 . 9 . 2 2 1 0 . 0 .1 3 2 0 . 9 .4 4 5 3 . 0 4 . 79 9 .n .1 1 1 7 .1 . 2 1 6 6 .1 . 9 2 1 8 . 9 . 9 3 2 1 . 9 .1 4 6 4 . 1 . 99 1 . 9 . 2 1 1 8 . 1 . 1 1 6 7 . 9 . 9 2 1 9 . 9 . 9 3 2 8 . 1 0 4 5 6 . 0 .19 2 . 1 . 9 1 1 9 . 1 . 2 1 6 6 . 0 . 7 2 2 1 . 9 .1 3 2 9 . 1 .19 3 . 1 . 2 1 2 0 .1 .1 1 6 6 . 9 . 2 2 2 3 . 9 . 9 3 3 9 . 1 3 . 29 4 .1 . 9

î l k l. 9 1 6 7 .9 . 3 2 2 4 . 1 .1 3 3 1 . 1 1 . 1

9 6 . 9 . 2 1 6 9 . 0 . 1 2 2 5 . 9 . 2 3 3 2 . 19 7 . # . 9 1 2 3 .1 1 6 9 .9 . 3 2 2 6 . 1 .1 3 3 3 . 29 9 . # . 2 1 2 6 . 9 . 2 2 2 7 . 0 3 4 7 . 1

1 4 8

FI G U R E I V - 2 9

7 5 MHz 1 3 c a n d S p i n E c h o NMR S p e c t r a o-f B e n z o y l o x y C a g e C o m p o u n d

XXXIV ( C D C I 3 ) .

Éi lÉiill, 1 L M AILlJkL I a ^

I i I b u

220 HD

1 4 9

and one n o n - b r i d g e h e a d ) , wh i l e t h e b r i d g e h e a d a t i 2 . 6 2 i s c o u p l e :

t o t h e s i g n a l s a t & 2 . 94 and 2 . 6 1 . I t e a s y t o s e e t h a t t he

n o n - b r i d g e h e a d p r o t o n s i g n a l a t & 2 . 61 mus t be on t h e o p p o s i t e

s i d e o-f t h e m o l e c u l e r e l a t i v e t o t h e b r i d g e h e a d p r o t o n a t G 2 . 7 5 .

o t h e r w i s e , c o u p l i n g between t he s i g n a l s a t 6 2 . 7 5 and 2.61 would

be o b s e r v e d .

C h a r a c t e r i z a t i o n of XV r e q u i r e d a more d e t a i l e d a p pr oach .

R e t u r n i n g t o t h e NMR of XV ( F i g I V - 1 3 ) , a s h a r p AB p a t t e r n c e n t e r e d

a t G 2 . 5 3 i s o b s e r v ed whi ch , a s d i s c u s s e d i n P a r t I , i s

c h a r a c t e r i s t i c o f a t r a n s c y c l o p e n t a n o n e r i n g j u n c t i o n in d i me r i c

k e t o n e s of t h e t ype s t u d i e d in t h i s l a b . The two t y p e s of a r o ma t i c

r e s o n a n c e s , a t wo-hydrogen m u l t i p l e t a t G 7 . 9 5 and a t h r e e -

hydrogen m u l t i p l e t a t G 7 . 5 0 , a r e e a s i l y i d e n t i f i e d . The two

s y n - b r i d g e h e a d p r o t o n s Hg/Hg/) (G 3 . 3 5 ) we r e i d e n t i f i e d by

d e c o u p l i n g t h e d o wn f i e l d h a l f [ H b ( H b ' ) , G 2. 721 of t h e AB

p a t t e r n and o b s e r v i n g t h e s i m p l i f i c a t i o n o f t h e G 3 . 3 5 s i g n a l .

The a n t i - b r i d g e h e a d p r o t o n s [ H d C H j / ) , G 3 . 2 2 ] were i d e n t i f i e d

by d e c o u p l i n g t h e u p f i e l d h a l f [ H a ( H a ' ) , 6 2 . 3 2 ] of t h e AB

p a t t e r n and o b s e r v i n g t h e s i m p l i f i c a t i o n o f t h e G 3 . 22 s i g n a l .

R e c i p r o c a l d e c o u p l i n g s conf i rmed t h e s e o b s e r v a t i o n s . However, what

i s not o b v i o u s i s t h e syn or an t i n a t u r e of t h e 7 - s u b s t i t u e n t .

In t h e p a s t , n u c l e a r ma g n e t i c r e s o n a n c e p r o t o n d e c o u p l i n g

e x p e r i m e n t s have been used as an a i d in s t r u c t u r a l e l u c i d a t i o n of

dimer k e t o n e s whose NMR s p e c t r a a r e s i m i l a r t o t h a t of XV. In

p a r t i c u l a r , two t y p e s of long r a n g e c o u p l i n g , ' v i n y l ' and ' W - l e t t e r '

( d i s c u s s e d i n P a r t I ) , have p r oven u s e f u l i n t h i s r e g a r d . 2 , 17)18

S i n c e t h e NMR of XV i s ve r y s i m i l a r t o t h o s e of t h e 7-phenyl ( V I I ,

PART I , F i g 1-22) and 7 - g - a n i s y l ( IX, PART I , F i g 1-26) dimer

k e t o n e s , an AXTXA s t e r e o c h e m i s t r y f o r XV was t e n t a t i v e l y assumed.

T h i s s h o u l d be v e r i f i a b l e by one or bo t h of t h e l ong r a n g e c o u p l i n g s

d i s c u s s e d a b o v e . P u r s u a n t t o t h i s end , a 100 MHz d e c o u p l i n g

ex p e r i me n t on compound XV was pe r f o r me d ( s e e F i g IV-30 f o r normal 100

MHz NMR s p e c t r u m and Fi g IV-31 f o r t h e d e c o u p l i n g e x p e r i m e n t s ) . A

I I 'T T T-I I I I I I I r I ’ r I I I I I I I I T ! I I 1 ! 1 I I I ! I I I 1 I I ' ' H I ! 'I I TT I I I I I I 1 I I ! I M I M M I I ' t 1 I I I I r p f I I I I I I I I I I T I f I T ' I f I I I M - n I l’ I I ' I I* I I I I * I I I l ' I I I l ' I I I ' ' I I ! I ' I 1 I ' " I ’ | I I I ' l ) I I 1 - 1 I *1 I I I y -T " I I l| ; I , 4

) ( " H I

S(K>

)VU

PPM- T - T - r - r rI I I I I I I I I I I I > I ' II ' I I I I I I I ! I I

UlCD

F i g u r e I V - 3 0 . 1 0 0 MHz *H NMR S p e c t r u m o f AXTXA B e n z o y l o x y D i m e r K e t o n e XV ( C D C I g / T M S ) .

151

F I G U R E I V - 3 1

1 0 0 MHz I n W1R D e c o u p l i n g E x p e r i m e n t s o n AXTXA B e n z o y l o x y D i m e r

K e t o n e XV ( C D C I 3 / T M S ) .

I i I 1 1 f 1 I 1 1 I 1 1 I I I 1 I 1 1 ' I ' I T " 7 " 1 l " n | " 'T " T I I " I I 1 I I I ' V ' i > t I •I I I I I I I I I I 1 I I I 1 i I I I 1 1 1 1 I i I 1 I 7 I I I I I I I I I

/ v y v r / v ^

S 6 . l lI I I I i .1 I I 1,

s y.sfiI I I I I I I 4 I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I L I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 5 2

v i n y l l ong r a nge d e c o u p l i n g was f i r s t conduc t ed by i r r a d i a t i o n of

b r i d g e p r o t o n s (G 4 . 89) w h i l e l o o k i n g f o r a change in

v i n y l p r o t o n s Hf ( Hf ' ) and Hg(Hg' ) ( c e n t e r e d a t G <6. 21) .

S i m p l i f i c a t i o n of t h e Hf ( Hf / ) and Hg(Hg,) p r o t o n s i g n a l s and

n a r r o w i n g of t he peak w i d t h a t h a l f - h e i g h t was o b s e r v e d . The

r e c i p r o c a l d e c o u p l i n g , i r r a d i a t i o n of Hf ( Hf ' ) and Hg(Hg/)

w h i l e o b s e r v i n g H [ ( H c / ) , p r oduced a s i m i l a r s i m p l i f i c a t i o n and

n a r r o w i n g of peak w i d t h . T h i s i s unequi voca l p r o o f t h a t the

s t r u c t u r e of XV i s AXTXA a s has been shown e a r l i e r f o r t h e s i m i l a r

compound X I . 1? F u r t h e r i n f o r m a t i o n r e g a r d i n g t h e pro t on

a s s i g n m e n t s of XV in F i g IV-30 was g a t h e r e d a t 300 MHz. Decoupl ing

of s y n - b r i d g e h e a d He(Hg/ ) r e s u l t e d in s i m p l i f i c a t i o n of

Hb(Hb' ) and the d o w n f i e l d h a l f [ H f ( H f / ) , G 6 . 2 2 ] of the

v i n y l s i g n a l which i s c e n t e r e d a t G 6 . 2 1 . D e c o u p l i n g the

a n t i - b r i d g e h e a d s i g n a l [Hd<Hd' ) , G 3.221 s i m p l i f i e d the

Ha(Ha ' ) s i g n a l and t h e u p f i e l d h a l f EHg(Hg^), G 6 . 2 0 ] of

t h e v i n y l s i g n a l .

I d e n t i f i c a t i o n of t h e s t r u c t u r e of dimer k e t o n e XXXII was

a t t e m p t e d u s i n g 300 MHz NMR d e c o u p l i n g e x p e r i m e n t s . A t r a n s r i n g

j u n c t u r e was b e l i e v e d t o be p r e s e n t in XXXII b e c a u s e d e c o u p l i n g the

b r i d g e h e a d c e n t e r e d a t G 3 . 2 4 EHd(Hd') and He(He ' ) ]

r e s u l t e d in an AB p a t t e r n f o r Hb(Hb' ) (G 2 . 9 5 ) and Ha(Ha' )

(6 2 . 81 ) c e n t e r e d a t G 2 . 8 8 . The doubl ed d o u b l e t s of both

Hb(Hb' ) and Ha(Ha' ) which a r e obse r ved in t h e undecoup l ed

s pe c t r u m a r e a t t r i b u t e d t o c o u p l i n g w i t h a v i c i n a l - b r i d g e h e a d pro t on

whi ch must be exo in o r d e r t o e x h i b i t c o u p l i n g of t h e magni t ude

o b s e r v e d ( i . e . , ^^e xoHbr i dgehe ad = 2 . 9 - 4 . 3 Hz, whi l e

^HendoHbr idgehead % 8 H z ) ] . ! ? T h i s can o c c u r o n l y when

t h e NTN c o n f i g u r a t i o n i s p r e s e n t ! F u r t h e r i n f o r m a t i o n c o n f i r m i n g the

p r o t o n a s s i g n m e n t s of XXXII in F i g IV-17 was seen when s u c c e s s i v e

d e c o u p l i n g s of Ha(Ha' ) and Hb(Hb' ) r e s u l t e d in s i m p l i f i c a t i o n

of H(j(Hb' ) (G 3 . 2 5 ) and He(He-') (G 3 . 2 2 ) ,

r e s p e c t i v e l y . A l s o , upon s u c c e s s i v e i r r a d i a t i o n o f t h e s i g n a l s

1 5 3

c o r r e s p o n d i n g to p r o t o n s H f ( H f ' ) (S 6 . 1 6 ) and Hg(Hg' )

<6 6 . 29 ) , t he r e s o n a n c e s o-f H@(He') and Hd(Hy/) ,

r e s p e c t i v e l y , were s i m p l i f i e d . I r r a d i a t i o n of t h e v i n y l p r o t o n s

H f ( H f / ) and Hg(Hg/) p r o d u c e d no s i m p l i f i c a t i o n of t h e

H[ ( Hc ' ) (G 4 . 71) s i g n a l n o r d i d t he r e c i p r o c a l e x p e r i m e n t .

T h i s seemed t o i n d i c a t e t h e t h e 7 - s u b s t i t u e n t was s yn t o t he

cyc l o p e n t a n o n e carbonyl b e c a u s e ^^VinylHgyn = 0 . 2 0 - 0 . 3 5 Hz <

^ ^ v i n y l H a n t i = 0 . 3 0 - 0 . 8 5 H z . l ? The SNTNS c o n f i g u r a t i o n was

c o n f i r m e d by a s i n g l e c r y s t a l X - r a y s t r u c t u r e which w i l l b e d i s c u s s e d

in t h e Exper i men t a l s e c t i o n . A computer drawn r e p r e s e n t a t i o n and

number i ng scheme a r e shown i n F i g IV-32 and a m o l e c u l a r pac k i n g

d i ag r a m i s shown in Fig IV-33.

S o l u t i o n of t he s t r u c t u r e o f unsymmet r i ca l dimer k e t o n e XXXIII

v i a hMR was more c o m p l i c a t e d due t o t he o v e r l a p p e d s p e c t r u m and

m a r g i n a l r e s o l u t i o n ( F i g I V- 2 1 ) . Lack of a s i mp l e AB p a t t e r n a t h i gh

f i e l d r u l e s ou t an XTX s t r u c t u r e s i n c e ^HaHa' % 0 Hz due t o

t h e l a c k of mo l ecu l a r symmet ry. Br i dge p r o t o n H^ <£ 4 . 8 7 ) , when

d e c o u p l e d , i d e n t i f i e d b r i d g e h e a d s Hy (S 3 . 19 ) and Hg <G

3 . 2 4 ) , w h i l e dec o u p l i n g b r i d g e p r o t o n (G 4 . 84) i d e n t i f i e d

b r i d g e h e a d s H y (G 3.45) and Hg/ <G 3 . 5 1 ) . Decoup l i ng

Ha' (G 2 . 9 0 ) s i m p l i f i e d H y - , H y (G 3 . 4 2 ) , and Ha (G

1 . 9 7 , w i t h ^HaHa' = 2 . 12 H z ! ) . The p r o c e s s of e l i m i n a t i o n

l e a v e s Hy a t G 2 . 0 3 . The f a c t t h a t ^HendoHbr i dgehead ^

0 ( a s s u g g e s t e d in t h e l i t e r a t u r e ^ ? ) i s seen i n t h e HOMCOR s pec t r um

( F i g IV-25) , where endo p r o t o n s Ha and Hy a r e o b s e r v e d t o be

c o u p l e d t o Hy and Hg, r e s p e c t i v e l y . The s p e c t r u m a l s o shows

e v i d e n c e t h a t Hy and H y a r e co u p l e d ! A HOM2DJ20 (Homonuclear

2 - d i m e n s i o n a l J - r e s o l v e d ) NMR s p e c t r u m ( F i g s IV-34 t h r o u g h IV-36) was

a l s o t a k e n of compound XXXIII . Unequivocal p r oo f of t h e s t r u c t u r e of

compound XXXIII was o b t a i n e d by s i n g l e c r y s t a l X - r a y c r y s t a l l o g r a p h y

and w i l l be d i s c u s s e d in t h e E x p e r i m e n t a l s e c t i o n . A comput e r drawn

r e p r e s e n t a t i o n and number ing scheme a r e shown in F i g IV-37 and a u n i t

c e l l i s shown in Fig IV-38.

1 5 4

FI G UR E I V - 3 2

C o m p u t e r D r a w n R e p r e s e n t a t i o n a n d N u m b e r i n g S c h e m e o f t h e SNTNS

B e n z o y l o x y D i m e r K e t o n e X X X I I .

C 2 7C26

r 2 B C25

C23

05

C22

CB

C9C3

C7

C5

02

03

CIS

C21

C20

C12

Cl I

1 5 5

F I G U R E I V - 3 3

C o m p u t e r D r a w n R e p r e s e n t a t i o n o f t h e M o l e c u l a r P a c k i n g

D i a g r a m o f t h e SNTNS B e n z o y l o x y D i m e r K e t o n e X X X I I .

1 5 6

F I G U R E I V - 3 4

C o n t o u r P l o t o f t h e 3 0 0 MHz ^H H0 M2 DJ NMR S p e c t r u m o f AXTNA

B e n z o y l o x y D i m e r K e t o n e X X X I I I ( C D C l g ) .

28 -

Hz

18418-

1 8 -

12 -

b . D H . D 2 . 0

1 5 7

F I G UR E I V - 3 5

Expanded c o n t o u r p l o t o-f t h e 300 MHz H0M2DJ NMR s p e c t r u m o-f

AXTNA b e n z o y l o x y dimer k e t o n e XXXIII which i n c l u d e s t h e 2 . 8 8 t o

3 . 6 8 ppm chemical s h i f t and 13 t o 30 Hz s p e c t r a l r e g i o n o-f

F i g IV-3 ( CDCl g ) .

Hz2 0 -

I b -

I H -

1 2 -

2 . 9

1 5 8

F I G U R E I V - 3 6

S t a c k e d P l o t o f t h e 3 0 0 MHz H0 M 2 D J NMR S p e c t r u m o f AXTNA

B e n z o y l o x y D i m e r K e t o n e X X X I I I ( C D C I 3 ) .

CDm

_oru z rru m _D IT ru

1 5 9

F I G U R E I V - 3 7

C o m p u t e r D r a w n R e p r e s e n t a t i o n a n d N u m b e r i n g S c h e m e o f t h e AXTNA

B e n z o y l o x y D i m e r K e t o n e X X X I I I .

C20

C21

1 1 7

C I S 02

C5C3

C2

CB

C22

05

C23

C25

C29

C26

C28C27

160

FI GURE I V - 3 8

C o m p u t e r D r a w n R e p r e s e n t a t i o n o-f t h e M o l e c u l a r P a c k i n g

D i a g r a m o f t h e AXTNA B e n z o y l o x y D i m e r K e t o n e X X X I I I .

1 6 1

The s t r u c t u r e o-f cage d imer k e t o n e d i e s t e r XXXIV i s s u g g e s t e d

by; ( i ) t h e absence of o l e f i n i c s i g n a l s in i t s iH NMR s p e c t r u m

( F i g I V - 2 6 ) ; ( i i ) t he IR s p e c t r u m ( F i g IV-27) which showed t h e

p r e s e n c e o f k e t o n e ca rbonyl and a b s e n c e of o l e f i n i c a b s o r p t i o n s ;

( i i i ) t h e mass spec t rum ( F i g IV-28) which c o n t a i n e d t h e c o r r e c t

m o l e c u l a r w e i g h t f o r a d i m e r i c k e t o n e of t he t ype d i s c u s s e d above ;

( i v ) t h e a b s e n c e of o l e f i n i c c a r b o n r e s o n a n c e s in t h e and s p i n

echo s p e c t r a ( F i g IV-29) . The and sp i n echo s p e c t r a c o n f i r m

t h a t XXXIV i s c o mp l e t e l y s y mmet r i c a l b e c a u s e of t h e l i m i t e d number of

13c s i g n a l s [ i . e . , 12 s i g n a l s ; 11 from p r e c u r s o r o l e f i n

7 - b e n z o y l o x y n o r b o r n a d i e n e ( i t i s n o t unusual f o r t h e q u a t e r n a r y

a r o m a t i c ca rbon t o d i s a p p e a r owing t o a l ong T ;) p l u s 1 f rom t h e

i n s e r t e d c a r b o n y l c a r b o n ] . I t r e m a i n s t o be de t e r mi n e d wh e t h e r t h e

7 - s u b s t i t u e n t s a r e both syn o r b o t h a n t i to t h e i n s e r t e d ca r b o n y l

g r o u p . Decoupl ing t he C 7 - b r i d g e p r o t o n s [ H c ( Hc ' ) , G 5 . 3 9 ]

i d e n t i f i e s b r i d g e h e a d p r o t o n s a t G 2 . 8 8 and 3 . 01 .

Having f a i l e d to o b t a i n t h e a n t i c i p a t e d SXTNS s t e r e o c h e m i s t r y ,

a t t e n t i o n was given to i n c r e a s i n g t h e e l e c t r o n d e n s i t y a t t h e e s t e r

oxygen by s u b s t i t u t i n g an e l e c t r o n d o n a t i n g methoxy group a t t h e p a r a

p o s i t i o n on t h e a r omat i c r i n g . I t was b e l i e v e d t h a t , by i n c r e a s i n g

t h e a v a i l a b i l i t y f o r s h a r i n g o f t h e l o n e p a i r s on oxygen, t h e Scheme

I V - 1 a n d / o r Scheme IV-2 mechani sm would p r edomi na t e over t h e s t e r i c

c o n t r o l l e d mechanism which was s u g g e s t e d by f o r ma t i o n of XV.

7 - f i - An i s o y l o x y n o r b o r n a d i e n e ( F i g s IV-39 t hrough IV-42 f o r NMR, IR

mas s , and s p i n echo s p e c t r a , r e s p e c t i v e l y ) was r e a c t e d w i t h Fe(C0)5

and t h e c r u d e mi x t u r e was s e p a r a t e d v i a c a r e f u l column

c h r o ma t o g r a p h y . F i r s t e l u t e d was unchanged XVII ( t h e p r o t o n

a s s i g n m e n t s of which were d e t e r m i n e d by d e c o u p l i n g e x p e r i m e n t s )

f o l l o w e d by cage d i e s t e r XIX ( F i g s IV-43 t hrough IV-47 f o r NMR, IR,

mass s p i n ec ho , and HOMCOR s p e c t r a , r e s p e c t i v e l y ) . Next t o be e l u t e d

was compound XVIII (AXTXA, F i g s IV-48 t hrough IV-51 f o r NMR, IR,

mas s , and s p i n echo s p e c t r a , r e s p e c t i v e l y ) . Las t t o be e l u t e d were

smal l amount s of gummy r e s i d u e which have not been t h o r o u g h l y

1 6 2

FI GURE I V - 3 9

3 0 0 MHz NMR S p e c t r u m o-f 7 - f i - A n i s o y l o x y n o r b o r n a d i e n e X V I I

( C D C I 3 . /TMS ) .

5 5

4 ^

; 5

MICROMETERS (;im)5 6 7 8 9 10 11 12 13 14 16 18 20 25

H I !

4000 3600 3200 2800 2400 2000 1800 1600ppmnpM^v (r'kt '\

1400 1200 1000 800 600 400

O'CO

F i g u r e I V - 4 0 . I R S p e c t r u m o-f 7 - f i - A n i s o y 1 o x y n o r b o r n a d i e n e X V I I ( K B r )

16 4

FIGURE I V - 4 1

M a s s S p e c t r u m o-f 7 - f i - A n i s o y 1 o x y n o r b o r n a d i e n e X V I I

l 0 D , : M , 3 e D / M , 2 ? 0 D 4 8 - 3 0 0 r iC H 2 .3 0 C * 8 3 m 0 nC T P T P P rg w Q g i r s a

M C - 7 4 2 4 2 t0 JU N B 4 r « M l 3 S 2 B , ÎF E C T P U H HOST IH TC N SC 9 4

7 0 . 1

1 3 6 . 0 1 0 0 , 0

Bir-74 242 I9JUHS4 Tk!l 0 S . i n . 3 0 9 > H , 2 7 0 D 4 0 - 3 0 0

» 4 PCPKS 3 P SE PIUHDPHCC 5 3 6 9 • 40.0 HL«30e.e nt« 40.e nzassQ.e

i r S H 1 3 E 2 S SBN II PT 1 . 2

I .................................

Hir=mTrTOOBïTTE—I O D , i n , 3 0 B / H , t 7 0 D 4 0 - 3 0 0

PEAK 2 4 2 . 1

1 6 2 . 1 6 4 . 6101

2 4 3 . 1

:01

21

1 6 5

FI G U R E I V - 4 2

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o-f 7 - g - A n i s o y l o x y n o r b o r n a d i e n e

X V I I < C D C l 3 > .

1------- 1------- 1_____I_____I____ I____ I____ L 1 t t I I ]

1 6 6

F I G U R E I V - 4 3

3 0 8 MHz NMR S p e c t r u m o f £ - A n i s o y l o x y C a g e C o m p o u n d X I X

( C D C I a / T M S ) .

OCH

0 — I CH

5 . 0

M I C R O M E T E R S

I , i

C K

iOOO 3S00 3000 (CM') 2500 2000 1800 1000 (CM ) 800 600

F i g u r e l V - 4 4 . I R S p e c t r u m o f g - A n i s o y l o x y C a g e C o m p o u n d X I X .

1 6 8

F I GURE I V - 4 5

M a s s S p e c t r u m o-f £ - A n i s o y l o x y C a g e C o m p o u n d X I X ,

3 0 J l 'h : ? 3 J 7 . : r ; , 3 9 D / t l . 2 7 » 3 S O « C M I P ! 4 # 4 m J Î 1 7

fiS

iS

I::. 4

III

i.t. 7

4:2

is

m

II

I.S.c. 9.1. t

< 4 7

M 7

Ilf

I

E

. 1

.1

t . 7

Hi4 4 7

443

ml:7

k f t t . l R ^ 0 l > 1 l , 4 T M « 4 4 4 V « & - 4 « #2i P ra ts tf is t flwtTJtrtftc < i3f # 9 " s e . e R t > 4 0 9 . e w i-ia e .e r 2 - 4 > 4 . 9

mn ytpt 4 t 4 . <M S T9P* «

'i5* «■■7 T 4 . 4

'*1#3

, 1

f

1 6 0 ■ 2*-: ■ZZ'! ' 24: 2 6 P ' ^ i e o * 7 ^ 3 3 ? 0 5 4 T 3 6 0 ^

3' 1

j

4 * 9 ' 4^9 '* 4 * 0 ' 449 ’ 4*# ’ f i t ' 4 9 4ip 'tZ ^ 4 T ? ^

# # 3 9 tt i c 491 9 4 . 1 9 9 . 91 3 6 . 9 1 4 . 71 3 6 . 7 1 .11 9 4 . 1 2 6 . 91 9 1 .1 3 . 23 3 2 . 1 3 . 43 4 7 . 2 7 . 03 4 9 . 2 2 1 . 63 5 0 . 2 3 . 73 5 1 . 1 . 74 3 9 . 3 4 . 34 4 0 . 3 1 . 34 5 3 . 2 2 . 94 6 4 . 2 1 . 14 6 6 . 3 1 . 7< 4 7 . 3 3 . 24 6 1 . 2 1 .14 f - = . .4 9 3 . 3 1 9 . 74 9 4 . 2 1 9 9 . 04 9 4 . x 31 . 74 9 6 . x 4 . 3

imss

ir-T é 4 9 3 . 3 I t . 9 4 4 * . 2 IC C .r» « « S .t 3 1 .7« 4 4 . X 4 . j

169

FIGURE I V - 4 6

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o-f g - A n i s o y l o x y C a g e

Compound XIX (CDCI3) .

J L J 1----------- 1______J_____ _ .1______ I------------1----------- 1------------L

1 7 0

FIGURE IV-47

3 0 0 MHz HOMCOR NMR S p e c t r u m o f g - A n i s o y l o x y C a g e C o m p o u n d X I X

(CDCIg) .

r

CDCDCD

I I□S

CDF

CDS S CD CD CD CD

a CD CDm m —

171

FI G U R E l V - 4 8

3 0 0 MHz I r NMR S p e c t r u m o-f AXTXA g - A n i s o y l o x y D i m e r K e t o n e X V I I I

( C D C I 3 / T M S ) .

B

100

zo

azg

3 M IC R O M E T E R S

mrm

fl!

' j

- s jhO

i n n n tckA \ o s n n ijnn 1900 1000 (CM') 800

F i g u r e I V - 4 9 . I R S p e c t r u m o f AXTXA £ - A n i s o y l o x y D i m e r K e t o n e X V I I I (CHC1 / I M S ) .

1 7 3

FI G U R E I V - 5 0

M a s s S p e c t r u m o f AXTXA £ - A n i s o y 1 o x y D i m e r K e t o n e X V I I I .

s i2 26jün64 Tk is#D,iM.3@D/M,2eeD s rriCH 9 .66C «e4B 6 12 n: T B î P P r n H o i s r t ■

FBw -------9» JPCCTun

pir=I6 £12 2&JUN&4 Ti--------------is e s . iR .s e o /’N.zeeD s e -fe e

1 3 2 PEAKS I Q S C flf iUHBQMCt 6 1 6 ! <e » 6 8 . e M L " 8 Q 0 . e M l " 6 0 . e n 2 - S 3 e . e

f O S C P E O r 1 3 4

nnss• I C 6 0

6 6 . 1 6 1 . 16 3 . 166.16 3 . 16 4 . 2 6 6 . 6 6 6 .67 6 . 17 6 . 17 7 . 6

%:!

ii!i9 3 . 6

1 0 3 . 11 0 4 . 1

1 6 6 . 11 0 7 . 11 0 8 . 1 1 1 6 . 0 1 1 6 . 1 1 1 7 . 11 1 9 . 01 2 0 . 0 1 2 1 . 01 2 7 . 11 2 8 . 1

.1ris” ,1 3 6 . 91 3 2 . 01 3 3 . 0 . 21 3 4 . 8 1 6 0 . e1 3 6 . 0 9 . 71 3 6 . 9 . 91 4 1 . 0 .11 4 4 . 0 . 41 4 4 . 9 .11 6 2 . 0 . 21 6 3 . 0 . :1 5 7 . 0 . 21 6 4 . 9 .11 6 6 . 0 .11 6 7 . 1 . 11 7 2 . 0 . 42 0 7 . 0 . 22 0 8 . 0 .22 0 6 . 9 . 12 1 6 . 0 .42 1 7 . 0 . 12 9 6 . 0 62 9 7 . 0 . 14 9 9 . 0 . 15 1 2 . 0 . 9513.0 .3

LAST 4 6 1 2 . 06 1 3 . 05 1 4 . 0 6 2 7 . 9

) B C - 5 6 S l 2 2 8 j U M f l 4 Tk I 5 0 D . 1 M , 3 0 0 / 1 1 , 2 8 0 0 5 0 - 6 0 6

0 4 PEAKS BASE ABUHSANCC 4 9 1 0 - 1 4 0 . 0 M L - 0 6 0 . 0 M l - 1 4 0 . 0 M 2 - 6 2 0 . 0

BASE PEAK 6 1 2 .0 HST RP * 0

IFPM 1 3 6 8 2 SRN 2 7 AT 2 . 8

l i . le. 2.0U . l e . 2 . 0 2 2 . 2 . 0 2 0 . 2 0 . » . 1 2 0 2 Î 0 3 Î 0 3 0 0

4 0 0 4 2 C 4 4 0 4 6 0 ' 4 0 0 6 8 0 6 2 0 6 4 0 6 6 0 5 8 0 6 0 0 6 2 0

MASS X MASS XB I G 6 0 1 9 1 . 0 6 . 11 4 1 . 0 1 4 . 3 1 9 3 . 0 4 . 1

4 . 1 1 9 6 . 0 4 . 11 9 7 . 0 4 . 1

1 4 4 . 0 4 6 . 9 1 9 8 . 0 2 . 01 4 4 . 9 1 2 . 2 2 8 7 . 0 4 9 . 01 4 7 . 0 0 . 2 2 8 8 . 0 2 6 . 61 4 8 . 0 2 . 0 2 0 9 . 0 1 2 . 2

1 0 . 2 2 1 0 . 01 4 9 . 9 2 . 0 2 1 1 . 0 2 . 01 6 1 . 0 6 . 1 2 1 6 . 1 2 . 01 5 2 . 0 3 4 . 7 2 1 6 . 0 4 4 . 91 6 3 . 0 2 0 . 4 2 1 7 . 0 8 . 21 6 4 . 0 0 . 2 2 2 1 . 0 2 . 01 6 5 . 0 4 . 1 2 2 6 . 0 2 . 01 5 6 . 0 2 . 0 2 2 6 . 0 2 . 01 S 7 . 0 2 0 . 4 2 6 3 . 0 4 . 11 6 8 . 0 4 . 1 2 8 0 . 9 6 . 1

2 9 6 . 01 6 5 . 0 2 9 7 . 0 1 0 . 21 6 6 . 0 1 0 . 21 6 7 . 1 8 . 2

6 8 0 . 0 6 . 11 6 0 . 9 6 1 2 . 0 1 0 0 . 01 7 1 . 0 4 . 1 6 1 3 . 0 3 2 . 71 7 2 . 0 4 2 . 9 6 1 4 . 0 6 . 1

6 . 1 6 2 8 . 0 4 . 11 7 5 . 01 7 6 . 01 7 7 . 0 LAST t1 7 8 . 0 6 1 2 . 0 1 0 8 . 01 7 9 . 1 0 . 2 6 1 3 . 0 3 2 . 71 8 0 . 1 5 1 4 . 0 6 . 11 8 1 . 0 4 . 1 5 2 8 . 0

1 7 4

FI GURE I V - 5 1

2 0 MHz 1 3 c a n d S p i n E c h o NMR S p e c t r a o-f AXTXA g - A n i s o y l o x y D i m e r

K e t o n e X V I I I ( C D C I 3 ) .

i—i__IJ__I— I— I— L1 lX. L1 i .I

175

i d e n t i f i e d . However , p a r t i a l i d e n t i f i c a t i o n of t h e r e s i d u e was b a s e d

on mass s p e c t r a l d a t a which show a m o l e c u l a r i on of m/ e 514 which

m i g h t be a t t r i b u t e d to t h e b i s n o r b o r n y l ke t o n e shown in F i g IV- 52 .

FIGURE IV-52

P o s s i b l e Fragment of M o l e c u l a r Weight 514.

p r e s e n c e of such a k e t o n e h a s been d e mo n s t r a t e d

p romot ed c o u p l i n g of n o r b o r n a d i e n e l | 7 | 2 1 and has been d e m o n s t r a t e d

i n t h i s l a b upon r e a c t i n g 7 - t - b u t o x y n o r b o r n a d i e n e w i t h Fe<C0) 5.22

Compound XIX ( a s wi t h XVI) was a s s i g n e d i t s s t r u c t u r e b a s e d on:

<i ) comp a r i s o n of i t s hWR ( F i g IV-43) and IR (F i g IV-44) s p e c t r a w i t h

t h o s e o f V and a l s o of XVI ; ( i i ) a c c u r a t e m o l e c u l a r w e i g h t

d e t e r m i n a t i o n by mass s p e c t r o m e t r y ; ( i i i ) e l ement a l a n a l y s i s o f i t s

c a r b o n and hydrogen c o n t e n t ; ( i v ) IR, ^3c, s p i n e c h o , and HOMCOR

s p e c t r a wh i ch c o n t a i n t h e a p p r o p r i a t e a b s o r p t i o n s . The HOMCOR

s p e c t r u m ( F i g IV-47) i d e n t i f i e s t h e b r i d g e h e a d s l o c a t e d a t G 2 . 7 4

and 2 . 6 2 by t h e i r c o u p l i n g t o b r i d g e p r o t o n H[(Hc/) (G 5 . 4 9 ) .

As w i t h AXTXA compound )(V, c o m p l e t e c o n f i g u r a t i o n a l d e t e r m i n a t i o n

and p r o t o n a s s i g n me n t ( F i g IV-48) o f AXTXA )(VI 11 was a c c o m p l i s h e d by

a s e r i e s of ^H d e c o u p l i n g e x p e r i m e n t s . The AB p a t t e r n c e n t e r e d a t

G 2 . 51 [ i . e . , SHa(Ha' ) = 2 . 3 1 , SHb(Hb' ) = 2 . 7 8 ,

and ' ^Ha(Ha ' ) -Hb(Hb' ) = 8 . 2 2 Hz3 conf i r med t h e t r a n s r i n g

j u n c t u r e . Minimal s i m p l i f i c a t i o n of HytHd' ) (G 3 . 2 0 ) and

1 7 6

Hg(Hg' ) < i 3 . 3 2 ) upon i r r a d i a t i o n o-f HaCHg/) and

H b ( H b ' ) , r e s p e c t i v e l y , c o n f i r me d t h e XTX s t r u c t u r e ( i . e . ,

*^^endo^br i d g e h e a d % 0 »0 Hz) . Pro t on H f ( H f ' ) (&

6 . 2 1 ) was a s s i g n e d by d e c o u p l i n g He(Hg ' ) , and Hg(Hg' ) (G

6 . 1 8 ) was a s s i g n e d by d e c o u p l i n g Hd ( Hd ' ) . The p o s i t i o n of t h e

7 - s u b s t i t u e n t was d e t e r mi n e d by d e c o u p l i n g t he v i n y l p r o t o n s and

o b s e r v i n g a s h a r p e n i n g and n a r r o wi n g of Hc(Hc' ) (G 4 . 8 5 ) which

i n d i c a t e s a n t i 7 - s u b s t i t u e n t s t e r e o c h e m i s t r y .

M e t a l - c a t a l y z e d d i m e r i z a t i o n s of n o r b o r n a d i e n e (NBD) have been

s t u d i e d q u i t e w e l l . 23 Among t h e d i me r s which a r e p r o d u c e d i n t h e s e

r e a c t i o n s , B i n o r - S (XXXVI, F i g I V - 5 3 a ) 2 4 and t h e c a g e c o m p o u n d 2 5

h e p t a c y c l o C 6 . 6 . 0 . 0 2 >^.0 3 , 13 , 0 4 , 11 . 0 5 , 9 . 0 l 0 , 1 4 ] t e t r a d e c a n e

(HTCD, XXXV, F i g IV-53b) have been i s o l a t e d in which e n d o - c i s - e n d o

(N-C-N) c o u p l i n g ha s o c c u r r e d w i t h a h i g h e f f i c i e n c y . E a r l y a t t e m p t s

t o v e r i f y t h e s t r u c t u r e of XXXV were p r e c l u d e d by c r y s t a l

t w i n n i n g . 25 The s t r u c t u r e of XXXV was i n s t e a d i n f e r r e d by chemi ca l

m e t h o d s . 2 6 a D i m e r i z a t i o n of bo t h compounds has t o be i n i t i a t e d by

m e t a l s c a p a b l e of h o l d i n g two n o r b o r n a d i e n e l i g a n d s f a c i n g each o t h e r

v i a t h e i r endo s i d e s . I n t e r m e d i a t e s wi t h such a geo me t r y have

f r e q u e n t l y been p r opos e d .

R e c e n t l y , Chow r e p o r t e d t h e c h a r a c t e r i z a t i o n and s i n g l e c r y s t a l

X - r a y s t r u c t u r e of b i s ( n o r b o r n a d i e n y ) d i c a r b o n y l m o l ybdenum complex

XXXVII ( F i g I V- 5 3 c ) . T h i s i s o l a b l e i n t e r m e d i a t e i s p r o d u c e d d u r i n g

t h e r e a c t i o n of n o r b o r n a d i e n e w i t h Mo(C0) 6 , and l e a d s d i r e c t l y t o

t h e f o r m a t i o n of XXXV.2? The geomet r y of t h e complex i n d i c a t e s

t h a t t h e two n o r b o r n a d i e n e l i g a n d s b i n d t o t h e me t a l i n a t i l t e d

f a s h i o n in which one d o u b l e bond l i e s c l o s e r t o t h e me t a l t han t h e

o t h e r . The f a c t t h a t t h e two l i g a n d s a r e a l s o o r i e n t e d 90° wi t h

r e s p e c t t o each o t h e r , l o g i c a l l y e x p l a i n s why t h e cage m o l e c u l e XXXV

i s formed i n p r e f e r e n c e t o t h e s t i l l unknown s t r u c t u r e h e p t a c y c l o -

[ 7 . 4 . 1 . 0 2 , 8 0 , 3 , 7 , 0 4 , 12,0 6 , 1 1 , @1 0 , 1 3 ] t e t r a d e c a n e (XXXVI11,

F i g I V - 5 3 d ) .

The s y n t h e s i s of XXXVII was a c c o mp l i s h e d by r e f l u x i n g a s o l u t i o n

177

FIGURE I V -53

I n t e r m e d i a t e s i n t he M e t a l - C a t a l y z e d D i m e r i z a t i o n s o-f N o r b o r n a d i e n e .

XXXVI

a

OC— M o —

XXXVII

XXXVIII

d

XXXV

b

OC— M o — CO

XXXIX

e

Mo(CO)/ ) XXXIX

NBD

XXXVII XXXV Eq IV-6

1 7 8

of molybdenum h e x a c a r b o n y l <1 e q u i v . ) and n o r b o r n a d i e n e <3 e q u i v . ) in

p e t r o l e u m e t h e r <110-140°C) f o r 40 h o u r s . I t was found t h a t t he

Mo( CO) d- ca t a l yz ed d i m e r i z a t i o n p r o c e e d s t h rough four s e p a r a t e

s t a g e s . At each s t a g e of t h e r e a c t i o n t h e ma j o r p r o d u c t cou l d be

i s o l a t e d . The c o mp l e t e s equence was e a s i l y m o n i t o r e d by p e r i o d i c a l l y

e l u t i n g a s i l i c a ge l TLC p l a t e w i t h n - h e x a n e . The f o r ma t i o n of

m o n o ( n o r b o r n a d i e n e ) t e t r a c a r b o n y l m o l y b d e n u m (XXXIX, F i g IV-53e) was

o b s e r v e d f i r s t , r e a c h i n g i t s op t i ma l y i e l d (55%) a t c a . 20 h o u r s , and

was g r a d u a l l y t r a n s f o r m e d to XXXVII u n t i l i t c o m p l e t e l y d i s a p p e a r e d .

Co n t i n u o u s r e f l u x i n g f o r 110 h o u r s d e s t r o y e d XXXVII to g i v e XXXV as

t h e o n l y ma j o r p r o d u c t i n a y i e l d of 26%. T h i s i s t h e h i g h e s t y i e l d

eve r r e p o r t e d f o r XXXV. The w e l l - d e f i n e d r e a c t i o n s eque nce of

NBD XXXIX -+ XXXVII 4 XXXV (Eq IV-B) i s u n i q u e l y d i f f e r e n t

f rom a n a l o g o u s r e a c t i o n s which g e n e r a l l y p roduce s e v e r a l i s omer i c

d i me r s s i m u l t a n e o u s l y .

Cage compound XXXV has c o n t i n u e d t o f a s c i n a t e o r g a n i c

c h e m i s t s . 26 A t t e m p t s t o f u n c t i o n a l i z e XX)(V by d i r e c t s u b s t i t u t i o n

of C-H bonds u s i n g e l e c t r o p h i 1 ic or f r e e - r a d i c a l r e a g e n t s have not

been s u c c e s s f u l .28 Compounds XVI and XIX d i s c u s s e d above a r e , to

our knowledge , t h e on l y known f u n c t i o n a l i z e d HCTD's o t h e r than t he

1 3 , 1 4 - d i - t - b u t o x y d e r i v a t i v e ( V) l which was l i s t e d in Ta b l e IV-1.

The e s t e r s u b s t i t u e n t s of XVI and XIX now p e r mi t expans i on of t h e

meager l i s t of 7 - f u n c t i o n a l i z e d HCTD's t o i n c l u d e cage d i o l (XXXX)

and cage d i k e t o n e (XXXXI) shown b e l o w . ^9

Cage d i e s t e r s XVI and XIX a r e most c o n v e n i e n t l y i s o l a t e d by

p r e c i p i t a t i o n f rom t h e c r u d e n o r b o r n a d i e n e d e r i v a t i v e - i r o n

p e n t a c a r b o n y l r e a c t i o n mi x t u r e by d i l u t i o n w i t h an equal volume of

a b s o l u t e e t h a n o l . H y d r o l y s i s of XVI and XIX was e f f e c t e d by

r e f l u x i n g in an e x c e s s e t h a n o l i c KOH s o l u t i o n ; t h e c a g e compound

h e p t a c y c l o [ 6 . 6 . 0 . 0 2 ) 6 . 0 3 , 1 3 , 0 4 , l l _ 0 5 , 9 _ 0 l 0 , 1 4 ] t e t r a d e c a n e - 7 , 12-d i o l

(XXXX, F i g s IV-54 t h rough IV-57 f o r hMR, IR, mas s , and ^^C s p e c t r a ,

r e s p e c t i v e l y ) was o b t a i n e d t h e r e b y in 85% y i e l d . Ox i da t i on of XXXX

wi t h p y r i d i n i u m c h i o r o c h r o m a t e in m e t h y l e n e c h i o r i d e - d i m e t h y l

1 7 9

FI G U R E I V - 5 4

3 0 0 MHz 1h NMR S p e c t r u m o-f C a g e D i o l XXXX ( P y r - d g / T M S )

O H

MÎCROMCTFPS iU 4 . . I I L U ,y n i i . j , u

' lüO

If T.:

coCD

4000 J S O O 3000 (CM) 2500 2000 1800 1600 1400 1200 1000 (CM ) 800 600

F i g u r e I V - 5 5 . I R S p e c t r u m o-f C a g e D i o l XXXX ( K B r ) .

181

FIGURE I V - 5 6

M a s s S p e c t r u m o-f C a g e D i o l XXXX.

l 0 D , i n , 3 e O / n , 2 7 8 D 2 5 - 4 8 0 riCN K 0 1 C * 0 5 # 2 1 2 ng T J ^ î P P C n w p g g ç g A

HniM ~ 25.e MMPX 4 0 0 . 0

TRW 1617Ô6 8 SPCCTSP

2 1 2 .0

3 D E -4 1-0 2 12 2 0 J U L 6 2 T*. $ 0 D , lM ,3 e D /M ,2 7 0 D 2 5 - 4 0 0

IS S PEAKS BQSE ABUNBRNCE 4 2 7 7 10" 2 S . e M L - 4 0 8 .0 M l - 2 6 . 0 M 2 - 5 6 0 . 0

SRNRTBASE PEAK 2 1 6 . 1

HSTRP- 0

Jly ipi, I100 12 0 14 0 16 0 160 2 00

HHj i n i i !■! iiiipiin ii2 2 0 2 4 0 2 6 08 0

4 6 0 4 8 0 6 0 0

MASS % MASS XBIG 60 1 2 7 . 2 6 . 3

2 8 . 1 4 0 . 3 1 2 8 . 2 1 2 . 33 2 . 1 2 0 . 8 1 2 9 . 0 1 5 . 26 5 . 2 4 . 7 1 3 0 . 0 6 . 86 5 . 1 1 0 .1 1 3 1 . 0 8 . 96 6 . 1 4 . 3 1 3 2 . 0 8 . 66 7 . 1 6 . 0 1 3 3 . 0 1 0 . 67 7 . 1 2 6 . 1 141 .1 1 3 . 67 8 . 1 11 . 5 1 4 2 . 1 7 . 17 9 . 1 2 7 . 3 1 5 2 . 2 4 . 30 0 . 1 4 . 7 1 6 3 . 0 8 . 481 .1 8 . 6 1 6 4 . 1 6 . 28 3 . 1 7 . 1 1 5 5 . 2 6 . 90 9 . 1 4 . 3 1 5 9 . 2 1 7 . 39 1 . 1 4 0 . 7 1 6 5 . 1 4 . 69 2 . 1 9 . 7 1 6 7 . 1 8 . 29 3 . 1 6 . 0 1 6 0 .1 4 . 69 4 . 1 6 . 6 1 6 9 .1 1 3 . 09 5 . 1 8 . 2 1 7 0 . 1 9 . 6

1 8 3 .1 1 5 . 2 1 8 7 . 2 5 8 . 61 0 4 . 2 1 4 . 7 1 8 8 . 2 6 . 91 0 5 . 0 2 7 . 0 1 9 8 . 1 3 1 . 71 0 6 . 0 4 . 1 1 9 9 . 2 4 . 41 0 7 .1 1 9 . 3 2 1 4 . 1 1 8 . 11 0 8 . 2 1 2 . 0 2 1 5 . 1 2 0 . 81 0 9 . 0 6 . 4 2 1 6 . 1 1 0 0 . 01 1 5 .1 1 9 . 5 2 1 7 . 1 1 7 . 61 1 6 . 2 9 . 51 1 7 .1 1 2 . 91 1 8 . 2 3 . 9 LAST 41 1 9 .1 6 . 1 2 1 6 . 1 1 0 0 . 01 2 0 .1 1 1 . 6 2 1 7 . 1 1 7 . 6121 .1 1 2 .1 2 1 8 . 1 1 . 61 2 2 .1 4 . 8 3 4 4 . 2 . 9

1 8 2

FI G UR E I V - 5 7

2 0 MHz 1 3 c NMR S p e c t r u m o-f C a g e D i o l XXXX ( P y r - d g / r M S )

1 8 3

s u l f o x i d e s o l u t i o n ^ Q a f f o r d e d c a g e d i k e t o n e h e p t a c y c 1 o [ 6 . 6 . 0

0 2 , 6 . 0 3 , 1 3 . 0 4 , 1 2 . 0 5 , 9 . 0 1 0 , 1 4 ] t e t r a d e c a n e - 7 , 1 2 - d i o n e (XXXXI,

F i g s IV-58 t h r o u g h I V - 6 1 f o r NMR, I R , m a s s , a n d l^C s p e c t r a ,

r e s p e c t i v e l y ) i n 93% y i e l d .

Compound XXXXI, l i k e t h e p a r e n t h y d r o c a r b o n (HCTD, XXXV),

p o s s e s s e s unusual symmetry p r o p e r t i e s . I t i s one of t he r a r e

e x i s t i n g r i g i d , p o l y c y c l i c o r g a n i c m o l e c u l e s t h a t be l ongs to p o i n t

g roup 02d . Compound XXXXI i s a d en d r o as y mme t r i c mo l ecu l e wi t h a

p e r p e n d o b i p l a n a r s t r u c t u r e ( i . e . , XXXXI p o s s e s s e s f o u r f o l d

a l t e r n a t i n g a x i a l symmetry) and, in a d d i t i o n , i t c o n t a i n s a C?

r o t a t i o n a x i s t h a t i s c o i n c i d e n t wi t h i t s ma j o r a x i s . 31

C y c l o r e v e r s i o n of XXXXI to 2 mol each of benzene and ca rbon

monoxide i s e x p e c t e d t o be a h i g h l y e x o e r g i c p r o c e s s . However, t h i s

p e r i c y c l i c r e a c t i o n i s f o r b i d d e n t o o c c u r t h e r m a l l y in a c o n c e r t e d

f a s h i o n due t o t h e r e s t r a i n t s imposed by o r b i t a l symmetry

c o n s i d e r a t i o n s . 32 A c c o r d i n g l y , t he e x o t h e r m i c i t y of t h i s p r o c e s s

may we l l be o f f s e t by a r e l a t i v e l y h i g h a c t i v a t i o n energy b a r r i e r .

I n d e e d , XXXXI i s t h e r m a l l y s t a b l e ; i t can be s t o r e d f o r months a t

ambi en t t e m p e r a t u r e s . Al so , a c u r s o r y h i g h r e s o l u t i o n mass s p e c t r a l

s t u d y of XXXXI r e v e a l e d no d e t e c t a b l e q u a n t i t i e s of carbon monoxide

upon e l e c t r o n impact a t e l e v a t e d t e m p e r a t u r e s .

I t i s i n t e r e s t i n g to compare t h e 300 MHz 1h NMR s p e c t r a of t h e

compounds f rom t h i s s t u d y which a r e l i s t e d in Tab l e IV-4. The

n o n - a r o m a t i c p r o t o n s of each compound a r e l a b e l e d r e l a t i v e t o IX

( i . e . , compound V from PART I) and we r e a s s i g n e d chemical s h i f t s

b a s e d upon e x t e n s i v e pro t on d e c o u p l i n g e x p e r i m e n t s . The t a b l e

i n d i c a t e s t h a t f o r XTX compounds )(V and X V I I I , s u b s t i t u t i o n of

b en z o y l o x y and £ - a n i s y l o x y f o r phenyl and o - a n i s y l r e v e r s e s t h e

r e l a t i v e chemi ca l s h i f t s of t h e syn and a n t i v i ny l p r o t o n s and

r e s u l t s i n a d o wn f i e l d s h i f t of 1 . 6 1 - 1 . 7 0 ppm f o r t he b r i d g e p r o t o n s

of XV and XVI I I . S y n - s u b s t i t u t i o n by benzoyloxy and NTN

c o n f i g u r a t i o n r e s u l t s in only a 1 . 4 5 - 1 . 5 4 ppm d o wn f i e l d s h i f t . SNTNS

compound XXXII c o n t a i n s syn and a n t i b r i d g e h e a d p r o t o n s whose

1 8 4

FIGURE I V - 5 8

3 0 0 MHz 1h NMR S p e c t r u m o-f C a g e D i k e t o n e XXXXI ( C D C I g / ' l ' M S )

) — t

2.5 3 MICROMETERS 4 9 10 12 14 16 20

100100100100

80B O ­BO

60

40i4 04 0I- 40

lliiii '

6ÔE1000 (CM') BOO3000 (CM') 2500 1600 1400 12002 000 180035004000

03cn

F i g u r e I V - 5 9 . I R S p e c t r u m o-f C a g e D i k e t o n e XXXXI ( C C I 4 ) .

1 8 6

FI GURE I V - 6 0 .

M a s s S p e c t r u m o-f C a g e D i k e t o n e XXXXI

2illCtôS T»f ■ — —I S 0 B , i m , 5 O D / M , 2 ? 8 D ( @ 4 0 0 riCN 7 . i l C * 6 S a 212 n 22 339i T t i P P C i i w o f i î c f a

Hmik " 69.B MMAX S86.9

53 :53 yiBECër Tifi c e i i . i n . 3 9 Q ^ n » 2 r e s s e - 4 f l e : $ e PCflKs mo:c avunxiqhcc 34 91 a« 5 0 . 0 f l t « s e e . e n i * s e . e m z - M e . e

irflM 1D944 SBN 10

4U llim .n ll.tl. ill

8 1 C - S 3 2 1 8 C C 8 2 T r n»Ml0944, JPECIBUn HOST 1HTCH3C 1 9 6nossllil6 3 . 164.165.1

IIV , : \

î l : i

Hiiis

à2 . 1

1:11 . 1

.61 . 1.6

' 1 . 8

î: l1 1 . 7

1:1

2’o1 8 . 12 1 . 8

MAI: 8 1 . 1

11i i: i9 1 . 19 2 . 19 3 . 1

U:\

i;i 1 8 0 . 2 10 1 . 1 1 6 2 . 11 0 3 . 11 0 4 . 11 0 6 . 11 0 7 . 11 6 8 . 1 1 0 9 . 8 1 1 0 . 1 1 1 1 . 2

1 8 . 1 9 8 P E R K S . » T 1 . 1 8 MIW, l O S t PCPKU O R N IN C P O S S I S L C G V CB r i O U

MAS: \ MACS X ROSS1 4 5 . 0 . 3 1 7 8 . 21 4 6 . 1 . 1 1 7 9 . 21 4 7 . 1 . 4 1 6 8 . 21 4 9 . 8 4 , 4 1 8 1 . 21 5 8 . 1 . 9 1 8 3 . 21 5 1 . 1 1 . 7 1 8 4 . 21 5 2 . 1 6 . 1 1 8 5 . 21 5 3 . 1 8 . 1 1 8 6 . 21 5 4 . 1 3 . 5 1 8 7 . 81 5 5 . 1 1 2 . 1 1 8 8 . 11 5 6 . 2 1 0 . 7 1 8 9 . 11 5 7 . 1 1 . 6 1 9 0 . 11 5 0 . 2 . 2 1 9 1 . 21 6 9 . 2 . 1 1 9 2 . 11 6 0 . 2 . 1 1 9 3 . 31 6 1 . 2 . 1 1 9 4 . 31 6 2 . 1 . 1 1 9 5 . 11 6 3 . 1 . 3 1 9 6 . 21 6 6 . 1 3 . 6 1 9 7 . 21 6 6 . 1 1 . 4 1 9 8 . 1. 1 6 7 . 1 3 . 6 1 9 9 . 11 6 6 . 1 ' . 7 2 8 0 . 11 6 9 . 1 4 . 6 2 8 1 . 21 7 0 . 1 . 7 2 8 2 . 21 7 1 . 1 . 1 2 0 3 . 01 7 2 . 1 a 2 0 4 . 21 7 3 . 1 . 1 2 0 5 . 21 7 4 . 2 . 1 2 0 6 . 21 7 5 . 1 .1 : c ? a1 7 6 . 2 . 1 2 8 8 . 11 7 7 . 2 , 3 2 0 9 . 1

2 . 8

i;è

1:?

J i l4 . 6

1 . 6 . 9

\:l

è;l3 . 7 3 . 6

1 8 8 . e 7 . 9

1 1 3 . 21 1 4 . 11 1 6 . 1 1 1 6 . 2

1 1 8 . 11 1 9 . 11 2 0 . 1 1 2 1 . 1 1 2 2 . 21 2 3 . 11 2 4 . 21 2 5 . 12 2 6 . 11 2 7 . 21 2 8 . 21 2 9 . 11 3 0 . 11 3 1 . 01 3 2 . 02 3 3 . 0 2 3 4 . 81 3 5 . 01 3 6 . 11 3 7 . 01 3 8 . 11 3 9 . 1 141 . 81 4 2 . 11 4 3 . 11 4 4 . 1

1 .8 3 . 5 8 . 2

. 9

. 6

. 71 . 8

1 7 . 79 .91 . 1

.2

1 8 6 . 1 , 3 4 8 1 0 .

% t tASS

' fi!:f î2 1 4 . 22 1 5 . 3 2 1 6 . 12 1 7 . 22 1 8 . 2 2 1 8 . 72 1 9 . 22 2 8 . 2 2 2 1 . 2 2 2 2 . 22 2 3 . 32 2 4 . 32 2 5 . 22 2 7 . 3 2 2 8 . 2

2 3 1 . 32 3 2 . 3 2 3 3 . 02 3 5 . 32 3 6 . 3

2 4 6 . 22 4 7 . 425 1 . 2

1 8 7

FIGURE I V - 6 1

2 0 MHz - 3 c NMR S p e c t r u m o f C a g e D i k e t o n e XXXXI ( C D C I 3 )

1 . L L -■- 1 ■ J . ■ * » ' ‘ L ■- I 1 I ■- 1 ■ 1 . I ■ t '

188

TABLE IV-4

Chemical S h i f t Comparison of A l i p h a t i c and V i n y l i c P r o t o n s of Some

N o r b o r n a d i e n e - D e r i v a t i v e Dimer Ke tones D i s c u s s e d in t h i s S tudy .

Cmpdi F i g . V i n y l i c Br i dge B r i d g e h e a d Cyc l open t anone

# a n t i syn syn a n t i syn a n t i

IXa 1 -22 6 . 11 6 . 03 3 . 17 3 . 4 5 3 . 2 4 2. 71 2 . 2 5

XI 1 -26 6 . 10 6. 06 3 . 26 3 . 4 4 3 . 2 4 2 . 7 2 2 . 2 7

XV IV-14 6 . 20 6 . 22b 4 . 89 3 . 3 5 3 . 2 2 2 . 7 2 2 . 3 2

XXXII IV-18 6 . 2 9 6.16 4 . 71 3 . 2 2 3.25= 2 . 9 5 2 . 81

XXXIII IV-22 6 . 1 4 6 . 14b 4.87 3 . 2 4 3 . 1 9 2 . 0 3 1.97

( 6 . 1 9 ) ( 6 . 13) ( 4 . 84 ) ( 3 . 5 1 ) ( 3 . 4 5 ) ( 3 . 42) ( 2 . 9 0 )

XVIII IV-49 6 . 1 8 6 . 21b 4 . 85 3 . 3 2 3 . 20 2 . 70 2 . 31

(a ) P r o t o n s a r e l a b e l e d r e l a t i v e t o t h o s e of IX ( i . e . , compound V I I ,

PART I , F i g 1 - 2 2 ) . Chemical s h i f t s we r e meas u r ed a t 300 MHz and a r e

r e c o r d e d in ppm.

(b) Syn and a n t i I H g ( g ' ) ] v i n y l p r o t o n chemical s h i f t

a s s i g n m e n t s a r e r e v e r s e d r e l a t i v e t o IX.

(c) Syn [ H g ( e ' ) and a n t i [ H d ( d ' ) ] b r i d g e h e a d chemical s h i f t

a s s i g n m e n t s a r e r e v e r s e d r e l a t i v e t o IX.

(d) As s i g n m e n t s of the v i n y l i c p r o t o n s of XXXIII a r e t e n t a t i v e

b e c a u s e of s i g n a l o v e r l a p , bu t a r e b e l i e v e d t o be c o r r e c t . The

v a l u e s in p a r e n t h e s i s c o r r e s p o n d t o t h e r e s p e c t i v e d i a s t e r e o m e r i c

p r o t o n s on t h e endo-bound f r ag men t of XXXIII .

1 8 9

c h e mi c a l s h i f t s a r e r e v e r s e d r e l a t i v e t o compounds IX, XI , and

X V I I I . E l e c t r o n d o n a t i o n by g - me t h o x y r e s u l t s in an u p f i e l d s h i f t of

t h e b r i d g e p r o t o n in XVIII r e l a t i v e t o t h a t of XV.

T u r n i n g a t t e n t i o n t o r e a c t i o n 9 , 2 - c a r b o e t h o x y n o r b o r n a d i e n e

(XX)33 ( F i g s IV-62 t h rough I V- 6 5 , f o r NMR, IR, ma s s , and s p i n echo

s p e c t r a , r e s p e c t i v e l y ) was a l l o w e d t o r e a c t w i t h Fe (C0 )5 and t h e

c r u d e r e a c t i o n p r o d u c t m i x t u r e was s e p a r a t e d v i a column

c h r o m a t o g r a p h y . F i r s t e l u t e d was unchanged XX, f o l l o w e d by unknown

compounds d e s i g n a t e d a s XXIa and XXIb ( c f . NMR s p e c t r a of F i g IV-66

and F i g IV- 67 , r e s p e c t i v e l y ) . From t h e NMR s p e c t r a i t may be s een

t h a t t h e two-hydrogen v i n y l s i g n a l of XX (S 6 . 7 ) h a s been

e l i m i n a t e d l e a v i n g o n l y t h e v i n y l hydrogen a d j a c e n t t o t h e

c a r b o e t h o x y g r o u p . T h i s i s c o n c l u s i v e e v i d e n c e r u l i n g out t h e

p r e s e n c e of compounds XXV t h r o u g h XXXI l i s t e d in T a b l e IV-3 in which

one or bo t h c a r b o e t h o x y g r o u p s a r e s u b s t i t u t e d on t h e c e n t r a l

cyc l o p e n t a n o n e r i n g . Al s o a p p a r e n t i s t h e AB p a t t e r n which has been

shown t o be e x c l u s i v e t o t h e XTX c o n f i g u r a t i o n . The p o s i t i o n s of t h e

CH2 q u a r t e t (G 4.2) and CH3 t r i p l e t (G 1.3) have no t moved

s i g n i f i c a n t l y f rom t h e i r p o s i t i o n s in XX. The b r i d g e hydr oge n s i g n a l

a t G 2 . 1 i n XX has been s h i f t e d t o h i g h e r f i e l d ( c a . G 1.5) as

a r e s u l t of t h e l o s s of one d o u b l e bond. A m i x t u r e of compounds

XXI I , X X I I I , and XXIV has e v i d e n t l y been i s o l a t e d a s s u g g e s t e d by t h e

number of b r i d g e h e a d s i g n a l s ( 3 . 1 - 3 . 5 ppm) in t he f i g u r e s . Al l t h r e e

compounds would be e x p e c t e d t o e x h i b i t t he AB p a t t e r n s ee n in both

f i g u r e s , bu t XXII and XXIV wou l d on l y g ive r i s e t o two d i f f e r e n t

b r i d g e h e a d s e a c h . Only compound XXIII can p r o d u c e more than two

b r i d g e h e a d s i g n a l s and F i g IV-67 may be i n d i c a t i v e of a r e l a t i v e l y

p u r e s ampl e in which t h e r e i s an o v e r l a p of two b r i d g e h e a d p r o t o n

s i g n a l s a t G 3 . 3 . I n t e g r a t i o n s a r e c o r r e c t b u t s i g n a l

m u l t i p l i c i t y i s not c l e a r . Ot her i n d i c a t i o n s t h a t a m i x t u r e of

d i a s t e r e o m e r s h a s been i s o l a t e d i s t h e l ack of r e s o l u t i o n ( c f . t h e

NMR of XX) of t he r e s o n a n c e s ( p a r t i c u l a r l y in F i g IV-66 ) , t h e wide

m e l t i n g p o i n t r ange ( 128-142°C) , and t h e i n a b i l i t y t o r e c r y s t a l 1i z e

300

1.01.04.03.0é . O7.01.0

OCD

F i g u r e I V - 6 2 . 6 0 MHz NMR S p e c t r u m o-f 2 - C a r b o e t h o x y n o r b o r n a d i e n e XX ( C D C I g / T M S ) .

2 5 MÎCROMETHRS 10 12 14 16 20 2J I I J I J . I i . l l t i i t u l l U M I.

100100

* 8,080

60

4040

20

1000 IC.M') BCO

F i g u r e I V - 6 3 . I R S p e c t r u m o-f 2 - C a r b o e t h o x y n o r b o r n a d i e n e XX ( f i l m )

192

FIGURE IV-64

Mass Spect rum o-f 2-Car boe t hoxynor born ad i ene XX,

BlC-73 Tk--------------) 0 D , lM ,3 e D /M , 2 6 0 D G 0 - 9 M riCN 2 .5 4 E * 8 4 # 164 n «02STPIPPCa MASSES

M E - 7 3 4JUM04 TK

1 6 4 . 0

FR H13468 , SPECTRUM 1 4 , 183PEAKS. RT 1 . 6 0 HIM.MOST INTENSE 103

MASS % MASS T MASS X MASS %5 0 . 1 3 . 2 81 ,1 6 . 3 1 1 7 . 1 1 , 5 1 6 3 . 1 6 . 16 1 . 1 7 . 9 0 2 . 0 6 . 0 1 1 8 . 1 9 . 9 1 6 4 . 8 3 4 . 66 2 . 2 2 . 6 8 3 .1 7 . 0 1 1 9 . 1 6 2 . 2 2 6 5 . 0 2 . 05 3 . 1 8 . 3 8 4 .1 7 8 . 0 1 2 0 . 1 6 . 4 1 6 6 . 0 , 75 4 . 1 1 . 1 8 5 .1 3 . 7 ' 121 . 0 6 . 6 1 6 7 . 1 2 . 26 6 . 1 7 . 6 ' 8 6 . 0 6 2 . 8 1 2 2 . 1 2 . 7 1 6 9 . 0 . 86 6 . 1 1 .1 8 7 . 0 1 . 6 1 2 3 . 1 1 6 . 6 1 8 0 . 1 1 . 46 7 . 1 3 . 0 8 6 . 8 8 . 9 1 2 4 . 2 2 . 4 1 8 1 . 1 . 65 8 . 1 . 7 8 9 . 8 7 . 6 1 2 5 . 1 4 , 7 1 9 7 . 1 . 66 9 . 1 . 6 9 0 .1 8 . 4 1 2 6 . 1 . 8 2 8 7 . 8 1 . 16 0 . 1 1 . 0 9 1 . 1 1 0 0 .0 1 2 7 , 1 1 . 36 1 . 1 . 9 9 2 . 2 1 4 .7 1 2 9 . 0 .96 2 . 1 2 . 8 . 9 3 . 0 1 0 . 4 131 . 0 .76 3 . 1 7 . 8 9 4 .1 3 . 9 1 3 2 . 1 . 76 4 . 2 2 . 8 9 5 . 1 1 2 .1 1 3 3 . 0 2 . 86 5 . 1 2 9 . 7 9 6 . 1 3 . 1 1 3 4 . 0 7 . 16 6 . 1 4 3 . 9 9 7 , 1 4 . 6 1 3 5 . 0 2 9 . 16 7 . 1 1 2 . 8 9 8 .1 1 .1 1 3 6 . 0 7 . 46 8 . 1 3 . 6 9 9 . 1 2 . 6 1 3 7 . 0 1 . 76 9 . 0 4 . 2 1 0 1 .1 .9 1 3 8 . 0 2 , 97 0 . 0 1 . 9 1 0 3 .1 1 . 4 1 3 9 . 0 2 . 671 .1 6 . 1 1 0 5 . 1 1 7 . 1 1 4 1 . 0 8 . 07 2 . 1 . 9 1 8 6 .1 1 2 . 2 1 4 2 . 0 .97 3 . 0 2 . 9 1 0 7 .1 1 0 .1 1 4 3 , 0 ,67 4 . 0 2 . 4 1 0 8 .1 2 . 5 1 4 9 . 0 3 . 17 6 . 1 1 . 9 1 0 9 .1 3 . 7 1 5 0 . 0 1 . 57 6 . 1 1 . 2 l i e . I 4 . 3 151 . 0 2 . 47 7 . 1 2 9 . 7 111 .1 3 . 5 1 5 2 . 1 1 . 07 8 . 1 1 0 . 6 112 .1 2 . 9 1 5 3 . 0 2 . 57 9 . 1 3 6 . 9 113.1 .3 1 5 4 . 1 .78 0 . 1 4 . 1 115 .1 1 . 6 1 5 5 . 0 1 .1

ÏD E-73 4JUN 84 TK 3 0 D , l M .3 0 D / M ,2 8 e D 5 0 - 9 6 0

103 PEAKS BASE RBUHSAHCC 174 0 10 - 5 0 . 6 M L - 9 6 0 .0 K l - 5 0 . 0 M 2 -3 9 0 .0

I F R M 1 3 4 6 6 14SRN

RTBASE PEAK 9 1 , 1 HSTRP- 0

4i

140i i i i | i i II ' i l i i j »

2808 0 120 100160 2 20

^00 3 2 0 ........2 4 0 260 2 8 0 3 6 0 3 8 0

193

F I G U R E I V - 6 5

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o f 2 - C a r b o e t h o x y n o r b o r n a d i e n e

XX ( C D C I 3 ) .

£ x r ^

J 1_______1 1 I I I - 1 I I I I I I 1 1 1

100 Ht590

9.0 S.O 9.0#0 «.0 1.0

-o

F i g u r e I V - 6 6 . 6 0 MHz NMR S p e c t r u m o f C o m p o u n d X X I a ( C D C I g / T M S ) .

0 Hi1003904Q0

3.0 1.0a.o 4.01.0 7.0 è.O

S3ai

F i g u r e I V - 6 7 . 6 0 MHz I H NMR S p e c t r u m o-f C o m p o u n d X X I b ( C D C 1 3 / T M S ) .

1 9 6

t h e i n i t i a l s o l i d p r o d u c t s .

E x p e r i m e n t a l

I n f r a r e d s p e c t r a were t aken on P e r k i n - E l m e r IR-8 and 298 s p e c t r o ­

p h o t o m e t e r s . Mass s p e c t r a were run on a H e wl e t t - P a c k a r d 5985 GC/MS

s p e c t r o m e t e r . Pro t on NMR s p e c t r a we r e r e c o r d e d on IBM/Bruker NR-80 ,

and V a r i a n mo d e l s T-60, XL-100, and XL-300 s p e c t r o m e t e r s . Al l

d e c o u p l i n g s , u n l e s s o t h e r w i s e s p e c i f i e d , we r e d e t e r mi n e d a t 300 MHz.

M e l t i n g p o i n t s were de t e r mi n e d on a Thomas-Hoover c a p i l l a r y m e l t i n g

p o i n t a p p a r a t u s and a r e u n c o r r e c t e d .

7 - b e n z o y l o x y n o r b o r n a d i e n e (XIV) was commer c i a l l y o b t a i n e d f rom

F r i n t o n l a b o r a t o r i e s , S. V i n e l a n d , N J . , and was a l s o made by t h e

method of T a n i d a and T s u j i . 3 4 7 - f i - a n i s o y l o x y n o r b o r n a d i e n e (XVII)

was p r e p a r e d f rom 7 - n o r b o r n a d i e n o l ( i t s e l f p r e p a r e d v i a t h e G r i g n a r d

r e a c t i o n of phenylmagnesium bromi de w i t h 7 - b e n z o y l o x y n o r b o r n a d i e n e )

and £ - a n i s o y l c h l o r i d e , o b t a i n e d f rom A l d r i c h Chemical Company, I n c . ,

Mi lwaukee , Wi . , by s t a n d a r d m e t h o d s . 35 Compound XX

( 2 - c a r b o e t h o x y n o r b o r n a d i e n e ) was p r e p a r e d v i a t h e D i e l s - A l d e r

r e a c t i o n 3 3 o f f r e s h l y c r ack e d cyc l o p e n t a d i e n e and e t h y l p r o p i o l a t e ,

( t h e l a t t e r a l s o o b t a i n e d f rom A l d r i c h ) . The s o l v e n t d i - n - b u t y l

e t h e r was d i s t i l l e d from l i t h i u m aluminum h y d r i d e a t r e d u c e d p r e s s u r e

and s t o r e d o v e r mo l e c u l a r s i e v e s . E l emen t a l a n a l y s e s were p e r f o r me d

by C h e m a l y t i c s , I n c . , Tempe, Az .

R e a c t i o n of 7 - Be n z o y l o x y n o r b o r n a d i e n e (XIV) wi t h Fe(C0)529

To 10.0 g ( 4 7 . 1 mmol) of 7 - n o r b o r n a d i e n y l b e n z o a t e (XIV) i n 50 mL

of f r e s h l y d i s t i l l e d d i - n - b u t y l e t h e r under n i t r o g e n was added a

s o l u t i o n of 18.5 g ( 94 . 4 mmol) of Fe(C0)5 in 10 mL of d i - n - b u t y l

e t h e r . The r e s u l t i n g m i x t u r e was r e f l u x e d under n i t r o g e n f o r 72

h o u r s and t h e n a l l owed t o cool t o room t e m p e r a t u r e . To t h e c o o l e d

r e a c t i o n m i x t u r e was added a s o l u t i o n of 52 g of FeCl 3 ' 6H20 in

200 mL of a c e t o n e , and t he r e s u l t i n g m i x t u r e was s t i r r e d a t room

1 9 7

t e m p e r a t u r e -for 1 week to decompose any u n r e a c t e d i r o n p en t ac a r b o n y l

and Fe<0) compl exes t h a t mi gh t be p r e s e n t . 36 The r e a c t i o n mi x t u r e

was then d i l u t e d w i t h 300 mL o-f d i s t i l l e d w a t e r and e x t r a c t e d s eve ra l

t i m e s wi th e t h y l a c e t a t e <7 x 100 mL p o r t i o n s ) . The combined

e x t r a c t s were washed wi t h w a t e r , d r i e d over M9SO4 , and - f i l t e r e d ,

and the - f i l t r a t e was c o n c e n t r a t e d in vacuo t o a f f o r d a v i s c o u s , dark

brown o i l . D i l u t i o n of t h i s o i l w i t h an equa l volume of a b s o l u t e

e t h a n o l f o l l o w e d by r e f r i g e r a t i o n o v e r n i g h t r e s u l t e d in p r e c i p i t a t i o n

of r e l a t i v e l y p u r e XVI. An a n a l y t i c a l s ampl e of XVI was o b t a i n e d

f o l l o w i n g s u c t i o n f i l t r a t i o n v i a column c h r o ma t o g r ap h y on F l o r i s i l

<100-200 mesh, 10% e t h y l a c e t a t e - h e x a n e e l u e n t ) ; r e c r y s t a l l i z a t i o n

f rom e thyl a c e t a t e - h e x a n e mixed s o l v e n t a f f o r d e d XVI a s a c o l o r l e s s

m i c r o c r y s t a l l i n e s o l i d <1.5 g , 29%): mp 1 9 2 . 5 - 1 9 3 . 0°C. I s o l a t i o n

of dimer k e t o n e s XV, XXXII, XXXIII , and XXXIV f rom t h e f i l t r a t e was

a c co mp l i s h e d v i a column chromat ography on F l o r i s i l <100-200 me ; - , 15%

e t h y l a c e t a t e - h e x a n e e l u e n t ) . The f i r s t f r a c t i o n c o l l e c t e d c o n t a i n e d

4 . 9 9 of u n r e a c t e d 7 - b e n z o y l o x y n o r b o r n a d i e n e and t h e second c o n t a i n e d

a m i x t u r e of XV and XXXII. P a r t i a l e v a p o r a t i o n of t h e s o l v e n t from

t h i s f r a c t i o n a t room t e m p e r a t u r e and p r e s s u r e p r e c i p i t a t e d XV ( 0 . 16

g, 3%); r e c r y s t a l l i z a t i o n f rom CHCl3- h e x a n e a f f o r d e d p u r e XV (mp

252-253°C) a s a w h i t e m i c r o c r y s t a l 1 i n e s o l i d . E v a p o r a t i o n of t h e

mot he r l i q u o r a f f o r d e d XXXII (0.11 9 , 2%); r e c r y s t a l l i z a t i o n from

CHCl3-hexane gave pu r e m i c r o c r y s t a l l i n e XXXII (mp 219-220°C) .

The t h i r d f r a c t i o n y i e l d e d XXXIII ( 0 . 0 5 g , 1%) which was

r e c r y s t a l l i z e d f rom CHCl3- h e x a n e (mp 2 1 8 . 5 - 2 19°C) . F r a c t i o n f o u r

c o n t a i n e d what i s b e l i e v e d t o be XXXIV <0. 02 g , 0.4%);

r e c r y s t a l l i z a t i o n f rom CHCl3 -hexane gave t h i n c o l o r l e s s f l a k e s of

XXXIV (mp 2 1 0 0 0 . Repea t ed a t t e m p t s t o grow c r y s t a l s of XXXIV

which were s u i t a b l e f o r X - r a y a n a l y s i s we r e u n s u c c e s s f u l because of

t h e i r t endency t o form v e r y t h i n f l a k e s . Subs eq u en t f r a c t i o n s

c o n t a i n e d 0 . 6 7 g of u n c h a r a c t e r i z e d r e s i d u e s .

1 9 8

C h a r a c t e r i z a t i o n of Cage Dimer X V I . 2?

i H NMR s pec t r um ( 3 0 0 MHz, CDCL3 , Fig I V - 7 ) : G 8 . 0 5 (m, 4 H,

o-pheny1 p r o t o n s ) , 7 . 5 <m, 6 H, m- and £ - pheny l p r o t o n s ) , 5 . 5 2 (m, 2

H, C7 p r o t o n s ) , 2 . 94 <m, 4 H ) , 2 . 7 5 (m, 2 H, b r i d g e h e a d p r o t o n s ) ,

2 . 6 2 <m, 2 H, b r i d g e h e a d p r o t o n s ) , 2 . 6 2 (m, 2 H ) , 2 . 6 1 <m, 2 H) ;

IR s p e c t r u m (KBr p e l l e t . F i g 1 0 - 8 ) : 3000-2300 <b) , 1737 ( s ) , 1660

(w) , 1560 (w) , 1520 <w), 1464 (w) , 1300 ( s ) , 1242 ( s ) , 1200 (w) , 1180

( w ) , 1130 (m) , 1090 (w) , 1072 (m) , 1040 (w) , 995 ( w ) , 865 ( w ) , 785

( m ) , 665 ( m ) , c m ' l ;

Mass s p e c t r u m (70 eV, F i g 1 0 - 9 ) : m/e ( r e l a t i v e i n t e n s i t y ) 424 (M+,

3 2 . 9 ) , 406 ( 8 . 5 ) , 310 ( 1 0 . 8 ) , 302 ( 9 . 8 ) , 180 ( 2 8 . 8 ) , 105 ( 1 0 8 ) , 77

( 2 7 . 1) ;

and Soin Echo s p e c t r a (20 MHz, CDCI3 , F i g 1 0 - 1 0 ) : G

166 . 08 ( s ) , 132.75 (d) , 130 . 57 ( s ) , 129.47 ( d ) , 128 . 25 (d) , 87.91

(d) , 5 3 . 3 6 ( d ) , 51 . 88 ( d ) , 5 1 . 30 ( d ) , 5 1 . 0 5 ( d ) , 4 9 . 2 1 (d) , 48 . 62

(d) ;

HOMCOR NMR s p e c t r a (300 MHz, CDCI3 , F i g s 10-11 and 1 0 - 1 2 ) .

Anal . C a l c u l a t e d -for C28H24O4 ! C, 79 . 22 ; H, 5 . 7 0 . Found: C,

7 9 . 2 5 ; H, 5 . 8 7 .

C h a r a c t e r i z a t i o n o-f AXTXA Dimer Ketone (XO) .29

^H NMR s pec t r um (CDCI3 , F i g 1 0 - 1 3 ) : 6 8 . 0 (m, 4 H, g -pheny l

p r o t o n s ) , 7 . 5 (m, 6 H, m- and £ - p h e n y l p r o t o n s ) , 6 . 2 2 ( m, J = 6 . 0 Hz,

J ' = 2 . 8 Hz, 2 H, s y n - v i n y l p r o t o n s ) , 6.20 (m, J = 6 . 0 Hz, J ' = 2 . 4

Hz, 2 H, a n t i - v i n y l p r o t o n s ) , 4 . 8 9 ( t , J = 1.7 Hz, 2 H, b r i d g e

p r o t o n s ) , 3 . 3 5 (m, J = 2 . 8 Hz, J ' = 1.7 Hz, 2 H, s y n - b r i d g e h e a d

p r o t o n s ) , 3 . 2 2 (m, J = 2 . 4 Hz, J ' = 1.7 Hz, 2 H, a n t i - b r i d g e h e a d

p r o t o n s ) , AB p a t t e r n ( J a g = 8 . 3 H z ) , Gg 2 . 7 2 (2 H,

s y n - c y c l o p e n t a n o n e r i n g p r o t o n s ) , Ga 2 . 3 2 (2H,

a n t i - c y c l o p e n t a n o n e r i n g p r o t o n s ) ;

^H NMR d e c o u p l i n g e x p e r i m e n t s (100 MHz, CDCI3 , F i g s 10-30 and

10-31) ;

IR s p e c t r u m (CHCI3 s o l u t i o n c e l l . F i g 10- 14) : 1722 ( v s ) , 1609 (m),

1 9 9

1590 (w) , 1495 (w) , 1455 (m), 1335 (m), 1319 (m) , 1282 ( v s ) , 1179

(m) , 1158 (m), 1120 ( s ) , 1074 (m), 1029 ( w) , 1005 (w) , 890 (w)

cm"! ;

Mass s pec t r um (70 eV, F i g I V- 15) : m/ e ( r e l a t i v e i n t e n s i t y ) 452

(M+, 1 . 0 ) , 105 ( 1 0 0 . 0 ) , 77 ( 2 2 . 7 ) . R e s u l t s o-f h i g h r e s o l u t i o n mass

s p e c t r u m -for C29H24O5 we r e : C a l c u l a t e d , 452 . 16237 g/mol ;

Found, 452 . 16493 g / m o l ;37

^3ç and Spin Echo s p e c t r a (20 MHz, CDCI3 , F i g IV- 16) : &

2 1 7 . 1 6 ( s ) , 166.76 ( s ) , 134.29 ( d ) , 133.26 (d) , 133.11 ( d ) , 129.95

( s ) , 129.61 ( d ) , 128. 37 ( d ) , 85 . 11 (d) , 5 7 . 8 2 (d) , 5 2 . 7 9 ( d ) , 50 . 58

(d) , 4 5 . 5 5 (d) .

C h a r a c t e r i z a t i o n of SNTNS Dimer Ketone (XXXI I ) . 29

i H NMR spec t r um (380 MHz, CDCI3 , Fig I V- 1 7 ) : & 7 . 9 6 (m, 4 H,

o - p h e n y l p r o t o n s ) , 7 . 6 8 - 7 . 4 2 (m, 6 H, m- and g - p h e n y l p r o t o n s ) , 6 . 29

( d d , J = 6 . 2 Hz, J ' = 3 . 3 Hz, 2 H, an t i v i n y l p r o t o n s ) , 6 . 16 (dd , J =

6 . 2 Hz, J ' = 3 . 3 Hz, 2 H, syn v i n y l p r o t o n s ) , 4 . 71 ( t , J = 2 . 8 Hz, 2

H, b r i d g e p r o t o n s ) , 3 . 2 5 (m, J = 3 . 8 Hz, J ' = 3 . 3 Hz, J ' ' = 2 . 0 Hz, 2

H, a n t i b r i d g e h e a d p r o t o n s ) , 3 . 2 2 (m, J = 4 . 8 Hz, J ' = 3 . 3 Hz, J " =

2 . 0 Hz, 2 H, syn b r i d g e h e a d p r o t o n s ) , 2 . 9 5 ( d d , J = 8 . 5 Hz, J ' = 4 . 8

Hz, 2 H, syn c y c l o p e n t a n o n e r i n g p r o t o n s ) , 2 . 81 ( d d , J = 8 . 5 Hz, J ' =

3 . 8 Hz, 2 H, a n t i cyc l o p e n t a n o n e r i n g p r o t o n s ) ;

IR s p e c t r u m (CHCI3 s o l u t i o n c e l l , F i g I V - 1 8 ) : 2975 ( w ) , 1722 ( s ) ,

1605 (m) , 1588 (w) , 1453 ( m ) , 1355 ( w) , 1318 ( 5) , 1275 ( v s ) , 1177

(m) , 1115 ( s ) , 1088 ( s ) , 1072 (s) , 1827 (m) , 1003 (m) , 918 ( s) ,

cm“ :

Mass s pec t r um (70 eV, F i g I V- 19) ; m/e ( r e l a t i v e i n t e n s i t y ) 452

(M+, 0 . 1 ) , 105 ( 1 0 0 . 8 ) , 77 ( 1 5 . 5 ) ;

^3ç and Spin Echo NMR s p e c t r a (20 MHz, CDCI3 , F i g IV- 20) : &

2 2 3 . 8 7 ( s ) , 165.60 ( s ) , 135.02 ( d ) , 134.75 ( d ) , 133.24 ( d ) , 129.89

( s ) , 129.48 ( d ) , 128 . 49 ( d ) , 86.88 ( d ) , 5 8 . 8 7 (d) , 49 . 15 ( d ) , 47 . 95

( d ) , 41 . 77 ( d ) .

Anal ■ C a l c u l a t e d -for C29H24O5 : C, 7 6 . 9 6 ; H, 5 . 3 5 . Found C,

2 0 8

7 5 . 3 2 ; F , 5 . 2 7 .

S i n g l e - C r y s t a l X - r a y S t r u c t u r a l A n a l y s i s o-f SNTNS ( X X X I I ) 3 8

Compound XXXII was c a r e f u l l y r e c r y s t a l l i z e d f rom c h l o r o f o r m -

hexane mixed s o l v e n t as f i b r o u s , c o l o r l e s s n e e d l e s . A s i n g l e c r y s t a l

of a p p r o x i m a t e d i mens i ons 0 . 1 5 x 8 . 4 8 x 8 . 60 mm was s e l e c t e d and

mounted on a Noni us CAD-4 a u t o m a t i c d i f f r a c t o m e t e r e q u i p p e d wi t h

MoKg r a d i a t i o n and a g r a p h i t e mo nochr ome t e r . A t o t a l o f 4084

r e f l e c t i o n s were c o l l e c t e d a t ambi en t t e m p e r a t u r e in t h e s p h e r e 3°

(_ 26 ^ 5 0 ° . A f t e r a v e r a g i n g , 3 9 6 5 u n i q u e r e f l e c t i o n s were

o b t a i n e d i n c l u d i n g 2165 o b s e r v e d r e f l e c t i o n s where Iq > 2 0 ( 1 ) .

The u n i t c e l l p a r a m e t e r s r e s u l t i n g f rom l e a s t s q u a r e s c a l c u l a t i o n s on

25 hi gh 26 r e f l e c t i o n s were a = 6 . 5 7 7 ( 2 ) , b = 8 . 7 5 1 ( 2 ) , c =

2 1 . 7 3 8 ( 6 ) (§. a = 7 8 . 2 2 ( 2 ) , P = 8 1 . 2 6 ( 3 ) , y = 6 7 . 8 8 ( 3 )

d e g . , V = 1131 ( 14 ) ^ 3 . The s p a c e g r o u p 3 ? PI was assumed and

gave s a t i s f a c t o r y r e f i n e m e n t . Ot he r d e t a i l s of d a t a c o l l e c t i o n were

as f o l l o w s : s can method, 6 / 2 6 ; scan r a t e , v a r i a b l e up t o 45

sec p e r s c a n ; scan r a n g e , c a l c u l a t e d by 1 . 0 + 0 . 2 8 t an 6 w i t h 25%

e x t e n s i o n on each s i d e f o r b a c k g r o u n d s . Three i n t e n s i t y m o n i t o r s

were c h e c k e d e v e r y 2 h o u r s of X - r a y t i me and f l u c t u a t e d r andoml y 2%

over t h e e n t i r e d a t a c o l l e c t i o n . T h r e e o r i e n t a t i o n m o n i t o r s were

c e n t e r e d a f t e r ev e r y 260 o b s e r v a t i o n s . Wi th 2 = 2 , t h e c a l c u l a t e d

d e n s i t y was 1 . 3 2 9 g cm“ 3 and P(MoKa) = 0 . 5 2 cm"l .

A b s o r p t i o n c o r r e c t i o n s were not a p p l i e d .

The i n i t i a l carbon atoms were p l a c e d on p o s i t i o n s r e s u l t i n g from

a d i r e c t me t hods c a l c u l a t i o n ‘s®. The c o mp l e t e mo l ecu l e was l o c a t e d

t h rough a s e r i e s of l e a s t s q u a r e s and F o u r i e r c a l c u l a t i o n s . Hydrogen

atoms w e r e p l a c e d in c a l c u l a t e d p o s i t i o n s and h e l d i n v a r i a n t wi t h

U(H) a p p r o x i m a t e l y equal t o 1.5 t i me s t h e e q u i v a l e n t i s o t r o p i c

t hermal p a r a m e t e r of t he ca rbon atom t o which i t was bound. Al l

a toms l i e on ge n e r a l p o s i t i o n s . Fu l l m a t r i x l e a s t s q u a r e s on a l l

o b s e r v e d r e f l e c t i o n s y i e l d e d R = 0 . 0 6 7 and = 0 . 0 6 4 . 4 1 The

2 6 1

maximum s h i f t i n t h e l a s t c y c l e was < 0 . 0 2 0 , t h e number of

v a r i a b l e s was 307, and t he number of o b s e r v a t i o n s was 2165. In a

f i n a l d i f f e r e n c e map t h e l a r g e s t peak r e p r e s e n t e d < 0 .2 e/&3.

Ne u t r a l atom s c a t t e r i n g f a c t o r s were o b t a i n e d f rom r e f e r e n c e 42.

F i g u r e IV-32 i s a computer drawn r e p r e s e n t a t i o n and number ing scheme

and Fi g IV-33 i s a computer drawn r e p r e s e n t a t i o n of t h e mo l e c u l a r

pac k i n g d i a g r a m . T a b l e s IV-5 and IV-6 l i s t t h e c a r b o n , oxygen, and

hydrogen a t omi c p o s i t i o n a l and thermal p a r a m e t e r s , r e s p e c t i v e l y .

T a b l e s IV-7 and IV- 8 l i s t t he non- hydr ogen atom bond a n g l e s and bond

l e n g t h s , r e s p e c t i v e l y .

C h a r a c t e r i z a t i o n of AXTNA Dimer Ketone (XXXI11) . 29

NMR s p e c t r u m (300 MHz, CDCI3 , F i g I V - 2 1 ) : G 7 . 9 4 (m, 4 H,

o-phenyl p r o t o n s ) , 7 . 4 6 (m, 6 ,H, m- and g - p h e n y l p r o t o n s ) , 6 . 1 9 (dd,

J = 5 . 8 Hz, J ' = 2 . 9 Hz, 1 H, endo-bound a n t i v i n y l p r o t o n ) , 6 . 14 (m,

2 H, exo-bound syn and ant i v i n y l p r o t o n s ) , 6 . 1 3 (dd , J = 5 . 8 Hz, J-'

= 2 . 5 Hz, 1 H endo-bound a n t i v i n y l p r o t o n ) , 4 . 8 7 ( t , J = 1.8 Hz, 1

H, exo-bound b r i d g e p r o t o n ) , 4 . 84 ( t , J = 1.6 Hz, 1 H, endo-bound

b r i d g e p r o t o n ) , 3 . 5 1 (m, J 5 4 . 9 Hz, = 2 . 5 Hz, J " = 1.8 Hz, 1 H,

endo-bound syn b r i d g e h e a d p r o t o n ) , 3 . 4 5 (m, J = 4 . 4 Hz, J ' = 2 . 9 Hz,

J ' ' = 1.6 Hz, 1 H, endo-bound a n t i b r i d g e h e a d p r o t o n ) , 3 . 4 2 (dd , J =

8 .6 Hz, J ' = 4 . 9 Hz, 1 H, s yn-exo c y c l o p e n t a n o n e r i n g p r o t o n ) , 3 . 24

(m, J = 1,8 Hz, J ' = 1.0 Hz, 1 H, endo- bound syn b r i d g e h e a d p r o t o n ) ,

3 . 19 (m, J = 1. 8 Hz, J ' = 1.0 Hz, endo-bound a n t i b r i d g e h e a d p r o t o n ) ,

2 . 98 (ddd, J = 8 .6 Hz, J ' = 4 . 4 Hz, J " = 2 . 0 Hz, 1 H, a n t i - e x o

c y c l o p e n t a n o n e r i n g p r o t o n ) , 2 . 0 3 (dd , J = 8 . 9 Hz, J ' = 1.0 Hz, 1 H,

s yn-endo cycl o p e n t a n o n e r i n g p r o t o n ) , 1 . 97 ( ddd , J = 8 . 9 Hz, J ' =

2 . 0 Hz, J " = 1.0 Hz, 1 H, a n t i - e n d o c y c l o p e n t a n o n e r i n g p r o t o n ) ;

IR s e e : t - u m (CHCl3 s o l u t i o n c e l l . F i g I V- 2 2 ) : 1719 ( s ) , 1604 ( w ) ,

1587 ( w ) , 1452 ( w ) , 1317 (m), 1275 ( s) , 1115 ' ( s ) , 1070 ( w ) , 1025 (w)

cm~l ;

Mass spec t r um (70 eV, Fig IV- 23) : m/e ( r e l a t i v e i n t e n s i t y ) 452 (M+,

I . 4 ) , 105 ( 100. 0) , 77 ( 14.5) ;

202

TABLE IV-5

Atomic P o s i t i o n a l P a r a me t e r s -for Carbon , Oxygen, and Hydrogen,

Atom X y z

Cl 0 .8 7 4 6 ( 5 ) 0 .2175(4 ) 0 .7 183(2 )C2 0 . 8 9 4 3 ( 6 ) 0 .0 3 1 4 (4 ) 0 .7210(2 )C3 1.048 0( 8) - 0 .0 7 8 0 ( 5 ) 0 .7705(2 )C4 1.249 4( 7) - 0 .0 8 2 7 ( 5 ) 0 .7489(2 )C5 1.237 2( 6) 0 .0 2 4 3 (5 ) 0 .6856(2 )Cé 1.111 7( 6) 0 .2 0 9 7 (4 ) 0 .6965(2 )c? 1 .1 941(6 ) 0 .2 499(5 ) 0 .7503(2 )Ce 1 .0 176(6 ) 0 .2 907(4 ) 0 .8037(2 )c? 0 . 8 1 0 8 ( 5 ) 0 .2 8 2 6 (4 ) 0 .7817(2 )C l0 0 . 6 4 7 1 ( 6 ) 0 .4 678(5 ) 0 .7789(2 )C l l 0 . 7 4 0 7 ( 7 ) 0 .5 7 7 4 (5 ) 0 .7290(2 )C l2 0 . 9 1 5 7 ( 8 ) 0 .5 8 2 2 (5 ) 0 .7507(2 )Cl3 0 . 9 4 6 8 ( 6 ) 0 .4 7 5 9 (5 ) 0 .8146(2 )Cl4 1 .0547 (6 ) - 0 . 0 1 3 1 ( 5 ) 0 .6 6 2 9 (2 )Cl5 0 . 8 2 6 5 ( 7 ) 0 .0 7 4 5 (6 ) 0 .5785(2 )C i6 0 . 7 6 3 5 ( 7 ) 0 .1 9 5 5 (6 ) 0 .5200(2 )Cl7 0 . 5 8 2 7 ( 9 ) 0 .2 027(8 ) 0 .4926(3 )C l8 0 . 5 1 7 ( 1) 0 .314( 1) 0 .4 3 8 2 (4 )Cl9 0 . 6 3 1 ( 1 ) 0 .4 179(9 ) 0 .4095(3 )C20 0 . 8 0 9 ( 1) 0 .4 082(8 ) 0 .4376(3 )C2 I 0 . 8 7 7 0 ( 8 ) 0 .2 9 8 3 (7 ) 0 .4918(3 )C22 0 . 7 0 4 9 ( 6 ) 0 .5 1 2 3 (5 ) 0 .8369(2 )C23 0 . 4 7 9 7 ( 7 ) 0 .4 2 4 2 (6 ) 0 .9218(2 )C24 0 . 4 7 9 0 ( 8 ) 0 .3 0 3 9 (6 ) 0 .9806(2 )C25 0 . 2 7 6 0 ( 9 ) 0 .2 968(8 ) 1 .0079(3)C26 0 . 2 7 0 < 1) 0 . 187( 1) 1 .0614(4)C27 0 . 4 5 7 ( 2 ) 0 .0 821(9 ) 1 .0897(3)C28 0 . 6 5 4 ( 1) 0 .0 919(8 ) 1 .0620(3)C29 0 .6 6 8 4 (9 ) 0 .2 015(6 ) 1 .0080(3)Oi 1.378 2( 4) 0 .2 499(5 ) 0 .75 02(2 )O2 0 . 9 8 3 3 ( 4 ) 0 .0 963(3 ) 0 .6047(1 )O3 4 . 7 4 7 3 ( 5 ) - 0 . 0 3 0 1 ( 4 ) 0 .6009(2 )O4 0 . 6 8 4 8 ( 4 ) 0 .4 0 3 3 (3 ) 0 .8954(1 )O5 0 . 3 1 8 4 ( 5 ) 0 .5 300(4 ) 0 .8990(2 )Hi 0 . 7 4 6 0 7 0.30076 0.6888 4H2 0 .7 3 5 7 5 0.01785 0 .726 47H3 1.00204 -0 .1 4 0 9 3 0.08460H4 1.39713 -0 .1 5 2 1 9 0 .7 7 2 9 3H5 1.39252 0.00640 0.6577 0H<6 1 . 13096 0.29477 0 .65433He 1.07927 0.20596 0 .84595H9 0 . 7 3 7 1 3 0.19889 0 .811 32H10 0 .4 8 0 3 4 0.48147 0 .77336Hl l 0 . 6 7 6 5 9 0.64023 0 .6840 6Hi2 1.01849 0.65099 0 .72643Hi 3 1.05492 0.49474 0.84271H14 1.08730 -0 .1 3 4 7 8 0. 65118H17 0 . 4 9 3 1 5 0.12128 0 .513 74Hie 0 .37370 0.32120 0 .417 68Hi 9 0 . 5 8 1 7 5 0.50345 0 .36643H20 0 . 8 9 9 5 8 0.48933 0 .41652H21 1.0 1970 0.29271 0.51231H22 0 .602 91 0.63399 0 .848 43H25 0 .1259 0 0.37782 ■ 0 .98 67 3H26 0 . 1 1 2 2 9 0.18162 1.08247H27 0 . 4 4 9 4 3 -0 .0 0 4 8 2 1.13226H28 0 . 8 0 3 7 3 0.01030 1.08331H29 0 . 8 2 6 1 2 0.20717 0 .987 53

XXXIXXXIXIXXXXXIXXIXXIXXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 3>h o r o t o t O M K J t o t O " — ' O 00O ' U i - u w r o H - u i - b W M > — r o r o r o r o r o h o t o r o t o f o * — ' O C O " s i O s C / i J ! > ( » J N 3 i —. < *■- o c o - v K s u i r o ^ o - o o o v i x . c o r o ^ o •'Oco-siCKOijiCOW»-o'OtDNJO'Ui4iCjjro»-o o

»-* I. QD QD CD CD OD OD CD O CD O O CD CD ^Dc o c K 4 i . C K X k - s j c o œ c K c o a - - v j ^ ' « o c o o . c ; i C K i > . - s j ' O c o * s J c nc D ’s j c o ' s i c n h o » — H - C K r o a D X > c o j i C O ' s J ‘N J u i ' 0 * — t o j : * c D C K

►-ro*—o o ^ o c o v i o o c A j K ) ® c n v j ' O O O f O J ^ œ * — <S>GDCDCD<DCDOŒ)CDŒ)Œ>CDCD®<S»<3DCDCDCDOGDCDOOhOhOrOhO

n0* = r Cki- ) mc ro ID -H3 4 3 ZT

c ID(U

< <Q (u fw3

ID c3 ID

o x f in

£ fx. Or r in

on r t- CIT 3

O X■D

n -4-1O

in f + 33 "

c r ID 3 "o -1 NCc B a3 u> 3CL o

u ou ID&» 33(U (U3 3ID ID

ID3

O-4-1 c n

= rfÜ

CD GD o CD GD œ CD CD CDœ GD GD GD GD ts>CD GD CD G) s GD GD CD CD CD C D G D O C D G D G D O G D

CD œ œ CDCD ►— K) CD S I <S>CD G) ♦-* CD GD O O G> (D CD O CD CDC D G D C D Q S G D O C D Ccn œ e n CO ■O CD e s O 00 e n e n X) X . r o ■O 00 e n e n e n x k 00 "Si Xk CO c o c o e o c o e n o o x k h oCD X ) e s -xl CO 00 en eJi Xk e s •vj 00 X^ Os 00 x> X» o en X . c o c s c s e o c o - x l o o v j o

»-Si /X /X .m. XX XX XX /X XX XX XX XX /X, puhO N) hO r o e s "O CO X» Xk CO CO X . e s *sj e n x ^ C O C O W h o c o e o r o r o r o r o r o r o c o c o r o r o 3

V ^ SX XX SX XX SX XX SX XX s-/ Sx* SX c ro

CD o GD GD CD GD <3 GD CD GD GD G) GD S» s ■s s CD s GD GD CD GD s s GD CD S GD G> GD CD GD

oœ GD GD <S> S> CD G> GD œ »-» CD S ) GD GD GD CD @ GD C D S O G D S C D C D O c XCK CD e s M e s 00 •O X. e s ■xl X , XJ 00 o W "xl e s x ^ e n Xk (O X . CO X kX kX kU lC O C O X ^C O r o X:CD CO e s 0 0 0 0 v j CD "xl e s Xk CO X . CD sO s o e n *—* *-» CD Xk VJCO e n e o i ^ ^ o o r o ^ e n r o IXDy XX XX w— 1*“^ XX XX XX XX « S >X XX vX œKJ CO hO CO e s s o e s CO CO K> Xk Xk e s sO e s CO CO W CO h o r o r o ro r o r o r o e o r o r o r o r o 3

>w >-■» s_y XX *w» XX XX *w* XX XX SX XX NX XX NX

G D C D C D C D O O O O G D O C D Q D O O C D C D O GD O GD CD QD O CD CD S > CD CD 0 3 QD ^ S > CD O

CD CD S ' O »—► GD O Œ ) O CD CD CD O CD CD CD Q CD GD O ( D 0 CD CD Œ ) *—& CD ( 5 CD CD CD O r ~soo.voos*sjoD‘<i’ *^cocn'sji>.oo'oœcoNOCK*sjO'.viœo^CKOs(s®'sioo*sJ(scso^ w hor-0‘<‘cno^'0'<»-c»o-‘ -o-£‘ ^-x^cocDj:»cDo«.cncooDcn'OOsCKO c5»—cnoocox^“vj wx-s. ,-s %-s <-s s » ^-s .-~s >—«, X-» X—s X—» X—» y->, -«~v

cohocohOJ^^cncncK^ca^cojrkcncnoscncxij^cocoji^cocjcococococo-c^cococo

I I I I I i 1 I I I I I I I I I I I I I I 1 I I I I I I I I I IC D O O C D C D C D O O < 3 C D C D C D ^ C D C D ^ O C D Π> C D O C D C D C D O C D a 3 C D C D C D C D O O O

GD«S»CDCDOCDCSDGD*—“CDŒ)CD«SGDOD«SC5CDOG)G5CDGDODGD®®OŒ)TOCDŒ)GDCD C►-►—CKrocohoco'Ohoo-ooH-►-^K)co*—®cocDtoH-k3Cajcdo*-*>-*h-*— *— o j i C A j C 0 -NJCKC0 ’N j œ c c » c n > 0 K J - s j œ - s i 00c s 000J ' 0 C A j ^ - K ) 0' C D C 0 < S ' 0 K j c n c 0 t 0 ^-* r o

y s, «-v ^"v. <—s v-v. / - s / - s y~>. y^ /% ^ .rx / x / x . <-x / x s x x ✓x / x - x -x / x ^ x x xr o * — N > K » f O C O J : k C K - ^ ^ C O W r O C O - l ^ - C f c C n j ^ r O f O N ) N J N > N J N > K > N ) N ) K J N J K i N ) l \ ) N )%✓ Xx* "W* XX XX X ' X / XX XX XX XX XX XX XX X / X ^ XX XX XX XX ■'w' XX XX X * XX XX XX XX XX XX XX XX XX

I I I I I I I

I I I I I I I I I I I I I I I I I I I I IO CD CD GD CD s s > S GD CD s s CD CD S s S

S I S> GD GD CD CD o GD CD S I s s s GD O o GDCO CO ■o GD Œ» r o CO CO r o CO S S r o 4 kCD CO S I e n hO 4:k CO SO 0 0 SO r o CO e n sQ e s

l O r o r o r o e o W 4 \ Xb e n CO e o l O W 4k 4 k e s

I I I I I I I I I I‘ S > S * CD S > O CD O ^D <S> CD

CO CO CO w CD hO ^ CD O CD i •'OUicohocncoooco<3DcococKiXX XX X ^ XX XX XX ,"X XX «X, f"X f X yX .

» GDKII

U»3CL

X : HQ . I >3 CDO r " r o

ID m œlü e o3

CH 13 " O s

-)BÙ*

nj(Ü-)CD GD CD s GD o S I CD GD s s s s s S ) CD GD o s s CD CD CD GD GD GD S ) s GD s S ) CD CD o 3CD O GD CD <D CD GD GD CD GD S I S I S I CD S I GD GD S I S I GD GD S I S I O GD S I S I S I GD S I S I S ) s CD cr %

S S S CD CO GD s ro ro <s>CD CD S GD s GD S I S ) CD mCO en CK sO ■xi CO GD sO ro 0 0 CO 4k es CO s 00 en S I 00 en CO CO eo en 00 S I S I ■o ro V j CD CO 3

inro ro ro CO 4k en y W w w ro W 4 k w ro ro ro ro W ro ro ro ro ro ro ro ro w ro ro

how

2 0 4

T ABLE I V - 7

Bond An g l e s I n v o l v i n g Carbon and Oxygen Atoms.

Atoms Angl e ( deg )

C1-C2-C3 108. 3(4)C1-C2- C 14 100.4(4)C1- C6-C5 104. 0(4)C1- C5-C7 106. 1(4)C1- C9-C9 108.2(3)C1- C9- C 10 115. 3(4)C2- C 1-C6 102. 2(3)C2- C 1-C9 115.6(4)C2- C 3-C4 107.6(5)C2- C 14-C5 9 4 . 8 ( 4 )C2- C 14-O2 114.6(3)C3-C2- C14 9 7 . 7 ( 3 )C3-C4-C5 108. 3(4)C4- C5-C6 106. 9(5)C4- C5- C 14 9 7 . 8 ( 4 )C5- C6-C7 112. 2(4)C5- C 14-O2 110.0(4)C6- C 1-C9 107. 7(4)C6- C5- C 14 100. 8(3)C4- C7-C8 111. 4(3)C6-C7- O1 124.2(5)C7-C8-C9 106. 0(4)C7-C8- C 13 112.5(4)C8-C7- O1 124.4(6)Cg-Cy-CjQ 102.2(4)C8- C 13- C 12 106.3(5)C s - C 13-C22 100.4(4)C9-C8- C 13 104.2(3)C9- C 10- C 11 108.3(3)C9-Cj0-C22 100.1(4)C10- C 11- C 12 107.4(5)C10- C22- C 13 9 5 . 3 ( 4 )C10-C22-O4 114.9(4)C11- C 10-C22 9 7 . 8 ( 4 )C11- C 12- C 13 108. 5(5)C12- C 13-C22 9 7 . 8 ( 4 )C13-C22-O4 109. 9(4)C14-O2- C 15 116.4(4)C15- C I 6- C 17 117. 8(6)C15- C I 6-C2 I 123.1(5)CI6- C 15-02 111. 6(5)CI6- C 15-O3 125. 2(5)016-0.17-018 119. 8(0)OI6-C21-O20 120 . 2 ( 6)O17- O 16-C21 119. 2(7)O17- 0 18-019 121 . 2 ( 8)C18- O 19-O20 117. 7(9)O19-O20-O21 121. 9(8)O22-O4-O23 116.7(4)O23-O24-O25 117.6(5)O23-O24-O29 122. 4(5)O24-O23-O4 111. 9(4)O24-O23-O5 125. 6(5)O24-O25-O26 119. 1(7)O24-O29-O28 118. 9(6)O25-O24-O29 120. 0(7)O25-O26-O27 122. 1(9)O26-O27-O28 118. 1(5)C27-O28-O29 122. 3(8)O2- O 15-O3 123. 3(6)O4- C23-O5 122. 5(6)

2 0 5

TABLE I V - 8

Bond Lengths I n v o l v i n g Carbon and Oxygen Atoms.

Atoms Bond Lengt

C 1-C2 1. 574(7)C1-C6 1 . 540(5)C1-C9 1 . 537(7)C2 -C3 1 . 510(7)C2 - C 14 1 . 531(7)C3 -C4 1 . 325(7)C4 -C5 1 . 492(9)C5 -C6 1. 567(7)C5- C 14 1. 528(7)C4-C7 1. 514(8)C7 -C8 1. 507(7)C7- O 1 1 . 211(5)Cg-Cy 1. 539(6)C8- C 13 1 . 567(7)C9- C 10 1. 567(6)C l Q- v l l 1 . 514(8)C10-C22 1 . 532(8)C1I - C 12 1 . 326(7)C12- C 13 1 . 502(9)C13-C22 1 . 522(6)C14-O2 1 . 445(7)C15- C 16 1. 480(9)C15-O2 1. 340(7)C15-O3 1 . 202 ( 8 )C16- C 17 1. 384(9)C16-C2 I 1 . 372(9)C17- C 18 1 . 3 8 ( 1)CIB-C19 1 . 38 ( 2 )C19-C20 1.37( 1)C20-C21 1.37( 1)C22-O4 1. 446(7)C23-C24 1.48( 1)C23-O4 1. 344(6)C23-O5 1 . 209(7)C24-C25 1 . 395(9)C24-C29 1 . 370(8)C25-C26 1. 36(2)C26-C27 1.37( 1)C27-C28 1.37( 1)C2B-C29 1.37( 1)

2 0 6

Mass s p e c t r u m (Chemical I o n i z a t i o n ) ; m/e ( r e l a t i v e i n t e n s i t y ) 453 (M

+ H, c o r r e s p o n d i n g t o C29H25O5 , 9 . 0 ) , 331 ( 1 0 8 . 0 ) , 267 ( 2 9 . 0 ) ,

105 ( 2 2 . 0 ) ;

and Soin Echo NMR s p e c t r a (20 MHz, CDCI3 , F i g I V- 2 4 ) : £

219 . 09 ( s ) , 166 . 66 ( s ) , 166.46 ( s ) , 134 . 26 ( d ) , 1 3 3 . 1 8 ( d ) , 133.10

( d ) , 133.04 ( d ) , 132. 38 ( d ) , 131.21 ( d ) , 130 . 04 ( s ) , 129.99 ( s ) ,

129.61 (d) (2 c a r b o n s ) , 128.33 (d) (2 c a r b o n s ) , 8 7 . 7 8 ( d ) , 8 5 . 3 7 ( d ) ,

56 . 32 (d) (2 c a r b o n s ) , 52.64 (d) , 50 . 71 (d) , 5 0 . 1 1 ( d ) , 4 9 . 3 7 ( d ) ,

44. 86 (d) , 4 1 . 0 3 ( d ) ;

HOMCOR NMR s p e c t r u m (300 MHz, CDCI3 , F i g I V - 2 5 ) ;

H0M2DJ NMR s p e c t r a (300 MHz, CDCI3 , Fig 10-34 t h r o u g h 1 0 - 3 6 ) .

Anal . C a l c u l a t e d -for C29H24O5 : C, 7 6 . 9 6 ; H, 5 . 3 5 . Found: C,

7 6 . 88 ; H, 5 . 4 3 .

S i n g l e - C r y s t a l X - r a y S t r u c t u r a l A n a l y s i s o-f AXTNA ( X X X I I I ) 38

Compound XXXIII was c a r e f u l l y r e c r y s t a l l i z e d from

c h i o r o f o r m - h e x a n e mixed s o l v e n t . A c o l o r l e s s f r a g me n t of appr ox i ma t e

d i mens i ons 0 . 20 x 0 . 3 8 x 0 . 48 mm was mount ed on a Noni us CAD-4

au t o ma t i c d i f f r a c t o m e t e r equipped wi t h CuK% r a d i a t i o n . A t o t a l

of 4793 r e f l e c t i o n s were c o l l e c t e d a t amb i en t t e m p e r a t u r e in t h e

sp h e r e 2° <_ 28 ^ 150°. A f t e r a v e r a g i n g , 4668 unique

r e f l e c t i o n s we r e o b t a i n e d i n c l u d i n g 3762 o b s e r v e d r e f l e c t i o n s where

10 2. 2 d ( I ) . The u n i t c e l l p a r a m e t e r s r e s u l t i n g from

1e a s t - s q u a r e s c a l c u l a t i o n s on 25 high 26 r e f l e c t i o n s we r e : a =

9. 198 ( 2 ) , b = 9 . 968 ( 2 ) , c = 13.054 (3) A, a = 9 4 . 2 3 ( 2 ) , # =

105.35 ( 2 ) , y = 99 . 77 (1) d e g . , V = 1129 ^ 3 . %he s p a c e gr oup39

PI was assumed and gave s a t i s f a c t o r y r e f i n e m e n t . Other d e t a i l s of

d a t a c o l l e c t i o n we r e : scan met hod , 6 / 2 6 ; s c a n r a t e , v a r i a b l e

up t o 45 sec per s c a n ; scan r a n g e , c a l c u l a t e d by 0. 90 -t- 0 . 20 t an

6 , w i t h 25% e x t e n s i o n on each s i d e f o r b a c k g r o u n d s . Three

i n t e n s i t y m o n i t o r s were checked eve r y 2 h o u r s of X- r a y t ime and

f l u c t u r ' . e d r andoml y 2% over t h e e n t i r e d a t a c o l l e c t i o n . Three

2 0 7

o r i e n t a t i o n m o n i t o r s were c e n t e r e d a f t e r e v e r y 200 o b s e r v a t i o n s .

Wi th 2 = 2 , t h e c a l c u l a t e d d e n s i t y was 1.331 g cm“ 3, and

li(CuKg) = 6 . 4 7 c m ' l . Ab s o r p t i o n c o r r e c t i o n s we re no t

a p p l i e d .

The s t r u c t u r e was s o l v e d by d i r e c t me t hods c a l c u l a t i o n s . 40

Hydrogen a t oms were p l a c e d wi t h r e f e r e n c e t o a d i f f e r e n c e F o u r i e r map

and were r e f i n e d p o s i t i o n a l l y and i s o t r o p i c a l l y . Al l a toms l i e on

g e n e r a l p o s i t i o n s . Ful l m a t r i x l e a s t s q u a r e s on a l l o b s e r v e d

r e f l e c t i o n s y i e l d e d R = 0 . 049 and R^ = 0 . 0 6 7 . 4 1 The maximum

s h i f t i n t h e l a s t c y c l e was 0 . 5 d, t h e number of v a r i a b l e s was

403, and t h e number of o b s e r v a t i o n s was 3762. In a f i n a l d i f f e r e n c e

map t h e l a r g e s t peak r e p r e s e n t e d l e s s t h an 0 . 2 e / A^ . N e u t r a l atom

s c a t t e r i n g f a c t o r s were o b t a i n e d f rom r e f e r e n c e 42 . F i g u r e IV-37 i s

a comput er drawn r e p r e s e n t a t i o n and number i ng scheme, and F i g IV-38

i s a comput e r drawn r e p r e s e n t a t i o n of t h e u n i t c e l l . T a b l e s IV-9 and

IV-10 l i s t t h e a t omi c p o s i t i o n a l and t hermal p a r a m e t e r s ,

r e s p e c t i v e l y , f o r c a r b o n , oxygen, and h y d r o g e n . T a b l e s IV-11 and

IV-12 l i s t t h e bond a n g l e s and bond l e n g t h s , r e s p e c t i v e l y , f o r

non-hydr ogen a t oms . T a b l e IV-13 l i s t s t h e bond l e n g t h s i n v o l v i n g

h y d r o g e n .

C h a r a c t e r i z a t i o n of Cage Dimer Ketone (XXXIV). 2?

1h NMR s p e c t r u m (300 MHz, CDCI3 , F i g I V - 2 6 ) : & 7 . 9 9 (m, 4 H,

g - phe ny l p r o t o n s ) , 7 . 50 <m, 6 ,H, m and g - p h e n y l p r o t o n s ) , 5 . 3 9 ( t , J

= 1.73 Hz, 2 H, b r i d g e p r o t o n s ) , 3 . 0 6 - 3 . 0 2 <m, 4 H, a l i p h a t i c

n o n - b r i d g e h e a d p r o t o n s ) , 3 . 0 1 (m, 2 H, b r i d g e h e a d p r o t o n s ) , 2 . 8 8 (m,

2 H, b r i d g e h e a d p r o t o n s ) , 2 . 8 0 - 2 . 7 7 <m, 4 H, a l i p h a t i c n o n - b r i d g e h e a d

p r o t o n s ) ;

IR s p ec t r u m (CHCI3 s o l u t i o n c e l l . F i g I V - 2 7 ) : 1710 ( s ) , 1317 (m) ,

1274 < s ) , 1213 ( m ) , 1177 ( w ) , 1120 (m) , 1109 ( m ) , 1085 ( m ) , 1070 (m) ,

1027 ( m ) , 1010 (w) c m ' l ;

Mass s p e c t r u m (70 eV, Fig IV-28) : m/e ( r e l a t i v e i n t e n s i t y ) 452 (M+,

15.3) , 105 ( 100.0) , 77 ( 1 3 . 9 ) ;

208

TABLE IV-9

Atomic P o s i t i o n a l P a r a me t e r s f o r Carbon , Oxygen, and Hydrogen.

Atom X y z

Cl B . 2 6 1 3 ( 2 ) 0 . 3 8 2 4 ( 2 ) 0 . 7 2 0 7 ( I )C2 0 . 3 5 9 5 ( 2 ) 0 . 4 é 4 0 ( 2 ) 0 . 8 3 1 1( 1)C3 0 . 2 4 5 5 ( 3 ) 0 . 5 0 é 0 ( 2 ) 0 . 8 8 5 7 ( 1)C4 0 . 1 8 5 2 ( 2 ) 0 . é 0 1 9 ( 2 ) 0 . 8 3 5 3 ( 2 )C5 0 . 2 5 7 4 ( 2 ) 0 . é 2 7 8 ( 2 ) 0 . 7 4 5 5 ( 1)Cé 0 . 1 9 2 3 ( 2 ) 0 . 4 9 é é ( 2 ) 0 . é é l 5 ( 1)c? 0 . 2 5 2 1 ( 3 ) 0 . 5 0 8 3 ( 2 ) 0 . 5 é 5 4 ( 1)C8 0 . 3 5 2 4 ( 2 ) 0 . 4 0 é 0 ( 2 ) 0 . 5 5 8 3 ( I )C? 0 . 3 5 3 8 ( 2 ) 0 . 3 2 1 1 ( 2 ) 0 . é 5 2 9 ( 1)C 10 0 . 2 8 3 8 ( 2 ) 0 . 1 7 3 2 ( 2 ) 0 . 5 9 4 7 ( 1)C l l 0 . 1 1 9 9 ( 2 ) 0 . 1 7 1 0 ( 2 ) 0 . 5 3 7 1 ( 2 )C 12 0 . 1 1 8 2 ( 2 ) 0 . 2 4 3 2 ( 2 ) 0 . 4 5 é 4 ( 2 )Ci 3 0 . 2 8 1 5 ( 2 ) 0 . 2 9 5 2 ( 2 ) 0 . 4 5 7 5 ( 1)C]4 0 . 4 1 é 4 ( 2 ) 0 . 5 9 9 9 ( 2 ) 0 . 7 9 4 K 1)Cl 5 0 . é 5 4 0 ( 2 ) 0 . 7 2 4 8 ( 2 ) 0 . 9 0 8 7 ( 1)Cl é 0 . 7 2 é l ( 2 ) 0 . 8 3 0 2 ( 2 ) 1 . 0 0 3 é ( 1)Ci 7 0 . 8 8 2 2 ( 3 ) 0 . 8 5 8 8 ( 3 ) 1 . 0 4 2 8 ( 3 )C18 0 . 9 5 1 0 ( 4 ) 0 . 9 5 5 9 ( 4 ) 1 . 1 3 2 0 ( 3 )Cl 9 0 . 8 é é 3 ( 3 ) 1 . 0 2 3 4 ( 3 ) 1 . 1 7 9 7 ( 2 )C20 0 . 7 1 3 0 ( 3 ) 0 . 9 9 é l ( 3 ) 1 . 1 4 1 2 ( 2 )C2 I 0 . é 4 1 4 ( 3 ) 0 . 8 9 8 7 ( 2 ) 1 . 0 5 2 5 ( 2 )C22 0 . 3 5 7 4 ( 2 ) 0 . 1 8 0 0 ( 2 ) 0 . 5 0 2 8 ( 1)C23 0 . 3 7 2 0 ( 2 ) 0 . 0 4 1 1 ( 2 ) 0 . 3 5 2 3 ( 1)C24 0 . 3 1 é 2 ( 2 ) - 0 . 0 9 5 1 ( 2 ) 0 . 2 3 7 7 ( 1)C25 0 . 2 4 4 5 ( 2 ) - 0 . 2 0 7 9 ( 2 ) 0 . 3 2 4 5 ( 1)C2 é 0 . 1 9 4 0 ( 2 ) - 0 . 3 3 1 9 ( 2 ) 0 . 2 é 0 é ( 2 )C27 0 . 2 1 0 5 ( 3 ) - 0 . 3 4 3 9 ( 2 ) 0 . 1 5 8 3 ( 2 )C28 0 . 2 8 0 2 ( 3 ) - 0 . 2 3 3 0 ( 2 ) 0 . 1212( 2 )C29 0 . 3 3 4 é ( 3 ) - 0 . 1 0 8 8 ( 2 ) 0 . 1852( 1)Oi 0 . 2 2 2 4 ( 2 ) 0 . 5 8 9 0 ( 2 ) 0 . 5 0 2 5 ( 2 )O2 0 . 5 0 14( 1) 0 . 7 0 5 4 ( 1) 0 . 8 8 1 é ( 1)O3 0 . 7 2 4 2 ( 2 ) 0 . é é 3 é ( 2 ) 0 . 8 é 2 7 ( i )O4 0 . 3 1 0 3 ( 1) 0 . 0 5 0 7 ( 1) 0 . 4 3 4 K 1)O5 0 . 4 é 0 8 ( 2 ) 0 . 1 3 2 1 ( 2 ) 0 . 3 3 3 8 ( 1)Hi 0 . 1 8 4 ( 2 ) 0 . 3 1 4 ( 2 ) 0 . 7 3 3 ( 2 )H2 0 . 4 3 9 ( 2 ) 0 . 4 1 é ( 2 ) 0 . 8 7 1 ( 2 )H3 0 . 2 0 7 ( 3 ) 0 . 4 5 é ( 9 ) 0 . 9 4 3 ( 2 )H4 0 . 0 9 9 ( 2 ) 0 . é 4 7 ( 2 ) 0 . 8 4 4 ( 2 )H5 0 . 2 5 1 ( 2 ) 0 . 7 1 1 ( 2 ) 0 . 7 1 5 ( 2 )Hé 0 . 0 8 1 ( 2 ) 0 . 4 8 0 ( 2 ) 0 . é 3 7 ( 2 )HS 0 . 4 5 é ( 2 ) 0 . 4 5 3 ( 2 ) 0 . 5 é 0 ( 1)H9 0 . 4 5 8 ( 2 ) 0 . 3 2 2 ( 2 ) 0 . é 9 é ( 1)H10 0 . 3 0 2 ( 2 ) 0 . 1 0 4 ( 2 ) 0 . é 3 8 ( 2 )Hl l 0 . 0 3 5 ( 3 ) 0 . 1 2 5 ( 3 ) 0 . 5 é 2 ( 2 )H i 2 0 . 0 2 9 ( 3 ) 0 . 2 é é ( 2 ) 0 . 4 1 1 ( 2 )Hi 3 0 . 3 0 3 ( 2 ) 0 . 3 2 3 ( 2 ) 0 . 3 9 2 ( 2 )Hi 4 0 . 4 7 7 ( 2 ) 0 . 5 9 é ( 2 ) 0 . 7 4 5 ( 1)Hi 7 0 . 9 3 0 ( 4 ) 0 . 8 0 7 ( 4 ) 1 . 0 0 5 ( 3 )Hi s 1 . 0 5 4 ( 4 ) 0 . 9 7 é ( 3 ) 1 . 1 5 1 ( 2 )H19 0 . 9 2 3 ( 3 ) 1 . 0 9 5 ( 3 ) 1 . 2 4 3 ( 2 )H20 0 . é 4 9 ( 3 ) 1 . 0 3 9 ( 3 ) 1 . 1 7 7 ( 2 )H2 I 0 . 5 3 2 ( 3 ) 0 . 8 8 1 ( 2 ) 1 . 0 2 8 ( 2 )H22 0 . 4 7 é ( 2 ) 0 . 2 0 8 ( 2 ) 0 . 5 2 7 ( 1)H25 0 . 2 3 é ( 2 ) - 0 . 2 0 0 ( 2 ) 0 . 3 9 7 ( 2 )H2 é 0 . 1 4 7 ( 3 ) - 0 . 4 0 5 ( 3 ) 0 . 2 8 9 ( 2 )H27 0 . 1 8 0 ( 3 ) - 0 . 4 3 3 ( 3 ) 0 . 121 ( 2 )H28 0 . 2 8 5 ( 3 ) - 0 . 2 3 8 ( 2 ) 0 . 0 5 1 ( 2 )H29 0 . 3 8 8 ( 2 ) - 0 . 0 2 é ( 2 ) 0 . I é 3 ( 2 )

2 0 9

TABLE IV-16

Carbon , Oxygen, and Hydrogen Thermal P a r a m e t e r s .

A t o m

ICi0

i iCi4

iC20C21C22C23C24

IC28C29

IiI

Ul l

0 . 0 6 3 ( 1)0 . 876( 1 )0.092< 1)0 . 074( 1)0 . 076( 1)8 . 0 6 1 ( 1)0.098< 1)0 . 074( 1)0 . 0 5 9 ( 1 )0 . 083( 1)0 . 073( 1)0 . 0 7 1 ( 1 )0.0B8( 1)0 . 066( 1)0 . 069( 1)0 . 0 6 2 ( 1)0 . 071( 2 )0 . 069( 2 )0 . 0 9 7 ( 2 )0 . 0 8 6 ( 2 )0 . 0 6 5 ( 1)0 . 067( 1)0 . 069( 1)0 . 058( 1)0 . 070( 1)0 . 077( 1)0 . 078( 1)0 . 8 9 K 1)0 . 0 8 K 1)0 . 193( 2 )0 . 0647( 8 )0 . 0 8 2 ( 1)0 . 0820( 9 )0 . 1 1 7 ( 1)0 . 064( 5 )0 . 059( 5 )0 . 095( 8 )0 . 079( 6 )0 . 0 7 2 ( 6 )0 . 062( 5 )0 . 061( 5 )0 . 057( 5 )0 . 0 7 6 ( 6 )0 . 0 9 6 ( 8 )0 . 16( 1)0 . 3 0 3 ( 2 )0 . 4 7 7 ( 2 )0 . 9 3 0 ( 4 )0 . 13( 1)0 . 107( 8 )0 . 12 ( 1)0 . 089( 7 )0 . 061( 5 )0 . 0 8 5 ( 7 )0 . 0 8 7 ( 7 )0 . 0 9 8 ( 8 )0 . 094( 7 )0 . 079( 7 )

U22

0 . 0 453( 9 ) 0 . 0 5 4 ( 1) 0 . 0 5 7 ( 1 ) 0 . 0 6 2 ( 1) 0 . 0 4 4 6 ( 9 ) 0 . 0 4 8 3 ( 9 ) 0 . 0456( 9 ) 0 . 0 5 3 ( 1 ) 0 . 0 5 5 ( 1 ) 0 . 0 474( 9 ) 0 . 0 5 5 ( 1) 0 . 0 6 3 ( 1) 0 . 0 5 6 ( 1) 0 . 0 5 4 ( 1) 0 . 0479( 9 ) 0 . 0444( 9 ) 0 . 0 9 9 ( 2 ) 0 . 1 1 5 ( 2 ) 0 . 0 7 5 ( 2 ) 0 . 0 9 2 ( 2 ) 0 . 0 7 5 ( 1 ) 0 . 0 6 2 ( 1) 0 . 0 6 6 ( 1) 0 . 0 6 3 < 1) 0 . 0 7 0 ( 1) 0 . 0 6 6 ( 1) 0 . 0 7 3 ( 1) 0 . 0 8 7 ( 2 ) 0 , 0 7 3 ( 1) 0 . 0624( 9 ) 0 . 0627( 8 ) 0 . 8 9 1 ( 1 ) 0 . 0 5 9 1 ( 7 ) 0 . 0 7 7 ( 1)

U33

0. 0404(8)0 . 0360(7)0 . 0473(9)0 . 0 6 0 ( 1)0 . 0485(9)0 . 0472(9)0 . 0403(8)0 . 0414(8)0 . 0392(8)0 . 0492(9)0 . 0 7 4 ( 1)0 . 061(1)0 . 0365(8)0 . 0418(8)0 . 060( 1 )0 . 0 5 6 ( 1)0 . 124(2)0 . 143(3)0 . 071(1)0 . 072( 1)0 . 061(1)0 . 0459(9)0 . 0517(9)0 . 0464(8)0 . 0497(9)0 . 070( 1)0 . 066( 1)0 . 052( 1)0 . 054( 1)0 . 0545(8)0 . 0544(7)0 . 1 14( 1)0 . 0515(6)0 . 089( 1)

U12

0 . 0 0 4 6 ( 7 ) 0 . 0 1 4 1 ( 9 ) 0 . 0 0 5 ( 1 ) 0 . 0 0 9 ( 1) 0 . 0 0 9 3 ( 8 ) 0 . 0 0 7 2 ( 8 ) 0 . 0 0 2 5 ( 9 )

- 0 . 0 0 4 5 ( 8 ) 0 . 0 0 8 7 ( 8 ) 0 . 0 1 5 1 ( 9 )

- 0 . 0 0 2 8 ( 9 ) 0 . 0 1 7 ( 1 ) 0 . 0 0 8 8 ( 9 ) 0 . 0 0 1 4 ( 8 ) 0 . 0 1 5 4 ( 8 ) 0 . 0 0 8 0 ( 8 ) 0 . 0 3 3 ( 1) 0 . 0 2 1 ( 2 ) 0 . 0 0 3 ( 1) 0 . 0 0 0 ( 1)

- 0 . 0 0 1 ( 1) 0 . 0 1 2 0 ( 9 ) 0 . 0 1 9 2 ( 9 ) 0 . 0 2 2 3 ( 8 ) 0 . 0 2 1 0 ( 9 ) 0 . 0 1 1 ( 1)

- 0 . 0 1 8 ( 1 ) 0 . 0 2 6 ( 1) 0 . 0 2 4 ( 1 ) 0 . 0 3 1 ( 1 )

- 0 . 0 0 12( 6 ) 0 . 0 3 2 2 ( 9 ) 0 . 0 1 4 8 ( 6 )

- 0 . 0 0 4 2 ( 9 )

U13

0. 0165(7) 0 . 0 1 2 0 ( 8 ) 0 . 0291(9) 0 . 0198(9) 0 . 0 1 0 2 ( 8 ) 0. 0070(8) 0 . 0089(9) 0 . 0213(8) 0 . 0136(7) 0 . 0282(9) 0 . 0 3 K 1)

- 0 . 0 0 K 1) 0 . 0169(8) 0 . 0119(8) 0 . 0057(9) 0 . 0 0 0 1 ( 8 )

-0 . 017( 1) - 0 . 035(2) -0.0 14( 1) 0 . 0 13( 1) 0 . 0 13( 1) 0 . 0 2 0 0 ( 8 ) 0 . 0269(8) 0 . 0201(7) 0 . 0248(9) 0 . 029( 1) 0 . 0 2 2 ( 1) 0 . 032( 1) 0 . 0344(9) 0 . 025( 1) 0 . 0089(6) 0 . 0065(9) 0 . 0307(6) 0 . 0 6 3 ( 1)

U 2 3

- 0 . 0011 ( 6) - 0 . 0 0 0 9 ( 7 ) - 0 . 0 0 6 9 ( 8 ) - 0 . 0 1 5 2 ( 9 ) - 0 . 0 0 3 6 ( 7 ) - 0 . 0 0 3 8 ( 7 )

0 . 0 0 1 0 ( 7 ) - 0 . 0 0 2 0 ( 7 )

0 . 0 0 0 9 ( 7 ) 0 . 0 0 3 2 ( 7 )

- 0 . 0 2 2 ( 1) - 0 . 0 2 4 ( 1) - 0 . 0 0 2 0 ( 7 ) - 0 . 0 0 8 7 ( 7 ) - 0 . 0 0 2 4 ( 8 )

0 . 0 0 4 2 ( 7 ) - 0 . 0 3 7 ( 2 ) - 0 . 0 4 0 ( 2 ) - 0 . 0 1 6 ( 1) - 0 . 0 2 6 ( 1) - 0 . 0 1 5 ( 1) - 0 . 0 0 2 0 ( 8 )

0 . 0 0 4 7 ( 8 ) 0 . 0 0 4 3 ( 7 ) 0 . 0 0 5 6 ( 8 ) 0 . 0 0 1( 1)

- 0 . 0 1 4 ( 1) - 0 . 0 0 6 ( 1)

0 . 0 0 7 1 ( 9 )0 . 0 1 7 1 ( 7 )

- 0 . 0 168(6) - 0 . 0 3 8 ( 1) - 0 . 0 0 3 0 ( 5 ) - 0 . 0 0 8 4 ( 8 )

(a) A n i s o t r o p i c t hermal p a r a m e t e r s f o r ca rbon and oxygen a r e o-f t h e -form:T = ex p [ - 2 l 2 ( U 1 j h2a; (2+. . . + U' and -for hydrogen: T = exp( 3 t ^ i n 2 e / x 2 )

2 1 0

TABLE IV-11 Bond Angl es I n v o l v i n g

Carbon and Oxygen Atoms.

Atoms Angl e ( deg)C1-C2 -C3 105.8(2)C1-C2 - C 14 9 9 . 63 ( 9 )C1-C6 -C5 103 . 7( 1)C1-C6 -C7 10 6 . 8( 1)Cl -Cf -Cg 107 . 5( 1)C1-C9 - C 10 116. 3(1)C2- C 1-C6 101 . 8 ( 1)C2 - C 1-C9 115. 1(1)C2 -C3 -C4 10 8 . 0( 1)C2 - C 14-C5 9 5 . 1 ( 1 )C2- C 14-02 113.33(9)C3-C2 - C 14 100 . 2 ( 1)C3-C4 -C5 107.7(2)C4-C5 -C6 105. 7(1)C4-C5 - C 14 100 . 8 ( 1)C5 -C6 -C7 111.9(1)C5 - C 14-02 110 . 0 ( 1)C6- C 1-C9 107.42(9)C6 -C5 - C 14 9 8 . 4 ( 1 )C6-C7 -C8 111 . 0 ( 1)C5 -C7-01 124. 1(2)C7 -C8 -C9 1 0 7 . 1( 1)C7 -C8 - C13 112 . 6 ( 2)C8 -C7 - 0 1 124 . 9( 1)C8 -C9 -C Î 0 102 . 3( 1)C8 - C 1 3 -C 12 106.2(1)C8“Ci3~C22 9 7 . 7( 1)C9 -C8 - C 13 103. 2(1)C9 - C 10- C 11 107. 1( 1)C9-CÎ0-C92 9 8 . 7 ( 1)C10- C 11- C12 107.7(2)C10-C22-C15 9 4 . 5( 1)C10-C22-O4 110 . 3( 1)C l 1- C 10-C22 101 . 2 ( 1)C l 1- C 12-C13 108.1(1)C12- C 13-C22 100.9(1)C13-C22-O4 115.0(1)C14-O2- C15 117. 5(1)Cl 5-Cl6-^17 118. 6(2)C15- C 16-C2 I 122.3(2)CI6- C 15-O2 111.7(1)Cl 6-Cl 5- 03 124.4(2)CI6 - C 17-C18 119. 2(2)C16-C21-C20 120 . 6 ( 2)C17- C I 6-C21 119.1(2)C17- C 18-C19 121.3(3)C18- C 19-C20 119.7(2)C19-C20-C21 120 . 1( 2)C22"04~Cj 3 116.3(1)C23-C24-C25 122.7(1)C23-C24-C29 118 . 0( 1)C24-C23-O4 111 . 6 ( 1)C24-C23-O5 124.6(1)C24-C25-C26 120 . 1( 1)C24-C29-C28 119.9(2)C25-C24-C29 119.3(1)C25-C26-C27 120 . 2 ( 2)C26-C27-C28 120 . 1( 2)C27-C28-C29 120 . 4( 1)O2 - C 15-O3 123.9(2)O4 -C23-O5 123.7(1)

21 1

TABLE IV-12

Bond Lengt hs I n v o l v i n g

Carbon and Oxygen Atoms.

Atoms Bond Lengt

C1- C2 1. 563(2)Cl -Cé 1 . 552(2)C1-C9 1 . 542(2)C2 -C3 1. 511(2)C2 - C 14 1 . 527(2)C3 -C4 1 . 316(2)C4 -C5 1 . 510(2)C5 -C4 1 . 565(2)C5 - C 14 1 . 513(3)C6 -C7 1. 502(2)C7 -C8 1 . 500(2)C7 - O 1 1 . 204(2)C8 -C9 1 . 546(2)C8 - C 13 1. 570( 2 )C9 - C 18 1 . 555(2)C10- C 11 1 . 492(3)C10-C22 1 . 526(2)C11- C 12 1 . 317(2)C12- C 13 1 . 499(3)C13-C22 1 . 521(2)C14-O2 1 . 447(2)C15- C 16 1 . 488(2)C15-O2 1 . 330(2)C15-O3 1 . 198(2)C16- C 17 1 . 362(3)CI 6-C21 1 . 363(2)C17- C 18 1 . 389(4)C18- C 19 1 . 349(4)C19-C20 1. 338( 4 )C20 -C21 1 . 389(3)C22“ 04 1 . 445(2)C23 -C24 1 . 478(2)C23 -O4 1 . 340(2)C23 -O5 1. 204( 2 )C24 -C25 1 . 388(2)C24 -C29 1 . 393(2)C25 -C26 1 . 373(2)C26 -C27 1 . 383(2)C27 -C28 1. 368( 3 )C28 -C29 1 . 378(3)

212

T a b l e IV-13

Bond Leng t hs I n v o l v i n g

Hydrogen Atoms.

Atom Bond Le n g t h ( ^ )

Ci -Hi 0 . 9 6 ( 2 )C9-H2 1 . 00 ( 2 )C3-H3 1 . 04(2)C4-H4 1 . 00 ( 2 )C5-H5 0 . 9 5 ( 2 )C6-H6 0 . 9 7 ( 2 )Cs-Hs 0 . 9 8 ( 2 )C9-H9 0 . 9 7 ( 2 )Cl 0- H i 0 0 . 9 3 ( 2 )C i i - H i i 0 . 9 9 ( 2 )C12- H 12 0 . 9 5 ( 2 )C13- H 13 0 . 9 7 ( 2 )C14- H 14 0 . 9 7 ( 1 )C 17- H 17 0 . 9 2 ( 3 )Cl 8" H i 8 0 . 8 9 ( 3 )C19“ H19 1 . 01 ( 2 )C20-H28 0 . 9 7 ( 3 )C21-H21 0 . 9 6 ( 2 )C29-H22 1 . 03(2)C25-H25 0 . 9 7 ( 2 )C26-H26 0 . 9 3 ( 2 )C27“ H27 0 . 9 4 ( 2 )C28"H28 0 . 9 6 ( 2 )C29-H29 0 . 9 8 ( 2 )

2 1 3

Mass s p e c t r u m (Chemical i o n i z a t i o n ) : m/ e ( r e l a t i v e i n t e n s i t y ) 453 (M

+ H, c o r r e s p o n d i n g to C29H25O5 , 2 6 . 0 ) , 331 ( 5 3 . 0 ) , 267 ( 1 0 0 . 0 ) ,

187 ( 2 2 . 0 ) , 145 ( 1 4 . 0 ) , 123 ( 1 2 . 0 ) , 105 ( 6 4 . 0 ) , 85 ( 2 7 . 0 ) , 83 ( 2 6 . 0 ) ,

81 ( 2 6 . 0 ) , 79 ( 1 2 . 0 ) , 71 ( 3 2 . 0 ) , 70 ( 1 4 . 0 ) , 69 ( 3 7 . 0 ) , 67 ( 2 5 . 0 ) ;

and Spin Echo NMR s p e c t r a (75 MHz, CDCI3 , Fig l V- 2 9 ) : G

2 1 9 . 5 6 ( s ) , 165.69 ( s) , 133.21 (d) , 129.67 ( s ) , 127.60 ( d ) , 123.41

( d ) , 8 3 . 2 5 ( d ) , 55 . 08 (d) , 5 1 . 8 7 ( d ) , 4 9 . 7 2 ( d ) , 48 . 00 ( d ) , 46 . 69

( d ) , 4 1 . 0 2 (d) .

S y n t h e s i s o-f 7 ~B- An i s o y l o x y n o r b o r n a d i e n e (X VI I ) 29

To 10.5 g ( 6 1 . 6 mmol) o-f g - a n i s o y l c h l o r i d e i n 30 mL of dry

p y r i d i n e was added d ropwi se w i t h s t i r r i n g 15.67 g ( 1 4 4 . 9 mmol) of

7 - n o r b o r n a d i e n o l w h i l e t h e m i x t u r e was p r o t e c t e d by a CaCl2 d r y i n g

t u b e . A f t e r r e f l u x i n g f o r one hour and c o o l i n g to room t e m p e r a t u r e ,

100 mL of a 10% NaHCOg s o l u t i o n was added t o d i s s o l v e u n r e a c t e d

a c i d c h l o r i d e or a c i d . The l a y e r s were s e p a r a t e d and t h e o r g a n i c

l a y e r was e x t r a c t e d wi th a 10% HCi s o l u t i o n , d r i e d over MgSOg and

c o n c e n t r a t e d in vac uo to a f f o r d an o i l y r e s i d u e which c r y s t a l l i z e d

upon a d d i t i o n of pen t ane wi t h c o o l i n g . R e c r y s t a l l i z a t i o n from

e t h e r - p e n t a n e gave 11.22 g (75.24% y i e l d ) of w h i t e c r y s t a l s (mp

8 1 . 5 - 8 2 ° C ) .

C h a r a c t e r i z a t i o n of 7-o-Ani s o v l o x y n o r b o r n a d i e n e (XVI I ) . 29

i H NMR s p e c t r u m (300 MHz, CDCI3 , F i g I V- 3 9 ) : AA'BB' p a t t e r n

(JAB ~ 8 .8 Hz) , GgB' 7 . 90 (2 H, o-phenyl p r o t o n s ) , &aA'

6 . 8 5 ( 2 H, m-phenyl p r o t o n s ) , 6 . 7 2 (m, J = 4 . 1 Hz, J ' ' = 2 . 1 Hz, 2 H,

s y n - v i n y l p r o t o n s ) , 6.61 (m, J = 3 . 8 Hz, J ' = 2 . 1 Hz, 2 H, a n t i - v i n y l

p r o t o n s ) 4 . 7 9 ( t , J = 1.9 Hz, 1 H, b r i d g e p r o t o n ) , 3 . 80 ( s , 3 H,

OCH3) , 3 . 6 9 (m, J = 4 . 1 Hz, J" = 3 . 8 Hz, J ' ' = 1.9 Hz, 2 H,

b r i d g e h e a d p r o t o n s ) ;

IR s p e c t r u m (KBr p e l l e t . Fig IV-40) : 1720 ( m) , 1620 ( m) , 1520 ( w ) ,

1470 ( w ) , 1330 (m) , 1290 ( m) , 1255 ( s ) , 1190 ( m ) , 1172 (m) , 1104 (m).

2 1 4

1069 ( w) , 1030 (w) , 1004 (m) , 850 (w) , 811 (m), 772 (m) , 712 (m),

c m ' l ;

Mass s p e c t r u m <70 eV, Fig I V- 4 1 ) : m/e ( r e l a t i v e i n t e n s i t y ) 242

(M+, 1 . 9 ) , 135 < 1 0 0 . 0 ) , 107 < 1 2 . 1 ) , 92 < 1 0 . 1 ) , 77 ( 2 6 . 7 ) ;

^3Ç and Soin Echo s p e c t r a <20 MHz, CDCI3 , F i g I V- 4 2 ) : G

166.08 < s ) , 163.27 <s) , 140.21 <d) , 137.74 <d) , 131.50 <d) , 122.60

( s ) , 113.39 <d) , 99.31 <d) , 5 5 . 1 7 <d) , 5 2 . 4 6 < d ) .

Anal . C a l c u l a t e d -for C15H14O3 Î C, 7 4 . 3 6 ; H, 5 . 8 2 . Found: C,

7 4 . 2 6 ; H, 5 . 6 9 .

R e a c t i o n o-f 7 - p - A n i s o y l o x y n o r b o r n a d i e n e (XVII) w i t h Fe<C0)529

To 12. 37 g <51.1 mmol) o-f 7 - g - a n i s o y l o x y n o r b o r n a d i e n e (XVII) in

60 mL o-f - f r e s h l y d i s t i l l e d d i - n - b u t y l e t h e r under n i t r o g e n was added

a s o l u t i o n o-f 20. 42 g <104.3 mmol) o-f Fe<C0)5 in 15 ml o-f

d i - n - b u t y l e t h e r . The r e s u l t i n g m i x t u r e was re-f luxed under n i t r o g e n

f o r 26 h o u r s and then a l l owed t o cool t o room t e m p e r a t u r e . To t h e

c o o l e d r e a c t i o n mi x t u r e was added a s o l u t i o n of 4 4 . 2 5 g of

FeCl3 ' 6H20 i n 170 ml of a c e t o n e , and t h e r e s u l t i n g m i x t u r e was

s t i r r e d a t room t emp e r a t u r e f o r 1 week t o decompose any u n r e a c t e d

i r o n p e n t a c a r b o n y l and Fe<0) compl exes t h a t might be p r e s e n t . The

r e a c t i o n m i x t u r e was then d i l u t e d w i t h 500 mL of d i s t i l l e d wa t e r and

e x t r a c t e d s e v e r a l t imes wi t h e t h y l a c e t a t e <5 x 100 mL p o r t i o n s ) .

The combined e x t r a c t s were washed w i t h w a t e r , d r i e d ove r MgSOg,

and f i l t e r e d , and t he f i l t r a t e was c o n c e n t r a t e d in vacuo t o a f f o r d a

v i s c o u s , d a r k brown o i l . D i l u t i o n of t h i s o i l w i t h an equa l volume

of a b s o l u t e e t h a n o l f o l l o we d by r e f r i g e r a t i o n o v e r n i g h t r e s u l t e d i n

p r e c i p i t a t i o n of r e l a t i v e l y p u r e XIX. An a n a l y t i c a l sampl e of XIX

was o b t a i n e d f o l l o w i n g s u c t i o n - f i 1t r a t i o n v i a column ch r oma t ogr aphy

on F l o r i s i l <100-200 mesh, 10% e t h y l a c e t a t e - h e x a n e e l u e n t ) ;

r e c r y s t a l l i z a t i o n from e t h y l a c e t a t e - h e x a n e mixed s o l v e n t a f f o r d e d

c o l o r l e s s m i c r o c r y s t a l 1i n e cage d imer XIX <1.1 g , 23%); mp

140-141°C. I s o l a t i o n of dimer k e t o n e XVI11 from t he f i l t r a t e was

2 1 5

a c c o mp l i s h e d v i a column chr omat ography on F l o r i s i l <100-208 mesh, 15%

e t h y l a c e t a t e - h e x a n e e l u e n t ) . The - f i r s t - f r a c t i o n c o l l e c t e d c o n t a i n e d

7 . 51 9 o-f u n r e a c t e d 7 - f i - an i s oy l o x y n o r b o r n a d i e n e . The s ec o n d - f r a c t i o n

c o n t a i n e d d i me r k e t o n e XVIII <0 . 19 g , 4%) whi ch was r e c r y s t a l l i z e d

-from e t h y l a c e t a t e - h e x a n e mixed s o l v e n t a f f o r d i n g m i c r o c r y s t a l l i n e

s o l i d XVIII <mp 2 4 1 . 3 - 2 4 1 .7°C) . S u b s e q u e n t f r a c t i o n s c o n t a i n e d

1.93 g of u n c h a r a c t e r i z e d r e s i d u e s .

C h a r a c t e r i z a t i o n of Cage Dimer <XIX) . 2?

i H m R s p e c t r u m <300 MHz, CDCI3 , F i g IV-43) : AA'BB' p a t t e r n

<Ja B = 9 . 1 Hz) , &BB' 7 . 9 7 <4 H, o-pheny l p r o t o n s ) , &AA'

6.90 <4 H, m-phenyl p r o t o n s ) , 5 . 4 9 <m, 2 H, C7 p r o t o n s ) , 3 . 8 6 <s , 6

H, OCH3) , 2 . 9 3 <m, 4 H) , 2 . 7 4 <m, 2 H, b r i d g e h e a d p r o t o n s ) , 2 . 6 2

<m, 2 H, b r i d g e h e a d p r o t o n s ) , 2 . 6 2 <m, 2 H ) , 2 . 6 1 <m, 2 H ) ;

IR s p e c t r u m <KBr p e l l e t , F i g I V - 4 4 ) : 3100-2400 < b ) , 1730 <s) , 1637

<s) , 1535 <w) , 1485 <w), 1342 < s ) , 1310 < s ) , 1290 < s ) , 1190 < s ) , 1140

<m), 1122 <m) , 1100 <m) , 1050 <m, ) , 1025 <w), 967 <w), 865 < s ) , 783

<w), c m ' l ;

Mass s p e c t r u m <70 eV, F i g I V - 4 5 ) : m/ e < r e l a t i v e i n t e n s i t y ) 484

<M+, 2 8 . 9 ) , 349 < 2 1 . 7 ) , 136 < 1 0 . 0 ) , 135 < 1 0 0 . 0 ) :

and S o i n Echo NMR s p e c t r a <20 MHz, CDCI3 , F i g IV-46) : 6

165.99 < s ) , 163.40 < s ) , 131.59 <d) , 123.21 <s) , 113.61 < d ) , 8 7 . 7 8

<d) , 5 3 . 3 7 <d ) , 53 . 54 <d) , 5 2 . 0 5 ( d ) , 5 1 . 4 5 < d ) , 5 1 . 24 < d ) , 4 9 . 3 4

<d) , 4 8 . 7 5 < d ) .

HOMCOR NMR s p e c t r u m <300 MHz, CDCI3 , F i g I V - 4 7 ) .

A n a l . C a l c u l a t e d f o r CB0H28O6 : C , 7 4 . 3 6 ; H, 5 . 8 2 . Found C,

7 4 . 5 0 ; H, 5 . 7 1 .

C h a r a c t e r i z a t i o n of AXTXA Dimer Ke t one < X V I I I ) . 29

i H NMR s p e c t r u m <300 MHz, CDCI3 , F i g I V - 4 8 ) ; AA'BB' p a t t e r n

<Jab = 8 . 9 Hz) , &BB' 7 . 8 9 <4 H, o-phenyl p r o t o n s ) , &AA'

6 . 87 <4 H, m-phenyl p r o t o n s ) , 6 . 21 <m, J = 6 . 0 Hz, J ' = 3 . 0 Hz, 2 H,

syn v i n y l p r o t o n s ) , 6 . 18 <m, J = 6 . 4 Hz, J ' = 2 . 6 Hz, a n t i v i n y l

2 1 6

p r o t o n s ) , 4 . 8 5 ( t , J = 1.7 Hz, 2 H, b r i d g e p r o t o n s ) , 3 . 32 (m, J = 3. 0

Hz, J ' = 1.7 Hz, 2 H, syn b r i d g e h e a d p r o t o n s ) , 3 . 2 0 (m, J = 2 . 6 Hz,

J ' = 1 . 7 Hz, 2 H, a n t i b r i d g e h e a d p r o t o n s ) , AB p a t t e r n ( J ^g = 8 . 2 2

Hz) , Gg 2 . 7 0 <2 H, syn c y c l o p e n t a n o n e r i n g p r o t o n s ) , G&

2. 3 1 ( 2 H a n t i c y c l o p e n t a n o n e r i n g p r o t o n s ) ;

IR s p e c t r u m (CHCIg s o l u t i o n c e l l , F i g I V - 4 9 ) : 3000-2945 (m) , 1718

( v s ) , 1609 ( s ) , 1585 (m) , 1512 (m) , 1467 (m) , 1445 (w) , 1420 <w),

1380 ( w) , 1335 (m) , 1320 ( s ) , 1280 <br s ) , 1170 ( s ) , 1115 ( s ) , 1030

( s ) , 968 ( w) , 890 (w) , 848 (m) , 638 (w) , 622 ( w) ;

Mass s p e c t r u m (70 eV, F i g 1 0 - 5 0 ) ; m/ e ( r e l a t i v e i n t e n s i t y ) 512

(M+, 1 . 0 ) , 136 ( 9 . 7 ) , 134 ( 1 0 0 . 0 ) , 77 ( 6 . 1 ) ;

and Soin Echo NMR s p e c t r a (20 MHz, CDCI3 , Fig 1 0 - 5 1 ) : G

2 1 6 . 8 4 ( s ) , 166 . 49 ( s ) , 163.53 ( s ) , 1 3 4 . 2 9 ( d ) , 1 3 3 . 2 3 ( d ) , 131. 66

( d ) , 122 . 39 ( s ) , 113.61 ( d ) , 84 . 90 ( d ) , 5 7 . 8 7 ( d ) , 55 . 36 (d) , 5 2 . 8 4

(d) , 5 0 . 5 3 ( d ) , 4 5 . 5 7 ( d ) .

Anal . C a l c u l a t e d -for CgiH^gOyi C , 7 2 . 6 4 ; H, 5 . 5 1 . Found; C,

7 2 . 3 5 ; H, 5 . 4 4 .

S y n t h e s i s o-f Cage Diol (X)()CK ) 29

A m i x t u r e o-f 0 . 8 g ( 1 . 7 mmol) o-f cage d i e s t e r XIX ( a l t e r n a t i v e l y ,

cage d i e s t e r XOl may be u s e d ) , 0 . 2 g ( 3 . 6 mmol) o-f p o t a s s i u m

h y d r o x i d e ( - f i n e l y g r o u n d ) , and 0 . 2 mL o-f w a t e r was d i s s o l v e d in 40 mL

o-f a b s o l u t e e t h a n o l and t hen re- f luxed -for 3 . 5 h o u r s . The r e s u l t i n g

m i x t u r e was c o o l e d and s u c t i o n - f i l t e r e d . Ch l oroform (150 mL) was

added t o t h e f i l t r a t e , and t h e r e s u l t i n g m i x t u r e was e x t r a c t e d w i t h

d i l u t e a q u e o u s sodium b i c a r b o n a t e s o l u t i o n . The o r g a n i c l a y e r was

washed w i t h w a t e r , d r i e d over a n h y d r o u s magnesium s u l f a t e , and

f i l t e r e d , and t h e f i l t r a t e was c o n c e n t r a t e d in vacuo . The waxy

r e s i d u e t h e r e b y o b t a i n e d was r e c r y s t a l l i z e d from c h l o r o f o r m ,

a f f o r d i n g c a g e d i o l XXXX a s a c o l o r l e s s m i c r o c r y s t a l l i n e s o l i d ( 0 . 3 1

g , 857.), mp 207-209°C. An a n a l y t i c a l s am p l e , mp 2 0 9 . 50C, was

o b t a i n e d by c h r o ma t o g r a p h y on F l o r i s i l ( c h l o r o f o r m e l u e n t ) f o l l o w e d

2 1 7

by r e c r y s t a l l i z a t i o n f rom c h l o r o f o r m .

C h a r a c t e r i z a t i o n of Cage Diol (XXXX).29

NMR s p e c t r u m <300 MHz, P y r - d g , F i g IV- 54) : G 5 . 3 6 <br s , 2

H, OH), 4 . 8 0 < t , J = 1.8 Hz, 2 H, b r i d g e p r o t o n s ) , 3 . 1 7 <m, 4 H,

n o n - b r i d g e h e a d p r o t o n s ) , 2 . 6 4 <m, 2 H, b r i d g e h e a d p r o t o n s ) , 2 . 4 8 <m,

2 H, b r i d g e h e a d p r o t o n s ) , 2 . 4 6 <m, 4 H, n o n - b r i d g e h e a d p r o t o n s ) ;

IR s p e c t r u m <KBr p e l l e t . F i g IV- 55) : 3282 ( v s ) , 2950 <s) , 2875 ( s ) ,

1430 <w) , 1342 < s ) , 1315 < s ) , 1309 (m) , 1290 (m), 1250 (m) , 1228 ( s ) ,

1197 (m) , 1174 ( w) , 1122 <m), 1072 < s ) , 1040 ( s ) , 990 ( w) , 915 (w) ,

872 ( w) , 804 (m) , 777 <w) , 672 (w) c m ' l ;

Mass s p e c t r u m <70 eV, F i g I V- 56) : m/e ( r e l a t i v e i n t e n s i t y ) 217

( 1 7 . 5 ) , 216 <M+, 1 0 0 . 0 ) , 215 ( 2 0 . 8 ) , 214 ( 1 8 . 1 ) , 198 ( 3 1 . 7 ) , 187

( 5 0 . 5 ) , 169 ( 1 3 . 0 ) , 159 ( 1 7 . 3 ) , 141 ( 1 3 . 5 ) , 133 ( 1 0 . 5 ) , 129 ( 1 5 . 2 ) ,

128 ( 1 2 . 3 ) , 121 ( 1 2 . 1 ) , 120 ( 1 1 . 5 ) , 117 ( 1 2 . 9 ) , 1 15 ( 1 9 . 5 ) , 108

( 1 2 . 8 ) , 105 ( 2 7 . 0 ) , 104 1 4 . 7 ) , 91 ( 4 0 . 7 ) , 79 ( 2 7 . 3 ) , 78 ( 1 1 . 5 ) , 77

( 2 6 . 1 ) , 65 ( 1 0 . 1 ) , 32 ( 2 0 . 8 ) , 28 ( 4 0 . 3 ) ;

NMR s p e c t r a <20 MHz, P y r - d g , F i g 1 0 - 57) : G 8 5 . 8 5 <d) ,

5 7 . 0 7 ( d ) , 5 4 . 5 1 < d ) , 5 2 . 3 2 < d ) , 51 . 70 < d ) , 50 . 15 < d ) , 49 . 51 < d ) .

A n a l . C a l c u l a t e d f o r C14H16O2 : C, 7 7 . 7 5 ; H, 7 . 4 6 . Found, C,

7 7 . 9 8 ; H, 7 . 6 1 .

S y n t h e s i s of Cage Di k e t o n e (XXXXI)29

To 0 . 2 g <0.9 mmol) of cage d i o l (XXXX) d i s s o l v e d in a minimum

amount of d i me t hy l s u l f o x i d e was added 3 mL of m e t h y l e n e c h l o r i d e .

The r e s u l t i n g m i x t u r e was added r a p i d l y a t room t e m p e r a t u r e t o a

v i g o r o u s l y s t i r r e d m i x t u r e of 0 . 7 g <3.3 s o l u t i o n . The o r g a n i c

l a y e r was washed w i t h w a t e r , d r i e d over anhydr ous magnesium s u l f a t e ,

and XXXX, t h e l i g h t o r ange s u s p e n s i o n of PCC r a p i d l y d a r k e n e d . The

m i x t u r e was s t i r r e d a t room t e m p e r a t u r e o v e r n i g h t , a t whi ch t i me t he

m i x t u r e was e x t r a c t e d s e v e r a l t i me s wi t h e t h e r . The combined

e t h e r e a l e x t r a c t s we re washed wi t h w a t e r , d r i e d ov e r anhydr ous

2 1 8

magnesium s u l f a t e , and - f i l t e r e d , and t h e - f i l t r a t e was c o n c e n t r a t e d in

v a c u o . The s o l i d r e s i d u e was r e c r y s t a l l i z e d -from ch i o r o f o r m- h e x a n e

mixed s o l v e n t , a f f o r d i n g cage d i k e t o n e XXXXI ( 0 . 1 8 5 g, 93%) a s a

c o l o r l e s s m i c r o c r y s t a l l i n e s o l i d , mp 3 0 9 - 3 1 1 ° ( s e a l e d t u b e ) . An

a n a l y t i c a l s ampl e of XXXXI, mp 313°C, was o b t a i n e d by c a r e f u l

column ch r o ma t o g r a p h y on F l o r i s i l (60-100 mesh , 1:1 ch i o r o f o r m- h e x a n e

e l u e n t ) f o l l o w e d by r e p e a t e d r e c r y s t a l l i z a t i o n of t h e e l u a t e from

c h i o r o f o r m - h e x a n e mixed s o l v e n t .

C h a r a c t e r i z a t i o n of Cage Di ke t one (XXXXI). 29

NMR s p e c t r u m (300 MHz, CDCI3 , F i g I V - 5 8 ) : £ 2 . 85 ( b r , 8 H,

n o n - b r i d g e h e a d p r o t o n s ) , 2 . 44 ( b r , 4 H, b r i d g e h e a d p r o t o n s ) ;

IR s p e c t r u m (CCI 4 s o l u t i o n c e l l . F i g I V - 5 9 ) : 3018 ( m) , 2978 (m) ,

1787 (m) , 1775 ( s ) , 1696 ( s ) , 1321 (w) , 1172 (w) , 1145 ( m) , 892 (m)

cm"l ;

Mass s p e c t r u m (70 eV, Fig IV-60) : m/e ( r e l a t i v e i n t e n s i t y ) 212

(M+, 6 4 . 1 ) , 156 ( 1 0 . 7 ) , 155 ( 1 2 . 1 ) , 141 ( 1 5 . 0 ) , 115 ( 2 2 . 4 ) , 106

( 1 0 0 . 0 ) , 91 ( 5 3 . 3 ) , 78 ( 5 1 . 1 ) , 77 ( 2 1 . 0 ) , 76 ( 1 0 . 0 ) , 65 ( 11.7) ;

NMR s p e c t r a (20 MHz, CDCI3 , F i g I V - 6 1 ) : 6 214. 58 ( s ) ,

49 . 46 (d) , 4 8 . 8 9 (d) .

A n a l . C a l c u l a t e d f o r C14H12O2 : C, 7 9 . 2 3 ; H, 5 . 7 0 . Found C,

7 9 . 3 1 ; H, 5 . 5 2 .

S y n t h e s i s of 2 - C a r b o e t h o x y n o r b o r n a d i e n e (XX)33

To 2 0 . 6 3 g (312 mmol) of f r e s h l y d i s t i l l e d eye 1o p e n t a d i e n e was

added 25 g ( 2 5 4 . 8 mmol) of e t h y l p r o p i o l a t e and 3 . 13 mg of

hyd r o q u i n o n e and t h e r e s u l t i n g m i x t u r e was r e f l u x e d f o r two h o u r s a t

110°C. A f t e r c o o l i n g , t he r e a c t i o n v e s s e l was equi pped wi t h a

6- i n c h v i g r e u x column, f i t t e d wi t h an e f f i c i e n t vacuum d i s t i l l a t i o n

head, and vacuum d i s t i l l e d (65°C, 0 . 3 t o r r ; l i t . 33 84°C, 5.0

t o r r ) t o a f f o r d 2 5 . 4 2 g (60.75% y i e l d ) of 2 - c a r b c e t h o x y n o r b o r n a d i e n e .

2 1 9

C h a r a c t e r i z a t i o n o-f Z - C a r b o e t h o x v n o r b o r n a d i e n e ( XX) .

NMR spec t rum (68 MHz, CDCI3 , Fig I V- 6 2 ) : G 7 . 6 2 ( d , J =

3 . 3 Hz, 1 H, s y n - c i s v i n y l p r o t o n ) , 6.90 ( d d , J = 5 . 0 Hz, J"" = 2 . 9

Hz, 1 H, a n t i - c i s v i n y l p r o t o n ) , 6 . 71 (dd, J = 5 . 0 Hz, J ' = 2 . 9 Hz, 1

H, a n t i - t r a n s v i ny l p r o t o n ) , 4 . 1 8 (q , J = 7 . 1 Hz, 2 H, CH?

c a r b o e t h o x y p r o t o n s ) , 3 . 8 9 (m, J = 3 . 3 Hz, J ' = 2 . 9 Hz, 1 H, t r a n s

b r i d g e h e a d p r o t o n ) , 3 . 70 (m, J = 2 . 9 Hz, 1 H, c i s b r i d g e h e a d p r o t o n ) ,

2 . 1 4 ( d d d , J = 6 . 4 Hz, J ' = 1.8 Hz, J " = 1.8 Hz, 1 H syn b r i d g e

p r o t o n ) , 2 . 10 (ddd, J = 6 . 4 Hz, J ' = 1.8 Hz, J " = 1 . 8 Hz, IH a n t i

b r i d g e p r o t o n ) , 1.28 ( t , J = 7 7 . 1 Hz, 3 H, methyl p r o t o n s ) ;

IR s p e c t r u m ( s a l t p l a t e . F i g I V - 6 3 ) : 2975 ( s ) , 1720 ( s ) , 1601 (m),

1570 ( w) , 1465 (m), 1390 ( s ) , 1310 ( s ) , 1245 ( s ) , 1175 ( s ) , 1115 ( s ) ,

1060 ( s ) , 1030 ( s ) , 935 (w) , 875 (m) , 828 (m) , 765 ( s ) , 730 (w) , 700

( m ) , cm" 1 ;

Mass s p ec t r u m (70 eV, F i g 1 0 - 6 4 ) : m/e ( r e l a t i v e i n t e n s i t y ) 164

(M+, 3 4 . 6 ) , 135 ( 2 9 . 1 ) , 123 ( 1 5 . 5 ) , 119 ( 5 2 . 2 ) , , 107 ( 1 0 . 1 ) , 106

( 1 2 . 2 ) , 105 ( 17 . 1 ) , 95 ( 1 2 . 1 ) , 93 ( 10 . 4) , 92 ( 1 4 . 7 ) , 91 ( 1 0 0 . 0 ) , 86

( 5 2 . 8 ) , 84 ( 7 8 . 0 ) , 79 ( 3 6 . 9 ) , 78 ( 10 . 6) , 77 ( 2 9 . 7 ) , 67 ( 1 2 . 8 ) , 66

( 4 3 . 9 ) , 65 ( 2 9 . 7 ) ;

and Spin Echo NMR s p e c t r a (20 MHz, CDCI3 , F i g 1 0 - 6 5 ) : 6

164.89 ( s ) , 155.37 (d) , 149.71 ( s ) , 143.62 ( d ) , 141 . 67 ( d ) , 74 . 16

( s ) , 5 9 . 9 2 ( s ) , 51 . 34 (d) , 4 9 . 8 5 (d) , 14.07 ( t ) .

R e a c t i o n o-f 2 - C a r b o e t h o x y n o r b o r n a d i e n e (XX) w i t h I r o n P e n t a c a r b o n y l

To a s t i r r e d s o l u t i o n o-f 14 . 25 g ( 8 6 . 3 mmol) o-f 2 - c a r b o e t h o x y -

n o r b o r n a d i e n e in 150 mL o-f d i - n - b u t y l e t h e r under n i t r o g e n was added

3 4 . 3 9 g (175 mmol) o-f Fe(CO)s , and the r e s u l t i n g s o l u t i o n was

r e f l u x e d f o r 168 h o u r s . Upon c o o l i n g , t h e r u s t y brown m i x t u r e was

added t o 131.27 g of FeCl 3 *6H20 in 500 mL of a c e t o n e and was

a l l o w e d to s t i r f o r one week. At t he end of t h i s t i me 1500 mL of

w a t e r was added and t h e m i x t u r e was e x t r a c t e d f i v e t i m e s w i t h 100 mL

p o r t i o n s of e thyl e t h e r . The combined e x t r a c t s we re d r i e d over

2 2 0

MgSOg, co n d e n s e d in vacuo , and t h e r e s u l t i n g dark brown o i l was put

on a F l o r i s i l column (108-200 m e s h ) . E l u t i o n wi t h hexane gave

s o l v e n t and u n r e a c t e d XX <1. 74 g r a ms ) . The s econd f r a c t i o n (NMR, F i g

IV-66 o f c r u d e XXIa) was e l u t e d w i t h 18% e t h y l a c e t a t e - h e x a n e . The

t h i r d f r a c t i o n c o n t a i n e d t h e compound(s ) XXIb whose NMR i s shown in

F i g IV- 67 . R e c r y s t a l l i z a t i o n of b o t h c r u d e m i x t u r e s from e t h y l

a c e t a t e - h e x a n e r e s u l t e d i n o i l i n g o u t and a l l a t t e m p t s to i s o l a t e

s i n g l e p u r e compounds met w i t h no s u c c e s s .

C h a r a c t e r i z a t i o n of Crude M i x t u r e XXI a .

NMR s p e c t r u m (60 MHz, CDCI3 , F i g I V- 66) : S 7 . 0 4 (m, 2 H,

v i n y l p r o t o n s ) , 4 . 2 (q , 4 H, CH2 c a r b o e t h o x y p r o t o n s ) , 3 . 3 (m, 4

H, b r i d g e h e a d p r o t o n s ) , 2 . 5 5 ( d , 2 H, s y n - c y c l o p e n t a n o n e r i n g

p r o t o n s ) , 2 . 1 ( d , 2 H, a n t i - c y c l o p e n t a n o n e r i n g p r o t o n s ) , 1.35 (m, 10

H, f o u r C7 and s i x CH3 p r o t o n s ) .

C h a r a c t e r i z a t i o n of Crude XXIb.

^H NMR s p e c t r u m (60 MHz, CDCI3 , F i g I V- 6 7 ) : & 7 . 8 4 (m, 2 H,

v i n y l p r o t o n s ) , 4 . 2 (q , 4 H, CH2 c a r b o e t h o x y p r o t o n s ) , 3 . 5 (m, 1 H,

b r i d g e h e a d p r o t o n ) , 3 . 3 (m, 2 H, b r i d g e h e a d p r o t o n s ) , 3 . 1 (m, 1 H,

b r i d g e h e a d p r o t o n ) , 2 . 55 (d or m, 2H, a n t i - c y c l o p e n t a n o n e r i n g

p r o t o n s ) , 1 . 3 (m, 10 H, f o u r C7 and s i x CH3 c a r b o e t h o x y p r o t o n s ) .

C o n c l u s i o n

C o n c e r n i n g t h e s t e r e o c h e m i s t r y and mechani sm of t he i r o n p e n t a ­

c a r b o n y l - p r o mo t e d c o u p l i n g of s t r a i n e d o l e f i n s t o carbon monoxi de , i t

h a s been shown t h a t t he p r e s e n c e of a l o n e p a i r - b e a r i n g s u b s t i t u e n t

a t t h e 7 - p o s i t i o n i s not n e c e s s a r i l y s u f f i c i e n t t o induce SXTNS d i mer

k e t o n e f o r m a t i o n . The d i me r i c k e t o n e p r o d u c t s which r e s u l t f rom t h e

r e a c t i o n s of i r o n p e n t a c a r b o n y l w i t h 7 - b e n z o y l o x y n o r b o r n a d i e n e and

w i t h 7 - g - a n i s o y l o x y n o r b o r n a d i e n e s u g g e s t t h a t : ( i ) t h e e l e c t r o n

p a i r s on t h e 7-Lewis b a s e oxygen a r e no t s u f f i c i e n t l y a v a i l a b l e t o

2 2 1

d i r e c t t h e s y n - F e ( C0)4 co mp l ex a t i o n (Eq IV-4) and a i d in ex p u l s i o n

o-f ca rbon monoxi de , or < i i ) t h e s t e r i c bu l k o-f t h e a r o ma t i c r i n g

e f f e c t i v e l y b l o c k s t h e syn doub l e bond from c y c l i z a t i o n and i n s e r t i o n

of CO.

The s t r u c t u r e of cage dimer k e t o n e d i e s t e r compound (XXXIV),

whi ch was formed i n t h e r e a c t i o n of 7 - b e n z o y l o x y n o r b o r n a d i e n e wi t h

Fe(CG)5 , was s u g g e s t e d by t h e s p e c t r a l e v i d e n c e of F i g s IV-26

t h r o u g h IV-29.

S i n c e t h e d i m e r i c k e t o n e p r o d u c t s r e s u l t i n g f rom t h e r e a c t i o n

7 - b e n z o y l o x y n o r b o r n a d i e n e a r e s e v e r a l in number , i t i s p r o b a b l e t h a t

7 - & - a n i s o y l o x y n o r b o r n a d i e n e a l s o y i e l d s more t h a n j u s t t h e one AXTXA

i s o m e r .

Expans i on of t h e meager l i s t of f u n c t i o n a l i z e d HTCD's has been

d e m o n s t r a t e d by s y n t h e s i s of cage d i e s t e r s XVI and XIX, and t he

s u b s e q u e n t s y n t h e s i s of cage d i o l XXXX and u n i q u e cage d i k e t o n e

XXXXI.

S e p a r a t i o n , p u r i f i c a t i o n , and c h a r a c t e r i z a t i o n of t h e p r o d u c t s

r e s u l t i n g f rom t h e r e a c t i o n of 2- c a r b o e t h o x y n o r b o r n a d i e n e wi t h

Fe(C0>5 were found t o be d i f f i c u l t . However , ba s ed upon t he NMR

s p e c t r a of XXIa ( F i g IV-66) and XXIb ( F i g I V - 6 7 ) , i t i s e v i d e n t t h a t

t h e d i me r i c k e t o n e s s e p a r a t e d f rom t h e r e a c t i o n m i x t u r e c o n t a i n e d no

c e n t r a l c y c l o p e n t a n o n e r i n g which was c a r b o e t h o x y - s u b s t i t u t e d , and

t h a t t h e c o n f i g u r a t i o n s of t h e p r o d u c t s w e r e XTX. A compl e t e

d e t e r m i n a t i o n of t h e s t e r e o c h e m i s t r y of t h e i n d i v i d u a l p r o d u c t s w i l l

s hed a d d i t i o n a l l i g h t on t h e s t e r i c and e l e c t r o n i c f a c t o r s which

combine t o d e t e r m i n e t h e s t e r e o c h e m i s t r y and mechanism of

Fe(CD)5- p r omot ed c o u p l i n g of n o r b o r n a d i e n e s t o c a r b o n monoxide .

2 2 2

BIBLIOGRAPHY

1. Marchand, A. P . ; Hayes , B. R. T e t r a h e d r o n L e t t . 1977. 1027.

2 . ( a) Marchand, A. P . ; Goodin, D. B . : Hos s a i n , M. B . ; van de rHelm, D. J . Pro. Chem. 1984. 4 9 . 2897. (b) Goodin, D. B . ; B.S.T h e s i s , U n i v e r s i t y o t Oklahoma, 1977.

3 . S p e e r t , A . : Gelan, J . ; A n t e u n i s , M . : Marchand, A. P . : L a s z l o ,P. T e t r a h e d r o n L e t t . 1973. 2271.

4 . ( a ) King, R. B. " T r a n s i t i o n Meta l Organic C h e mi s t r y " ; AcademicP r e s s ; New York, 1969; pp 143-144. (b) P e t t i t , R . ; Emerson,6 . F. Adv. Oroanometal . t h e m . 1964. 1.

5 . ( a ) Green , M . ; Lucken, E. A. C. He l v . Chim. Ac t a 1962. 45 ,1870. (b) Cookson, R. C. ; Hens tocK. J . ; Hudec. J . J . Am. Chem.S o c . 1966. 8 8 , 1059.

6 . C-f. ( a) W e i s s b e r g e r , E . W. ; L a s z l o , P. Acc. Chem. R e s . 1976 . 9,209. <b) We i s s b e r g e r , E . ; Page , G. J . Am. Chem. SocT 1977 . 9 7 .147.

7 . M a n t z a r i s . J . ; W e i s s b e r o e r . E. J . Am. Chem. Soc . 1974. 96 .1873, 18Sd. ~

8 . G r a n d j e a n , J . ; L a s z l o , P . ; S t o c k i s , A. J . Am. Chem. S o c . 1974. 96 , 1622.

9 . L a s z l o , P . ; S t o c k i s , A. J . Oroanometal . Chem. 1976. 1 1 7 . C41.

10. L a s z l o , P . : S t o c k i s , A. " A b s t r a c t s o-f P a p e r s " , 1s t ChemicalCo n g r e s s o t t he Nor t h Amer ican C o n t i n e n t , Mexico C i t y , Mexi co ,Nov. 30-Dec . 5, 1975; Paper No. ORGA-59.

11. ( a ) A s t i n , K. 8 . ; Mackenz i e , K. J . Chem. Soc. P e r k i n T r a n s . 21975. 1004. (b) Maz zocc h i , P. H. ; S t a h l y , B. ; Dodd, J . ;Kondan , N. G . ; Domelsmi th, L . N . ; Rozeboom, M. D . ; Caramel l a , P . ; Houk, K. N. J . Am. Chem. S o c . 1980. 9 2 . 6482.

12. Marchand, A. P. " A b s t r a c t s o t P a p e r s " , 38th Sou t hwes t and 6 thRocky Mounta in Regional Me e t i n g of t h e American Chemical S o c i e t y , El Paso, T x , December 1-3, 1982; Amer ican ChemicalS o c i e t y : Washingt on , D. C. , 1982, A b s t r . 235.

13. Marchand, A. P . ; Hayes , B. R . ; van de r Helm. D. ; N e e l y , S. C." A b s t r a c t s of P a p e r s " , 1s t Chemical Congress of t h e No r t hAmer ican C o n t i n e n t , Mexico C i t y , Mexico, November 30-December 5 , 1975; Paper No. ORGA-59.

14. G r e v e l s , F. W.; Sc h u l z , D . ; von G u s t o r f , E. K. Anoew. Chem.I n t . . Ed. E n o l . 1974. ] 3 , 534 .

15. A. P. Marchand p e r s o n a l communi ca t i on .

16. S h o o l e r y , J . N. J . N a t . P r o d . 1984. 4 7 . 226.

2 2 3

17. Mar chand, A. P . ; Rose, J . E. J . Am. Chem. S o c . 1968. 90, 3724.

18. S n y d e r , E. I . ; F r anzus , B. J . Am. Chem. S o c . 1964. 8 6 . 1166.

19. B a i r d , W. C . ; S u r r i d g e , H. J . Oro. Chem. 1972. 3 7 . 304.

20 . ( a ) Nagayama, K. : Bachmann, P . ; W u r t r i c h , K. ; E r n s t , R. R.Maon. Reson. 1978. 31. 133. (b) H a l l . L. D . ; Sukumar, S. Chem.Commun. 1 9 / 9 . ~

21 . ( a ) M a n t z a r i s , J . ; We i s b e r g e r , E. T e t r a h e d r o n L e t t . 1972.2815. (b) B a i r d , C. W . ; Cookson, R. C . ; Hudec , J . ;W i l l i a m s , R. 0. J . Chem. S o c . 1963 . 410.

22 . Hayes , B. R . , Ph.D. D i s s e r t a t i o n , U n i v e r s i t y of Oklahoma, 1975.

23 . ( a) S c h r a u z e r , G. N. Adv. Cata l . 1968. 18 . 373. (b) A r n o l d , D.R . ; T r e c k e r , D. J . ; Whi ppl e , E. B. J . Am. Chem. Soc . 1965. 87, 2596.

24 . ( a ) S c h r a u z e r , G. N . ; Ho, R. K. Y . : S c h l e s i n g e r , G. T e t r a h e d r o nL e t t . 1978, 5 4 3 . (b) S c h r a u z e r , G. N . ; B a s t i a n , B. RTjF ô s s e l i u s , G. A. J . Am. Chem. S o c . 1966. 8 8 . 4890.

25 . ( a) L e ma l , D. M . ; Shim, K. S. T e t r a h e d r o n L e t t . 1961. 368.(b) B i r d , C. W. ; C o l i n e s e , D. L . : Cookson, K. C . ; Hudec, J . ;W i l l i a m s , R. 0. T e t r a h e d r o n L e t t . 1961. 373.

26. (a) A c t o n , N. : Roth, R. J . ; Ka t z , T. J . : F r ank , J . K. ; M a i e r ,C. A . ; P a u l , I . C. J . Am. Chem. S o c . 1972. 94 , 5446.(b) S c h a r f , H. D. ; We i s g e r b e r , G . ; Hover , H. t e t r a h e d r o n L e t t .1967. 4227. (c) Hol lowood, M. A . ; McKervey, M. A . ; Hami I ton ,R . ; Rooney, J . J . J . Oro. Chem. 1980. 4 5 . 4954.

27. Chow, T. J . ; Wu, M. ; L i u , L. J . O r o a n o m e t a l . Chem. 1985. 2 8 1 .C33.

28 . G o d l e s k i , S . , U n i v e r s i t y of R o c h e s t e r , p e r s o n a l communi ca t i on .

29 . Mar chand , A. P . ; Ea r l ywi ne , A. D. J . P r o . Chem. 1984. 4 9 . 1660.

30. Cor ey , E. J . ; Suggs , J . W. T e t r a h e d r o n L e t t . 1975. 2747.

31. McCas l and , G. E . : Hor va t , R . ; Ro t h , M. R. J . Am. Chem. S o c .1959. 81, 2399.

32 . Woodward, R. B . ; Hoffmann, R. "The C o n s e r v a t i o n of O r b i t a lSymmetry ! V e r l a g Chemie: W e i n h e i m / B e r g s t r . , West Germany, andAcademic P r e s s ; New York, 1970; p 169.

33 . Graham, P. J . ; Buhle, E. L . ; P a p p a s , N. J . P r o . Chem. 1961, 26 , 4658.

34. T a n i d a , H . ; T s u j i , T. J . Pro . Chem. 1964. 29, 849.

35. Cason , J . : Rapopor t , H. "Bas i c Expe r i me n t a l Organic Chemis t r ; P r e n t i c e - H a l 1, I n c . : Englewood C l i f f s , N J . , 1964; p 249.

36. Shvo, Y. ; Hazum, E. J . Chem. S o c . . Chem. Commun. 1974. 336.

37 . Mass s p e c t r a l d a t a on dimer k e t o n e )<V was p r o v i d ed by C. E. C o s t e l l o , M a s s a c h u s e t t s I n s t i t u t e of Technol ogy , Cambr i dge , 1

38. The a s s i s t a n c e of M. J . Heeg in p e r f o r m i n g t h e X- r ay c r y s t a l s t u d i e s of compounds XXXII and XXX111 i s a p p r e c i a t e d .

2 2 4

39. “ I n t e r n a t i o n a l T a b l e s f o r X- r a y C r y s t a l l o g r a p h y " , Vol . 1, 3 r d é d . , Kynoch P r e s s , Bi rmingham, Eng l and ( 1 9 6 9 ) .

40. Al l c o m p u t a t i o n s we re pe r formed u s i n g l o c a l m o d i f i c a t i o n s of t h e p r o g r ams of SHELX-76 ; S h e l d r i c k , G. M . , U n i v e r s i t y Chemical L a b o r a t o r y , Cambr idge, E n g l a n d , 1976.

41. Rw=[ Zw( I Fo l - I Fc l ) 2 / Zw( Fo) 2 ] %.

42. “ I n t e r n a t i o n a l T a b l e s f o r X- r a y C r y s t a l l o g r a p h y " , Vol . 4 , Kynoch p r e s s , Bi rmingham, Engl and ( 1 9 7 4 ) .

PART V

THE ELECTROPHILIC AROMATIC THALLATION OF SELECTED BIOMOLECULES

I n t r o d u c t i o n

Thai 1 ium< 111) t r i - f l u o r o a c e t a t e (TTFA) h a s been shown t o be an

e x t r e m e l y r e a c t i v e t h a l l a t i n g agent -for el e c t r o p h i 1 i c a r o ma t i c

s u b s t i t u t i o n . A c i d s e n s i t i v e s u b s t r a t e s may be t h a l l a t e d i n t h e

ab s e n ce o-f l i g h t w i t h a s o l u t i o n o-f TTFA in a c e t o n i t r i 1 e , wh i l e l e s s

s e n s i t i v e a r o m a t i c s may be t h a l l a t e d w i t h TTFA in t r i - f l u o r o a c e t i c

a c i d (TFA). A l t e r n a t i v e l y , TTFA can be i s o l a t e d a f t e r i t s

p r e p a r a t i o n ( r e f l u x i n g t h a l l i u m ( I I I ) ox i de i n TFA) and added t o TFA

or a c e t o n i t r i l e s o l u t i o n s of the s u b s t r a t e t o be t h a l l a t e d .

ArTl (0C0CF3)2 (Aryl t h a l l i u m b i s t r i f l u o r o a c e t a t e ) p r o d u c t s of

t h a l l a t i o n a r e g e n e r a l l y s t a b l e , c o l o r l e s s , c r y s t a l l i n e s o l i d s and in

ge n e r a l a r e s o l u b l e in s o l v e n t s such a s me t hano l , e t h a n o l , glyme,

a c e t o n i t r i l e , t e t r a h y d r o f u r a n , and DMSO.^ajb I d e n t i f i c a t i o n of

t h e s e ArTl(OCOCF3)2 compounds by NMR i s f a c i l i t a t e d by Tl -H

c o u p l i n g c o n s t a n t s which a r e about 130 t i m e s g r e a t e r than t h e

c o r r e s p o n d i n g H-H c o u p l i n g c o n s t a n t s . 4 T h i s h a s been q u a l i t a t i v e l y

a t t r i b u t e d t o Fermi c o n t a c t i n t e r a c t i o n r e s u l t i n g -from t h e l a r g e

e f f e c t i v e n u c l e a r c h a r g e on t h e t h a l l i u m atom ( s e e Fig V - T ) . 4 , 5

Al s o , i n f r a r e d s p e c t r a of Ar T l ( OCOCF3 ) 2 compounds n o r ma l l y

p o s s e s s t h r e e s e t s of a b s o r p t i o n s a t a p p r o x i m a t e l y 7 2 0 , 800, and 835

cm' l whi ch a r e a s s i g n a b l e , r e s p e c t i v e l y , t o t h e C-CO2 i n - p l a n e

b en d i n g , CF3 s ymmet r i c s t r e t c h i n g , and C-C s t r e t c h i n g modes of t h e

t r i f l u o r o a c e t a t e group ( F i g V - 2 ) . 4 , 7 An o t h e r p r o d u c t of

t h a l l a t i o n , Ar2T l ( OCOCF3) , p o s s e s s e s s h a r p s i n g l e t a b s o r p t i o n s in

2 2 5

2 2 6

F I G U R E V - 1

NMR S p e c t r u m o-f P h e n y l t h a ï 1 i u m B i s ( t r i f l u o r o a c e t a t e ) . 8 6

Tï------

FIGURE V-2

IR Spect rum o-f Me s i t y l t h a l l i u m B i s ( t r i f l u o r o a c e t a t e ) .86

FIGURE V-3

IR S p e c t r u m o f D i m e s i t y l t h a l l i u m T r i f l u o r o a c e t a t e . 86

2 2 7

t h i s same r e g i o n , w h i l e ArTl<0C0CF3>2 compounds a l ways e x h i b i t

d o u b l e t s ^ (c-f. F i g V-2 and V-3) .

Aroma t i c t h a l l a t i o n i s a r e v e r s i b l e r e a c t i o n . The l a r g e s t e r i c

bu l k of TTFA r e s u l t s in p r edomi nan t p a r a s u b s t i t u t i o n ( k i n e t i c

c o n t r o l ) f o r many m o n o s u b s t i t u t e d b e n z e n o i d compounds c o n t a i n i n g

s i mp l e o r t h o - p a r a d i r e c t i n g s u b s t i t u e n t s (Eq V- 1 ) . Under t he

CHfCHçPz

TTFA

fKOCOCFj)^para

Î 7 3 °

T1(CCCCFt ;S

S5> neta

R a t e - c o n t r o l 1ed

Eq V - 1

Eq u i 1i b r i u r n - c o n t r o l 1ed

c o n d i t i o n s of r e f l u x i n g TFA ( TS ^ C) , meta s u b s t i t u t i o n

( t he rmodynamic c o n t r o l ) i s f a v o r e d . When t h e s u b s t r a t e i s b e n z o i c

a c i d , methyl b e n z o a t e , or benzyl methyl e t h e r , o r t h o s u b s t i t u t i o n

p r e d o m i n a t e s f o l l o w i n g i n i t i a l c o mp l e x a t i o n of t h e t h a l l i u m

e l e c t r o p h i l e w i t h t h e s u b s t i t u e n t ( v i a i n t r a m o l e c u l a r d e l i v e r y t o t he

n e a r b y o r t h o p o s i t i o n , Eq V - 2 ) . T h u s , c h o i c e of s u b s t r a t e a n d / o r

r e a c t i o n c o n d i t i o n s p r o v i d e s a t r emendous amount of c o n t r o l over

1(OCOCF,)2

4 2K1HgO

E q V - 2

+ T i l 4-

2 2 8

o r i e n t a t i o n in t h e s e e l e c t r o p h i 1i c a r o m a t i c s u b s t i t u t i o n

r e a c t i o n s . 1

Anot her - f e a t u r e o-f i n t e r e s t in o r g a n o t h a l 1 iurn c h e mi s t r y i s t he

e a s e wi t h whi ch T1 ( 0C0CF3>2 can be r e p l a c e d by i o d i d e , c h l o r i d e ,

and - f l uo r i de t o y i e l d s t a b l e ArTlX2 (X = 1 , Cl , F) compounds . 8 A

s i mp l e in s i t u o n e - s t e p s y n t h e s i s o-f a r o m a t i c i o d i d e s may be e f f e c t e d by a d d i t i o n o f an aqueous pot as s i um or sodium i o d i d e s o l u t i o n t o a

s o l u t i o n of t h e a r o m a t i c in TFA (Eq V - 3 ) .9

TTFA_^

R e s u l t s and D i s c u s s i o n

The p r e p a r a t i o n and u t i l i z a t i o n of t h e s e s y n t h e t i c a l l y u s e f u l

ArTl(OCOCF3 ) 2 i n t e r m e d i a t e s i s t h e s u b j e c t t h i s c h a p t e r wi t h

emphas i s p l a c e d on t h a l l a t i o n of c e r t a i n b i o m o l e c u l e s . These

r e a c t i o n s may t hen be used t o i n t r o d u c e r a d i o a c t i v e i o d i n e ( 1 2 3 l ,

i n t o m o l e c u l e s such as those i n T a b l e V-1 which a r e s u i t a b l e

f o r in v i v o l a b e l i n g and subsequen t in v i t r o t r a c e r s t u d i e s .

I d e n t i f i c a t i o n of TTFA ( I ) from r e a c t i o n 1 ( T a b l e V-2) i s based

on t h e IR s p e c t r u m ( F i g V - 4 ) . The t h r e e s i n g l e t s a t ca . 729, 812,

and 848 cm"! c o r r e s p o n d to t he C-CO2 i n - p l a n e b e n d i n g , CF3

symmietric s t r e t c h i n g , and C-C s t r e t c h i n g of t h e t r i f l u o r o a c e t a t e

group a s d i s c u s s e d e a r l i e r . Subsequen t r e a c t i o n s of t h i s p r o d u c t

a l s o c o n f i r me d i t s i d e n t i t y .

Compound I I , formed upon r e a c t i o n of b e n z o i c a c i d wi t h TTFA, has

a m e l t i n g p o i n t of 240-246°C (decomp) . Al t h o u g h the o b s e r v e d

m e l t i n g p o i n t i s c l o s e t o t he l i t e r a t u r e v a l u e (mp 2 4 7 - 2 4 8 ° C) , t he

m e l t i n g p o i n t s of A r T l ( 0C0CF3)2 compounds c a n n o t be used as

r e l i a b l e c r i t e r i a of p u r i t y s i n c e t h e y v a r y e r r a t i c a l l y a c c o r d i n g to

2 2 9

TABLE V - 1

S u g g e s t e d S y n t h e s e s o-f Aryl t h a l l i u m Biomol ecu! a r I n t e r m e d i a t e s

S u i t a b l e -for I n - Vi v o R a d i o i o d i n a t i o n and T r a c e r S t u d i e s .

E s t r a d i o l TTFA/TFA ^ (F^cocO^Tl

HO

Eq V-4

TTFA/TFA

'tran s' ar;;l groups

Eq V-5

L - t y r o s i n e TTFA/TFA v Eq V-6

L - t r y p t o p h a n TTFA/TFAHCgCCKKHgOHg

.Tl( 000073)2Eq V-7

T y r a m i n e T T F A / T F A 6CH

1 ( 00007^)2E q V - 8

2 3 0

T ABLE V - 1 ( c n t d . )

E p i n e p h r i n e TTFA/TFA

TKCCOCF,),

Eq V-9

HOrCHgKHCHj

N o r e p i n e p h r i n e TTFA/TFA

OH

HO'

'^CHOHCHpHüj PlfOCOCFy);

Eq V-10

M e s c a l i n e

OCH.

TTFA/TFA ^

P h e n y l e p h r i n e TTFA/TFACHCHChjNHCH

KOCOCF,]

Eq V-12

D o p a m i n e T T F A / T F A

OHHO

CHjCHjNHj E q V - 1 3

(OCOCrylg

2 3 1

T ABLE V - 2

P r e l i m i n a r y R e a c t i o n s Conducted i n Order t o Produce Thai 1 i u m< I I I )

Tr i - f l u o r o a c e t a t e and Sever a l S i mp l e Aryl t h a l l i u m I n t e r m e d i a t e s .

R e a c t i o n R e f e r e n c e

1. T I 2O3 + 6CF3CO2H h e a t ^ 2 TKOCOCF3)3 84^

I

2 a . TTFA ^ o - C a r b o x v p h e n v l t h a l l i u m b i s ( t r i f l u o r o a c e t a t e ) 84*

II

Benzoi c Acid

2b. \ (1) TTFA ^ o - I o d o b e n z o i c Acid 71^

(2) KI/H2O

3a . TTFA ^ o - C a r b o x a m i d o p h e n y l t h a l 1ium b i s ( t r i f l u o r o a c e t a t e )

/PhCGNH2 826

3b. TTFA ^ d i <o-Car boxami dopheny l ) t ha l 1 ium t r i f l u o r o a c e t a t e

IV

4. 2 - X y l e n e TTFA y 2 , 5 - X y l y l t h a l l i u m b i s ( t r i f l u o r o a c e t a t e ) 84 , 91

V

5. A n i s o l e TTFA ^ 2 “A n i s y l t h a l 1 iurn b i s ( t r i f l u o r o a c e t a t e ) 8 4 b , 86

VI

N V A VL ltN GI M JN M lC P O N ' i 6 S y 7 6 H 10 I I 17 14 I >S

•90 VO

TTFA

Thalllum(lII) T r i f l u o r o a c e t a t e

0011 (S.I J3 0 0 0

toCOro

WAV»4UM6Efi C M ‘

F i g u r e V - 4 . I R S p e c t r u m o f T h a l l i u m d l l ) T r i f l u o r o a c e t a t e ( K B r ) .

2 3 3

t h e r a t e o-f h e a t i n g , amount o-f s a m p l e , d e g r e e o-f c o m p a c t n e s s , and

c r y s t a l s i z e . 3b The IR spec t r um o-f t h a l l a t e d benzoic a c i d ( F i g V-5)

shows t h r e e d o u b l e t s a t 740, 800, and 863 cm"l c o r r e s p o n d i n g t o t he

l i t e r a t u r e v a l u e s . 4 The NMR s p e c t r u m p o s s e s s e s Tl -H c o u p l i n g c o n ­

s t a n t s whi ch a l s o a g r e e wi t h t h e l i t e r a t u r e v a l u e s ( F i g V - 6) , The

s econd s t e p o-f r e a c t i o n 2 was a l s o p e r f o r m e d a f f o r d i n g o - i o d o b e n z o i c

a c i d (NMR and mass s pec t r um. F i g s V-7 and V- 8 , r e s p e c t i v e l y ) . In

a d d i t i o n t o t h i s , t h a l l a t e d b e n z o i c a c i d was a l l owed t o r e a c t w i t h

r a d i o a c t i v e N a l 3 1 i f o r mi n g 13I j - o - i o d o b e n z o i c a c i d . 3c

Compound I I I a n d / o r IV ( r e a c t i o n 3) was p roduced in good

y i e l d l e and i t s IR i s seen in F i g V- 9 . A b s o r p t i o n s a t 732 , 808,

and 841 cm~l a r e s h a r p s i n g l e t s and may i n d i c a t e t h e p r o d u c t t o be

(H2NC0C,5H4) 2TI (OCOCF3) ( I V) . To d a t e i t h a s no t been

p o s s i b l e t o o b t a i n mass s p e c t r a of any of t h e a ryl t h a l l i u m compounds ,

b e c a u s e of t h e i r low v o l a t i l i t y , w i t h t h e r e s u l t t h a t i d e n t i f i c a t i o n

of t h e p r o d u c t ( s ) of r e a c t i o n 3 has n o t been compl e t ed . The NMR ( F i g

V-10) i s c o n s i s t e n t wi t h both I I I and IV and t h e Tl -H c o u p l i n g

c o n s t a n t s compare we l l wi t h t h o s e of t h a l l a t e d benzo i c a c i d .

The IR ( F i g V-11) of t he p r o d u c t (V) of r e a c t i o n 4 h a s v a l u e s of

735, 790, and 815 cm~l fo r t h e t h r e e c r i t i c a l d o u b l e t s . L i t e r a t u r e

v a l u e s of t h e T l - H c o u p l i n g c o n s t a n t s a r e shown on t h e NMR s p e c t r u m

( F i g V-12) .8

C h a r a c t e r i z a t i o n of compound VI was no t i mme d i a t e l y p o s s i b l e

s i n c e i s o l a t i o n p r o v e d ve r y d i f f i c u l t . However, an NMR of t h e c r u d e

p r o d u c t ( F i g V-13) i n d i c a t e s t h a l l a t i o n has o c c u r r e d . No l i t e r a t u r e

r e f e r e n c e s c o n c e r n i n g i s o l a t i o n of t h a l l a t e d a n i s o l e c o u l d be

l o c a t e d . O t h e r w o r k e r s have s y n t h e s i z e d i o d i n a t e d a n i s o l e in s i t u by

a d d i t i o n of aqueous KI t o a s o l u t i o n of t he s uppos ed t h a l l a t e d

a n i s o l e ( c f . Eq V-3) f o r p r o o f t h a t t h a l l a t i o n had i n d e e d

o c c u r r e d . 2 T h i s p r o c e d u r e was d u p l i c a t e d ( F i g V-14) s i n c e

m e t h o x y - s u b s t i t u t e d compounds p l a y an i mp o r t a n t r o l e in s u b s e q u e n t

i n v e s t i g a t i o n s of t h e t h a l l a t i o n of c e r t a i n b i o m o l e c u l e s .

T a b l e V-3 l i s t s t h e e a r l i e s t a t t e m p t s to p r oduc e t h a l l a t e d

W A V t U N G T H IN W C R O N S 4.5 5 .5 5 6 5 7 7 5 a 10 I I 17 14 16

.? f ) .

•8 0 '

7«)'

6 ( 1-

i

W AV fN UM BE R CM

roCO

F i g u r e V - 5 . I R S p e c t r u m o-f o - C a r b o x y p h e n y 1 t h a l l i u m Di t r i f l u o r o a c e t a t e I I ( K B r ) .

I ' “ I

CF_CO_H

? I . ' : — .

i I-----------i .... 1------- :— M—— ^

i ! DHSO

TMS

iM W %

K)Wcn

1 2 . 0 1 1 . 0 1 0 . 0 9 . 0 H. o PPM { ) 6 . 0 5 . 0 4 . 0 3 . 0 2 . 0 1 . 0

F i g u r e V- 6 . 60 MHz hMR Spec t rum of o - C a r b o x y p h e n y l t h a l 1 ium D i t r i f l u o r o a c e t a t e I I(DMSO-dj/TMS).

100 0 Ht900400500

CO,H

1.01.0 9.0 4.0 9.07.0 0.0

rowCK

F i g u r e V - 7 . 6 0 MHz NMR S p e c t r u m o-f o - I o d o b e n z o i c A c i d ( C D C I 3 / T M S ) .

2 3 7

F I G U R E V - 8

M a s s S p e c t r u m o-f o - I o d o b e n z o i c A c i d .

B D E - l 3 , 2 0 B U e , T K %eeD,2M,ieg/M,20eD♦♦ SPECTRUM rispt!'flV /CBIT ♦* ts™sc“ ”

X - i . e 9 Y " 1

CO.H

MASS % MASS % MASS %4 9 . 1 2 . 0 8 4 . 1 . 2 151 . 9 . 46 8 . 1 1 4 . 3 8 5 . 0 . 3 1 5 2 . 9 . 35 1 . 1 4 . 1 90 .0 . 1 1 6 3 . 9 . 35 2 . 1 . 3 9 1 . 1 . 4 1 6 4 . 9 . 26 3 . 8 1 . 3 9 2 . 8 2 . 2 1 7 5 . 9 .75 5 . 1 . 2 9 3 . 0 5 . 6 1 7 7 . 0 .45 7 . 1 . 2 9 4 . 1 . 5 1 9 1 . 0 .16 8 . 1 . 4 9 5 . 1 . 2 2 0 2 . 9 1 7 . 761 .0 1 .1 101 . 2 . 2 2 0 3 . 9 1 .16 2 . 1 1 .1 1 0 3 . 0 . 3 2 1 9 . 9 .36 3 . 1 1 . 7 1 0 4 . 1 2 . 2 2 3 1 . 0 5 5 . 66 4 . 2 i . 4 1 6 5 . 1 1 . 9 231 . 9 4 . 76 5 . 1 1 4 . 4 1 0 6 . 1 . 2 2 3 2 . 9 .36 6 . 8 1 . 3 1 1 5 . 5 . 7 2 4 7 . 9 1 0 0 . 06 7 . 0 .5 1 1 9 . 1 .3 2 4 9 . 0 7 . 56 9 . 1 . 7 121 . 8 4 . 2 2 5 0 . 0 . 77 2 . 1 . 4 1 2 2 . 1 1 . 77 3 . 0 5 . 3 1 2 3 . 1 . 27 4 . 0 1 9 . 4 1 2 4 . 0 .57 5 . 1 1 0 . 2 1 2 7 . 0 2 7 . 67 6 .1 16 .1 1 2 7 . 9 1 .67 7 . 0 5 . 2 123 .9 .27 8 . 1 .4 133 .9 .37 9 , 1 .2 1 4 2 . 9 .481 .0 .3 1 4 3 . 9 1 .08 3 . 1 .2 1 5 0 . 9 . 2

TffîTTîîT LRRCST 4 i LOST 4<

RCTDiTIW TlHr 2 7 . 6 7 4 . 0 . 1 9 . 4

2 7 5 . 0 , . 4

8 0

6 0

4 0

20

'5\S"'""|"'''ÏSS TiS” '” ' '" 'ïa

0 8

48

28

2S.

2.5 3 MICROMETERS 4 9 10 12 14 16 20

100ICO100

80

60

I I I20202020

6001000 (CM ) 00016002 000 10003.SC0 3000 (CM ’) 2'.004000

roCOCO

F i g u r e V - 9 . I R S p e c t r u m o f o - C a r b o x a m i d o p h e n y l t h a l 1 i u m D i t r i f 1 u o r o a c e t a t e I I I ( K B r ) .

T1<OCOCF3)2Q

9.0 4.0

roCO•o

F i g u r e V - 1 8 . 6 0 MHz NMR S p e c t r u m o-f o - C a r b o x a m i d o p h e n y l t h a l 1 i u m Di t r i - f 1 u o r o a c e t a t e 1 1 1( D M S O - d ^ / T M S ) .

W A V tltN G T H IM MICRONS4.5 s 5 6 5 7 7 5 m 10 n I ? 14 16

10 0

Q (l

*8080

CH.7.O

W A V ^ N U M B F R C M ’

F i g u r e V - 1 1 . I R S p e c t r u m o-f B - X y 1 y 1 t h a l 1 i u m Di t r i f 1 u o r o a c e t a t e V ( K B r ) .

Tl-o CHC l C p . C H . C lTl-oH

Tl-m CHTl-H Cqupll ag Con*taBta(Hz)

LÔ?- .H '-£ H £WKOCf]);

lltti 1109 O b # : i o 9 9

559 115 113558 117' 112DMSO

i\,i-C»

11 .D 1 2 . 0 1 1 . 0 1 0 . 0 9 . 0 8 . 0 PPM ( ) 6 . 0 5 . 0 4 . 0 3 . 0 2 . 0 1 . 0 0

F i g u r e V-12 . 60 MHz NMR Spect rum o f g - X y l y l t h a l l i u m D i t r i f l u o r o a c e t a t e V(DMSO-dyiMS) .

TH0C0CF3)2

o

roro

F i g u r e V-13 . 60 MHz NMR Spec t rum of f i - A n i s y l t h a l 1iurn D i t r i f 1u o r o a c e t a t e VI(DMSO-dj /TMS).

100 0 H«

C H

2.0 1.03.05.0 4.01.0 6.0

row

F i g u r e V - 1 4 . 6 0 MHz NMR S p e c t r u m o f g - I o d o a n i s o l e ( C D C I g / T M S ) .

2 4 4

TABLE V - 3

E a r l y A t t e m p t s t o Produce T h a l l a t e d H i p p u r i c Ac id .

Reac t i on

S u b s t r a t e

CR3HCH2CC2K

6 . (a)

Reaoent

TTFA

S o l v e n t

TFA

Reac t i o n

C o n d i t i o n s

R.T.

T ime

( h r s )

144

CCXHCH2GO2H7 . ( b ) TTFA TFA 730 12

CF3CO2H

8 . ( c )CC2H

J 1(0CCCF3)2 SOC19 SOCI9 re-f lux 1.5

9 . ( d ) sol i d -from

r e a c t i o n 8

NH2CH2CO2H H2O/OH R.T. 17

(a) Red g l a s s y o i l o b t a i n e d ; IR and NMR i n d i c a t e d no t h a l l a t i o n .

(b) CF3COOCOF3 added t o remove H2O; CF3SO3H added to

i n c r e a s e s t r e n g t h o-f TTFA. ^0

(c) SOCI2 u s ed in a t t e m p t to make a c i d c h l o r i d e of I I , f o r u s e in

r e a c t i o n 9 . Whi t e s o l i d o b t a i n e d .

<d) Schot t en-Bauman t e c h n i q u e ; s o l i d f rom r e a c t i o n 8 added wi t h

s h a k i n g t o 100 mg of H2NCH2CO2 H i n aqueous NaOH r e s u l t i n g

in a c l e a r s o l u t i o n . No IR e v i d e n c e of t h a l l i u m was in c l e a r

p r o d u c t o i 1 .

2 4 5

h i p p u r i c a c i d wi t h no s u c c e s s . The r e s u l t i n g p r o d u c t s were

u n c h a r a c t e r i z e d v i s c o u s o i l s whose NMR and IR s p e c t r a show no

e v i d e n c e o-f t h a l l a t i o n . V a r i a t i o n o-f r e a c t i o n c o n d i t i o n s and

r e a c t i o n t i m e s d i d no t g i v e t he d e s i r e d p r o d u c t s . I t may be t h a t t he

Lewis a c i d c h a r a c t e r o-f t ha l 1 i u m( I I I ) r e a g e n t s i s such t h a t t hey

complex w i t h amides and d e a c t i v a t e t h e a r o m a t i c r i n g toward

e l e c t r o p h i l i c s u b s t i t u t i o n . Another e x p l a n a t i o n may be t h a t t he

t h a l 1ium<111) r e a g e n t complexes wi t h t h e c a r b o x y l i c a c i d ca rbonyl

more r e a d i l y t han wi t h t h e amide c a r b o n y l . In t h e c a s e o-f h i p p u r i c

a c i d , such c o mp l e x a t i o n would hold t he t h a l l i u m r e a g e n t t oo -far -from

t h e a r o m a t i c r i n g -for e f f e c t i v e e l e c t r o p h i l i c a t t a c k . S a l t s formed

f rom such r e a c t i o n s e i t h e r p r e c i p i t a t e ou t or form o i l s upon

a t t e m p t e d r e c r y s t a l l i z a t i o n .

N , N ' - D i c y c l o h e x y l c a r b o d i i m i de (DCC, non wa t e r s o l u b l e ) ,

1 - e t hy l - 3 - < 3 - d i m e t h y l a m i n o p r o p y l ) ca rbodi i mi de h y d r o c h l o r i d e (EDCI,

wa t e r s o l u b l e ) , 12 and 1-cyc 1 o h e x y l - 3 - ( 2 - m o r p h o l i n o e t h y l ) -

c a r b o d i i m i d e m e t h o - g - t o l u e n e s u l f o n a t e ( wa t e r s o l u b l e ) 13 a r e

exampl es of d i i m i d e s used to f a c i l i t a t e p e p t i d e bond f o r m a t i o n .

E q u a t i o n V-14 i l l u s t r a t e s t he mechanism of t h e p r opos e d use of

RNH.

Eq V-14

TlfOCCCrylg

+ ^ CO-ÎM—H = -CngCCzH

E = -C H p C C ^ E t

E = .C x - C C ? ( C E ? ) .

2 4 6

DCC t o -form t h e p e p t i d e bond i n t h a l l a t e d h i p p u r i c a c i d and s e v e r a l

of i t s d e r i v a t i v e s . R e a c t i o n s 10, 11, and 12 of T a b l e V-4 were

c o n d u c t e d t o t e s t t he f e a s i b i l i t y of u s i n g DCC w i t h a r o m a t i c

compounds c o n t a i n i n g t h a l l i u m . Compound I I was a l l o we d t o r e a c t

f i r s t w i t h DCC in THF and t h e n w i t h H2NCH2CO2H. The p r o d u c t ,

whi ch p r e c i p i t a t e d a s a w h i t e s o l i d f rom t he r e a c t i o n m i x t u r e , was

TABLE V-4

P r o p o s e d Use of D i c y c l o h e x y l c a r b o d i i m i d e (DCC) to Form t h e P e p t i d e

Bond in T h a l l a t e d Hi ppur i c Ac i d and i t s Ethyl and t - B u t y l E s t e r s .

R e a c t i o n

COoH

^TKOCOCFg)^Q I + DCC

H?NCH?C0?H-HC1

IX

co!:-:cH,cc,Et

H?NCHoC09CH9CHt HC1 ^

X

H?NCH?C0?C(CHQ)'HC1 ^

X I

1 0 .

1 1 .

2 4 7

i d e n t i f i e d by compar i son wi t h S a d t l e r IR s p e c t r u m #895 o-f a Known

sample o-f d i c y c l o h e x y l u r e a . WorKup o-f t h e r e m a i n i n g s o l u t i o n gave a

wh i t e s o l i d (IX) whose WIR in DMSO-d^/TMS i s shown in F i g V-15 .

Al t hough t h e r e s o l u t i o n o-f t h e - f igure i s p o o r , e v i d e n c e t h a t

t h a l l a t i o n h a s o c c u r r e d may be i n f e r r e d f rom t h e chemical s h i f t s of

t he s i g n a l s a t £ 12 . 0 , 9 . 8 , and 9 . 0 . Upon c o n s i d e r a t i o n of t h e

f a c t t h a t t h e n o n - p r o t e c t e d c a r boxy l g r o u p of g l y c i n e may compete

wi t h t h e amino group of g l y c i n e f o r a t t a c k a t t h e e s t e r c a r b o n y l of

t he i n t e r m e d i a t e i s o u r e a (VII) ( s t e p 2 o f Eq V - 1 4 ) , i t was f e l t t h a t

p r o t e c t i o n o f t h e C- t e r mi n a l end of t h e amino a c i d would i n s u r e on l y

mo n o - p e p t i d e f o r m a t i o n between t h e C - t e r m i n a l end of I I and t h e

N- t e r mi n a l end of g l y c i n e .

In a c c o r d a n c e wi t h t he above , t h e C - t e r m i n a l - p r o t e c t e d e t h y l

g l y c i n a t e h y d r o c h l o r i d e (H2NCH2C02E t •HCl) was used in p l a c e

of g l y c i n e f o r t h e r e a c t i o n shown in Eq V-14 . The f i r s t p r o d u c t

i s o l a t e d f rom t h e r e a c t i o n was t h e w h i t e s o l i d d i c y c l o h e x y l u r e a

which p r e c i p i t a t e d f rom the r e a c t i o n m i x t u r e a t room t e m p e r a t u r e .

The compound whose NMR i s shown in F i g V-16 was t hen r e c o v e r e d . The

IR s p ec t r u m ( F i g V-17) p o s s e s s e s t h e c h a r a c t e r i s t i c t h r e e d o u b l e t s a t

722, 796 , and 850 cm“ ^. Compar i son of t h e c o u p l i n g c o n s t a n t s of X

wi t h t h e l i t e r a t u r e v a l u e s f o r I I s u p p o r t s t h e b e l i e f t h a t c o u p l i n g

has o c c u r r e d to form t h e d e s i r e d 2- b i s ( t r i f l u o r o a c e t a t o ) t h a l 1 i o - e t h y l

h i p p u r a t e .

Re a c t i o n 12 was run u s i n g t he C - t e r m i n a l - p r o t e c t e d s a l t t e r t -

bu t y l g l y c i n a t e h y d r o c h l o r i d e , w i t h t h e e a s i l y h y d r o l i z e d t e r t - b u t y l

group p r o t e c t i n g t h e C - t e r m i n u s of t h e amino a c i d . Ag a i n ,

d i c y c l o h e x y l u r e a was i n i t i a l l y i s o l a t e d . P r e c i p i t a t i o n of compound

XI (NMR, F i g V-18 and IR, Fi g V-19) f o l l o w e d a f t e r a d d i t i o n of 1 mL

of CF3CO2H t o decompose u n r e a c t e d DCC, and a d d i t i o n of 1 , 2 - d i -

chl o r o e t h a n e . F o l l o wi n g i s o l a t i o n of XI , t h e mother l i q u o r was

condensed t o a f f o r d a compound w i t h a much s m a l l e r t e r t - b u t y l s i g n a l

(NMR, Fig V-28) but w i t h o t h e r r e s o n a n c e s i n t a c t . T h i s r e d u c t i o n of

t h e t e r t - b u t y l s i g n a l was a t t r i b u t e d t o p a r t i a l h y d r o l y s i s by

if yTKOCOCr.)

DMSO

' n : o ‘ ‘ ■ 1

to4CO

i) ' ' i'u%U' 9 . 0 ’ ' M.n' ‘ppm ( ) (>-<f !).u' ' ' V. 0 ' ' '3 . 0 ' ' 2 . 0 ' ' 1 . 6

F i g u r e V-15 . 60 MHz MiR Spect rum of 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1i o - h i p p u r i c Ac i d IX(DMSO-d^/TMS).

roo

F i g u r e V-16 . 60 MHz hMR Spec t rum o-f 2-Bi_s< t r i - f l u o r o a c e t a t o ) t h a l l i o - e t h y l H i p p u r a t e X(DMSO-d^/TMS).

W A V C L tM Ü I H IN M IC RO N S 4.5 5 5 5 6 5 7 7 3 8 9 »0 H 1? I4 16

U )0 -

•909 0

•808 0

70

6 0

CONHCHgCOgEt" * S ^ T 1 ( O C O C P . )

5 0

roen

' ' . ' /V IN U M 8C :? CM

F i g u r e V - 1 7 . I R S p e c t r u m o-f 2 - B i s < t r i - f l u o r o a c e t a t o ) t h a l l i o - e t h y l H i p p u r a t e X < K B r )

oHm' HoH

TMS

DMSO.

roU)

1 5 . 0 1 2 . 0 1 1 . 0 1 0 . 0 9 . 0 8 . 0 PPM ( ) 6 . 0 5 . 0 4 . 0 1 . 0 2 . 0 1 . 0

F i g u r e V-18 . 60 MHz hMR Spec t rum of 2 - B i s < t r i f l u o r o a c e t a t o ) t h a l 1i o - t e r t i a r v b u t v lH i p p u r a t e XI (DMSO-d^/TMS).

W A V f c l t N ü l h IN M IL K UN b 4 5 5 5 5 6 5 7 7 5 8 • 0 I I I ? >4 16

Ifld

CONHCHCOgCCCH)-'^X TKOCOCF.)-

5J•i )|

—J

IOÛÛ1 ? O t l:ioi 0

hJcnro

W A V f N U M B tf t f M '

F i g u r e V - 1 9 . I R S p e c t r u m o f 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1 i o - t e r t i a r y b u t y l H i p p u r a t e X I ( K B r )

TMS

DMSO

1 2 . 0 1 1 . 0 1 0 . 0 8.0 PPM ( ) 6.09.0 4.05.0 3.0 1. 02 . 0 0

rocnCO

F i g u r e V-20. 62 MHz WMR Spec t rum o-f P r o d u c t IX R e s u l t i n g -from t h e Co n d e n s a t i o n o-f2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1 i o - t e r t i a r v b u t v l H i p p u r a t e XI (DMSO-dj/TMS).

2 5 4

CF3CO2H upon c o n d e n s a t i o n of t he mo t h e r l i q u o r . 14 The IR

s pec t r um of t h e h y d r o l y s i s p r oduc t ( F i g V-21) compares we l l wi t h t h a t

o f F i g V-19 , e x c e p t i n t h e c a r b o x y l i c a c i d hydroxyl r e g i o n <3405

cm“ l ) , and s u p p o r t s t h e b e l i e f t h a t h y d r o l y s i s has o c c u r r e d t o form

IX.

DCC, t h e n , can p r o v i d e a r o u t e t o t h a l l a t e d e t h y l h i p p u r a t e and

a l s o t o t h a l l a t e d h i p p u r i c a c i d v i a t h e t e r t - b u t y l e s t e r i n t e r m e d i a t e

w i t h o u t l o s s of t h a l l i u m dur i n g h y d r o l y s i s . These f i n d i n g s a r e

s i g n i f i c a n t s i n c e d i r e c t t h a l l a t i o n o f h i p p u r i c a c i d has no t been

p o s i t i v e l y d e m o n s t r a t e d by o t h e r me t hods . A prob l em a r i s e s , h o we v e r ,

b ec au s e i o d i n a t i o n of t h e i s o l a t e d e t h y l and t e r t - b u t y l t h a l l a t e d

i n t e r m e d i a t e s , X and XI , r e s p e c t i v e l y , h a s been u n s u c c e s s f u l .

F i n a l l y , in s i t u i o d i n a t i o n of methyl h i p p u r a t e (XII ) was

a t t e m p t e d ( r e a c t i o n 13) . The NMR ( F i g V-22) and IR (F i g V-23)

Reac t i on 13

(1) TTFA/TFA

XII

&/or

XI I I XIV

s p e c t r a a r e no t c o n s i s t e n t wi t h e x p e c t a t i o n s based on assumed

f o r m a t i o n of t h e d e s i r e d o - i odo-met hy l h i p p u r a t e X I I I . However , t h e

mass s p e c t r u m ( F i g V-24) i n d i c a t e s t h a t X I I I h a s i ndeed been formed.

The bul k of t h e r e a c t i o n p roduc t was i d e n t i f i e d a s o - i o d o h i p p u r i c

a c i d (XIV) b a s e d upon NMR, IR, and mass s p e c t r a l e v i d e n c e (F i g V-25,

V-26, and V-27 , r e s p e c t i v e l y ) . Use of Na l 3 1 l gave p r e l i m i n a r y

y i e l d s of up t o 90%.3c F a i l u r e t o d i r e c t l y i o d i n a t e h i p p u r i c a c i d

s u g g e s t s t h a t h y d r o l y s i s occu r s a f t e r t h e t h a l 1a t i o n - i o d i n a t i o n

seque nce of r e a c t i o n 13.

W A V t U N l i î H IN W.l ' .KUNS

4 . 5 5 5 5 6 5 / 7 5 V lÜ II 14 16

I0(

■n

11’.'

ro(J1en

WAVtNUMBER CM*

F i g u r e V - 2 1 . I R S p e c t r u m o-f 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l l i o - h i p p u r i c A c i d I X ( K B r ) .

2 00 100300 0 Ht400900

XII

A»1 » )

roaiCK

F i g u r e V - 2 2 . <40 MHz NMR S p e c t r u m M e t h y l H i p p u r a t e X I I K D M S O - d ^ / T M S ) .

\M rk n \ ',n L R 5 4

ICO Tr l ü O

:] i Y U N H C H 2 C O 2 C H 3

I □MMn e t l l :

4 000 3500 3000 (CM') 2500 2000 1800 1600 1400 1200 1000 (CM ) 800

Mcn■J

600 400

F i g u r e V - 2 3 . I R S p e c t r u m o-f M e t h y l H i p p u r a t e X I I <KBr>

2 5 8

F I G U R E V - 2 4

Mass Spect rum c o n t a i n i n g t h e p a r e n t ion (m/e 319) of t h e

a n t i c i p a t e d o - I o d o - me t h y l Hi p p u r a t e X I I .

•# SPECTRUM OISPLflY/EDiT • # ^ T 6 n 5993 ADE 21 MARCH 3 TIC : 151 5C/PC:ieOD,lM,lS3/M,250D 56-508 %- 1.60 Y« 1.

'ONHCH2 CO2CH3

QniH 5993, SPECTRUM MOST INTENSE 97 2». 97PERKS . RT 1.55 KIN,MASS % MASS X MASS XSO.l 1.9 62.1 .6 110.1 .6 161.0 S.#51.1 3.9 83.1 2.1 111.1 • 5 162.0 2.054.1 .3 64.1 1.1 112.1 .5 167.0 .755.6 1.0 85.1 2.5 113.0 1.1 192.2 .356.0 .9 86.8 .6 115.1 .4 193.1 8,357.1 2.6 87.0 .4 116.1 .4 194.0 1 .058.0 1.1 88.1 .4 117.1 .4 203.0 3.469.0 1.2 89.1 .9 119.1 .4 265.1 .966.0 .9 90.0 .4 121.1 1.7 238.9 11.361.0 .6 91.0 5.5 125.0 1.5 231.9 1.265.1 .6 92.1 2.7 126.1 .3 246,9 1.366.0 .3 93.0 .9 127.6 1.6 253.7 .467.1 1.1 94.1 .4 129.6 .6 259.9 2.868.1 .7 95.0 .9 132.6 .9 260.9 .369.1 2.5 96.1 1.0 133.1 .7 286.8 .570.1 3.6 97.1 1 .4 134.0 17.9 287.9 .471.1 2.3 99.1 .4 135.8 2.6 310.9 6.172.0 .4 99.1 .7 136.8 .4 328.0 1 .073.0 2.0 160.0 .4 141.1 .474.0 2.0 101 .2 .4 144.6 .675.0 2.1 102.9 I .0 148.1 .476.0 5.6 104.1 2.1 149.8 5.177.1 38.1 105.1 100.0 150.6 676.6 2.4 106.1 8.4 153.0 .379.6 .9 107.1 I .1 154.0 2.081 .1 1.1 109.2 .5 155.0 .3

SBC 21 noRCH Tic 1G6D.1M.15D/M,250D 56-506^RN 5993 SRN 29 RT l.S NPCAK5 97 fP5C 3262

100

8060

40

200

100

30

6040

20

' ' " ' " W .... .....................h r , J i m , .................. ,1,........................................ . cTo

"''"■'■"z'ii....... 3^ ...... I.......................... .040

2 5 9

F I G U R E V - 2 5

3 0 0 MHz i H NMR S p e c t r u m o f o - i o d o h i p p u r i c A c i d X I V

< D M S 0 - d 6 / T N S ) .

m

mmCO □

i_nru

m

B

2.5 3 m ;':, OMET. ^ - t 9 lù 12 14 16 70

lüO10000100

tiO

606 ()

4 0

XIV2 0 -! 2020

1000 (CM') 800 600 4003000 (CM') 2500 14003500 20004000

r oCKO

F i g u r e V - 2 6 . I R S p e c t r u m o f o - I o d o t i i p p u r i c A c i d X I V .

2 6 1

FI GURE V - 2 7

M a s s S p e c t r u m o-f o - I o d o h i p p u r i c A c i d X I V .

«,E 2, TE. .4 TK ” ie8D,2M,l0D/M,280D 50-508

ONHCHCO H

320.1

PfeN 5925 tJ etŸRUM lè RÉItËHriOH TlnC - 1%-LgRGST 4, 231.0,108.0 260.1,47.9 203.0,31.0 305.1,26.1 LOST 4l 362.1, .0 377,0, .0 446.2, .1 447.2! .0POCE 1 Y • 1.00

100886040

200 t. . till il . . . ,

100. ... .......... ........ .........................."'"Ï6fc

se;6o;40.

ze] 10 1 1.

' ic'e ■ ê.j'i B ‘ Ëaé ‘ 3CB ' BitF [L E 5 9 2 6 SPECTRUM 18 RT* 1. 9 2 MIN

MASS % MASS X MASS X MASS X MASS X MASS XSI .1 2 . 0 71 .1 . 2 9 0 . 1 . 4 1 1 1 . 1 . 1 1 3 9 . 0 . 2 2 2 9 . 0 . 25 2 . 1 . 2 7 2 . 1 .1 9 1 . 1 1 . 3 1 1 6 . 1 . 7 1 4 1 . 0 .1 231 . 0 1 0 0 . 05 3 . 0 . 2 7 3 . 1 1 . 2 92 . 1 . 8 1 1 7 . 1 . 2 1 4 3 . 5 .1 2 3 2 . 1 7 . 85 5 . 1 . 2 7 4 . 1 4 . 9 9 3 . 1 . 3 1 1 8 . 1 . 2 1 49 .1 . 5 2 3 3 . 0 .55 6 . 1 . 9 7 5 . 1 4 . 8 95 . 1 .1 1 1 9 . 1 . 3 1 5 2 . 0 .1 2 4 8 . 0 .25 7 . 1 . 3 7 6 . 1 2 2 . 7 9 7 . 2 . 2 1 2 0 . 1 1 . 1 1 5 3 . 0 . 1 2 6 0 . 1 4 7 . 95 9 . 1 .1 7 7 . 1 8 . 9 98 .1 .1 1 2 1 . 1 2 . 0 1 6 0 . 1 . 2 261 .1 1 1 . 16 0 . 0 . 2 7 8 . 0 1 . 0 9 9 . 1 . 1 1 2 2 . 1 . 2 161 .1 .1 2 6 2 . 1 . 961 . 0 . 1 7 9 . 1 . 2 1 0 0 . 2 . 2 1 2 6 . 9 2 . 5 1 7 6 . 0 . 2 2 8 7 . 0 . 56 2 . 0 . 2 81 .1 . 1 1 0 1 . 2 . 2 1 28 . 0 1 . 7 1 7 7 . 0 . 2 2 8 8 . 0 . 16 3 . 0 . 4 8 3 . 2 . 2 1 02 . 1 ' . 5 1 2 9 . 4 . 4 1 79 . 1 . 2 3 0 5 . 1 2 6 . 16 4 . 1 . 3 8 4 . 1 . 2 1 03 . 1 . 8 1 3 2 . 1 1 . 9 201 .1 . 1 3 0 6 . 1 2 . 73 5 . 1 . 4 8 5 . 1 . 2 1 04 .1 7 . 3 1 3 3 . 1 1 . 0 2 0 3 . 0 31 . 0 3 0 7 . 1 . 36 7 . 0 . 1 8 7 . 1 . 2 1 0 5 . 0 1 2 . 9 13 4 . 0 5 . 4 2 0 4 . 1 2 . 16 9 . 1 . 2 8 8 . 1 . 1 106 . 1 1 . 0 1 3 5 . 0 1 . 5 2 0 5 . 1 . 17 0 . 1 .1 8 9 . 1 . 2 107 . 1 . 1 1 3 6 . 0 . 1 2 0 6 . 1 . 2

LASTMASS ' % MASS X MASS X MASS X MASS X MASS X

2 3 4 . 5 . 0 2 8 7 . 0 . 5 2 8 5 . 0 . 1 2 6 9 . 0 . 0 3 0 5 . 1 2 6 . 1 3 0 6 . 1 2 . 73 0 7 . 1 . 3 3 0 3 . 1 . 0 319 . 1 . 1 3 2 0 . 1 . 0 3 3 2 . 1 . 13 3 4 . 1 .1 3 3 5 . 1 . 0 3 6 2 . 1 . 0 3 7 7 . 0 . 0 4 4 6 . 2 . 1

2 6 2

C o m p o u n d XV , u s e d i n r e a c t i o n 1 4 , w a s m a d e b y s t a n d a r d m é t h y l ­

a t i o n p r o c e d u r e s . 15 Reac t i on 14 was conduc t e d t o p roduce

Re a c t i o n 14

IHCH.CH,CH

(1) TTFA/TFA ^

( 2) KI/H2O ICH.ICH,

:<V IXV

3 , 4 - b i s < 3 - i o d o - £ - a n i s y l ) h e x a n e (XVI) , whose NMR, IR, and mass s p e c t r a

a r e shown i n F i g V-28, V-29, and V-38 , r e s p e c t i v e l y . The in s i t u

i o d i n a t i o n t e c h n i q u e was used s i n c e i s o l a t i o n o-f the d i - t h a l l a t e d

i n t e r m e d i a t e was not s u c c e s s f u l ( c f . i s o l a t i o n of t h a l l a t e d a n i s o l e ) .

T h i s p r o c e s s has been used t o produce 1 3 1 l - 3 , 4 - b i s ( 3 - i o d o - £ - a n i s y l >-

h e x a n e . 3 c

T h a l l a t i o n of a r oma t i c amines and a r o m a t i c compounds c o n t a i n i n g

p r i ma r y a l i p h a t i c amine s u b s t i t u e n t s i s n o t r e p o r t e d in t he

l i t e r a t u r e , bu t t h a l l a t i o n of a r o m a t i c ami d e s , a r oma t i c compounds

c o n t a i n i n g t e r t i a r y amide s u b s t i t u e n t s , and a r o ma t i c compounds

c o n t a i n i n g t e r t i a r y amine s u b s t i t u e n t s h a s been r e p o r t e d .

T h a l l a t i o n - i o d i n a t i o n of XVIII f a i l e d , s o i t was f e l t t h a t s u c c e s s f u l

s y n t h e s i s of t h e p r o d u c t s of Eqs V-6 t h r o u g h V-13 of Tab l e V - 1 c o u l d

b e s t be a c c o mp l i s h e d by p r o t e c t i n g n i t r o g e n w i t h t he e a s i l y removed

t r i f l u o r o a c e t y l g r o u p .

The s eq u e n ce of r e a c t i o n s u t i l i z e d f o r t he s y n t h e s i s of

2 - i o d o - 4 , 5 - d i me t h o x y p h e n e t h y 1 amine (XXII I ) was s u g g e s t e d a s shown in

Scheme V- 1 . S y n t h e s i s of XVII , X V I I I , and XIX was a s in t he

l i t e r a t u r e l ? and t r i f 1uo r o a ce t y l a t i on 13 gave XX ( s e e F i g V-31,

V-32, and V-33 f o r NMR, IR, and mass s p e c t r a , r e s p e c t i v e l y ) .

In s i t u t h a l 1a t i o n - i o d i n a t i o n of XX f o l l o w e d a f t e r t h e manner

2 6 3

FI G U R E V - 2 8

3 0 8 MHz MMR S p e c t r u m o f 3 , 4 - b i s ( 3 - I o d o - £ - a n i s y l ) h e x a n e XVI

( C D C I s / T M S ) .

HCH.CH

iCHiCH

o

_or j CD

ui_o

_oruru

1 3

M 16Rilü' J#

IK

CH.CH

hoOx

4ü0ü WAVE NUMBCH (CM ') 2!>U0 2000 1UW WAVE NUMBEd (CM ') HiK)

F i g u r e V - 2 9 . I R S p e c t r u m o f 3 , 4 - B l s ( 3 - i o ( d o - £ - a n i s y l ) h e x a n e XVI ( C H C I 3 ) .

265

F I G U R E V - 3 0

M a s s S p e c t r u m o-f 3 , 4 - b i s ( 3 - I o d o - & - a n i s y I ) h e x a n e XV I ( C H C I g )

BDC-12 296 /C K « 16JU l 6« t ki8eo ,in ,3«o^n,28es se »«er i C N l .3 S E * Ê 4 # # nCTgTPPEP H o is rs # le

CS.CH. ;hch-ch,

)ca.

» r - l 2 2 9 5 / ' S 5 ô 1 6 j ü L 8 4 " ^ k “

10* s e .0 n L * s e e . e n i *

!FR nwr-SBH 2 8 e t 2 . 9

60 ee 1601201 40160180200220240260200j0a3203483t'03004004 204404 604 80600

C 2 e C 4 e 6 ô e S S 0 6 6 0 ii2 0 6 4 0 6 6 0 (> 8 e 7 0 8 7 2 e 7 4 0 7 6 e 7 â e6 â e e 2 0 « 4 0 e * 0 8 d 0 9 0 0 9 2 0 9 4 9 9 6 0 9 e e

R5P-Ü !é.JÜLè4 H----------I0OB .in.3OC'-«,220D 5 0 -6 0 0

G PCO KS BQ3C flCUHSQNCC 1 1 ) 1 0 * 2 0 0 .0 M L -606 .6 m « 2 9 0 .0 f1 2 * 6 te .0

I 0 i

■IFftH'lSèêr"SRN 2 6 R T 2 . 9

MRS : X n n s s Xl i e 6 0 1 3 6 . 0 . 6

S I . 2 . 6 1 4 7 . 1 6 . 66 3 . 1 . 5 1 4 8 . 1 1 0 . 05 5 . 2 . 6 1 4 9 . 1 3 . 16 3 . 1 . 8 1 5 8 . 8 . 56 5 . 1 . 7 1 5 1 . 0 . 57 1 , 2 1 6 2 . 07 3 , 1 1 6 3 . 1 . 57 5 . 1 1 6 5 . 0 . 97 6 . 1 1 7 8 . 1 . 47 7 . 1 1 0 9 . 27 8 . 1 1 9 5 . 17 9 . 18 9 . 09 0 . 19 1 . 1 5 . 6 2 4 8 . 09 2 . 1 2 5 9 . 0

1 0 2 . 1 2 6 0 . 01 0 3 . 1 2 . 3 . 61 0 4 . 1 2 7 4 . 8 2 1 . 61 0 6 . 1 2 7 5 . 0 1 0 0 . 01 0 6 . 1 2 7 6 . 0 1 0 . 31 1 6 . 1 2 . 7 2 7 7 . 0 . 91 1 6 . 2 1 . 0 4 2 3 . 1 3 . 31 1 7 . 1 4 . 7 4 2 4 . 1 . 91 1 8 . 1 2 . 7 6 6 0 . 1 2 . 31 1 9 . 1

iH-J2 . 0 1 . 0

5 6 1 . 1 . 5

1 2 0 . 1 LOST *1 3 1 . 0 . 7 4 2 3 . 1 3 . 31 3 2 . 1 . 4 4 2 4 , 1 . 91 3 3 . 0 3 . 3 5 5 0 . 1 2 . 31 3 4 . 0 . 7 5 6 1 . 1 . 5

4 2 3 . 14 2 4 . 15 5 0 . 1

%

6 . 81 0 0 . 0

2 6 . 5

URSS %

6 5 1 .1 1 4 .2

LOST 44 2 3 . 1 1 0 0 . 04 2 4 . 1 2 6 . 55 5 0 .1 6 8 .16 5 1 . 1 1 4 . 2

266

SCHEME V - 1

P r o p o s e d S y n t h e s i s o f 2 - I o d o - 4 , 5 - d i m e t h o x y p h e n e t h y 1 a m i n e ( X X I I I ) .

CHO

OCH3

OCH3

XVIII

XVII

XIX

ICH3ÔCH3

(C0CF3>20/Bz

H2CH2NHCOCF3

Q)CH3

I

XXIOCH3

XXIII

CH3

1) TTFA/TFA2) KI/H2O

3FCOCHN2HC2HC CH2CH2NHCOCF3

< — — > lO nOCH3 OCH3

X X I I

2 6 7

FI G U R E V - 3 1

3 0 0 " MHz 1h NMR S p e c t r u m o-f

N - T r i - f l u o r o a c e t y l - 3 , 4 - d i m e t h o x y p h e n e t h y l a m i n e XX ( C D C I g / T M S )

■OCH3

XX

m

m_D_D

_o

1. 0 H . 5 2 . 5

3 MICüCMFTtRS A 9 10 12 \ 4 16 20

100

8080

6060

4 040

XX?o

00

wCK00

F i g u r e V - 3 2 . I R S p e c t r u m o-f N - T r i - f 1 u o r o a c e t y l - 3 , 4 - d i m e t h o x y p h e n e t h y 1 a m i n e XX ( C C I 4 )

269

FI G UR E V - 3 3

Mass Spect rum o-f

N-Tri -f 1 u o r o a c e t y l - 3 , 4 - d i me t h o x y p h e n e t h y l ami ne XX (CCI^)

JW.r t% , TKmcYiuR iiiPuiv/niT r#w RH

I tT W P G ;«C» l . M V# 1 .

H2CH2NHCOCF3"fMLjjm «PccTtim

IMtS DBUNB

OCH3

XXIÎ5;i

ü;iM.I

16 « r r . T i « • .7m t s flKIMl mti 0IUMS mit flIUMB

76.1 .4 102.1 .4 127.2 .577 .0 4 .0 103.1 1 .0 128.178 .0 4 .5 129.079 .1 2 .3 104.1 .7 130.180 .1 .0 105.1 4 .3 131.181 .1 1 .9 106.1 4 .482 .2 1 .2 187.1 7 .6 132.183.1 2 .2 188.1 2 .4 133.004.1 .9 189.1 1 .3 134.1U b.l S .2 110 .2 . / 136.1 ■/.a86.1 .2 111 .2 1 .2 136.1 1 .687.1 112 .2 137.1 2.0

.2 113.1 le 138.189.1 j .6 114.1 . 2 139.1 il

115.1 .5 148.190.1 2 .1 116.1 .3 141 .191 .1 4 .2 117.1 .3 142.192.1 .8 143.1 .493.1 1 .3 118.1 1 .6 144.0 .194.1 .9 119.1 1 . 3 . 14S.0 .395.1 1 .8 120.1 .796.1 1 .0 121.1 2 .9 146.297.1 2 .8 122.2 1 .0 147.196.1 1 .6 1 .0 146.1 i ! i

124 .2 .5 9.B126.2 .6 158.6126.1 2 .6 151 .1

Ç lg y jg îM tPCCT«im U « T . T in t - .7 rtM S 2 tf ïPECTRUn

MAII1 E 2 .1163.0164.1

157.11 5 5 . 2159.2

160.1 161 .1

\îl:\164.1166.1 166.2167.1160.1169.0170.1171.2172.2173.2

174.1175.1176.1

n a z i PlUHfi tw t t 00UNS n a îs MASS P8UNS

177.1 .2 282 .0 .3 228.2 .2 2 5 3 .2 .2176.1 .3 203.1 ,2 229.2 .3 .2179.1 .5 .1180.1 .3 205.1 .3 230.1 .1101 .2 £06 .£ .£ 231.2 2 6 7 .3182.2 297.2 .6 232.2 .1183.2 286.1 .6 233.1 .2 258.1184.1 209.2 .3 234 .2 .2 259 .2105.2 210.% t .0 233.2 .2 260.1166.1 .1 211.2 .4 236.2 261 .1 .3187.2 .1 212 .2 237.2 .3 2 6 2 .2 . 2

711 .? 263 .2 .1188.1 .0 214.2 .1 .3 r r .4 .7189.1 .2 2 1 6 .: .2 .1198.2 .3 241.2 266 .3191.2 216.1 242.3 267 .2192.1 .3 217.1 .2 243.3 .3 266.1 .1193.1 .3 218.1 .2 «2194.2 .3 219 .2 .3 244.1 .2 27q !3 .2195.1 .2 228.2 .2 245.1 .3 271 .3 .2196.1 .2 221.2 .3 246.1197.1 .2 222.2 .3 247.2 27 2 .2 .1198.1 223.1 .4 248.2 .1 273.1199.2 224.1 .2 249.2 .2 274 .2288.1 .2 225.2 .2 250.2 .3 275 .2 .2201 .8 .2 2 2 6 .2 .1 251.2 .2 277.1 51 ,4

227 .2 252.2 .2 278.1 7 .0

m csèi----------mmrm—n-----LQKCST 4 t 1 6 1 .1 ,1 0 0 .0 2 7 7 .1 , 5 1 .4LflST 4 f 3 1 6 .2 , .1 3 1 7 .3 , .0

■CTWTICW TIRE .71 6 4 .1 , 4 2 .9 1 4 9 .0 , 9 .83 1 8 .3 , .1 3 1 9 .4 , .8

POCC 1 Y - 1 .00

' i r ''"""% ’’'""lëü'"' " 120 ' " 14

ZJS-

2 7 0

d i s c u s s e d e a r l i e r . ^ However , t h e only e v i d e n c e -for -format ion of

t h e d e s i r e d N - t r i f 1u o r o a c e t y l - 2 - i o d o - 4 , 5 - d i m e t h o x y p h e n e t h y l amine

(XXI) i s t he p r e s e n c e of a v e r y smal l m o l e c u l a r i on a t m/e 403 (2.5%)

( F i g V - 3 4 ) . I n s t e a d , t h e predomi nant p r o d u c t of t h e s equence was

b i a r y l compound XXII whi ch r e s u l t s from T 1 ( I I I ) - p r o m o t e d o x i d a t i v e

c o u p l i n g of t he s u b s t r a t e ( s e e F i gs V-35, V-36, and V - 3 7 , f o r NMR,

IR, and mass s p e c t r a , r e s p e c t i v e l y ) . Tha t t h e compound i s a

2 , 2 ' s y m m e t r i c a l l y c o u p l e d b i p h en y l i s i n d i c a t e d by t h e s i m p l i c i t y

of t h e NMR. In an a t t e m p t t o p r e v e n t t h i s d i m e r i z a t i o n r e a c t i o n , t h e

n i t r o g e n and c a t a c h o l i c hydroxyl groups we re p r o t e c t e d w i t h t r i f 1uo­

r o a c e t y l g roups and t h e l a b e l i n g of t h i s t r i s t r i f 1u o r o a c e t y l a t e d

dopamine d e r i v a t i v e w i t h ^31] was a t t e m p t e d . Chromat ography of t h e

p r o d u c t i n d i c a t e d t h e p r e s e n c e of two s e p a r a t e r a d i o a c t i v e compounds

in t h e same r e l a t i v e ab u n d a n c e . I t cou l d not be d e t e r m i n e d whether

i o d i n a t i o n was o c c u r r i n g v i a t h e ArTl(OCOCF3 ) 2 i n t e r m e d i a t e or

v i a d i r e c t i o d i n a t i o n o f t h e s u b s t r a t e w i t h 12 ( f o r med in s i t u v i a

o x i d a t i o n of Nal by TTFA) .3c

Conc l us i on

S y n t h e s i s , t h a l 1a t i o n , i o d i n a t i o n , and in s i t u t h a l 1a t i o n - i o d i n a -

t i o n of a v a r i e t y of a r o m a t i c compounds have been d e mo n s t r a t e d .

T e c h n i q u e s d e v e l o p e d h e r e have been used t o s y n t h e s i z e t h e

b i o l o g i c a l l y a c t i v e r a d i o i o d i n a t e d compounds 131]_o_i qdobenzoi c

a c i d , 13 1 %- o - i o d o h i p p u r i c a c i d , and 1 3 1 i _ 3 | 4 _ b i s ( 3 - i o d o - £ - a n i s y l )

h e x a n e . 3c I m p o r t a n t l y , in s i t u t h a l 1 a t i o n - r a d i o i o d i n a t i o n i s

a d a p t a b l e to s h o r t 1 i v e d r a d i o i o d i n e 133%.

Exper imenta l

NMR s p e c t r a were run on IBM Model NR-80, V a r i a n Model s EM360A,

T - 6 0 , and XL 300 s p e c t r o m e t e r s . IR s p e c t r a were taken on

P e r k i n - E l m e r Model s IR-8 and 298 i n f r a r e d s p e c t r o m e t e r s and mass

s p e c t r a were r e c o r d e d on a He wl e t t - Pa c k a r d Model 5985 6C/MS

2 7 1

F I G U R E V - 3 4

Mass Spect rum of t h e Compound w i t h t h e Expec t ed M o l e c u l a r Weight of

403 which i s B e l i e v e d t o be t h e D e s i r e d

N - T r i f 1u o r o a c e t y l - 2 - i o d o - 4 , 5 - d i m e t h o x y p h e n e t h y l a m i n e XXI.

f tCTEHTIOH T i m e 8 6 . e , 6 6 . 61 6 1 . 8 , 9 4 . 6 1 6 2 . e . 6 3 . 6

5 5 2 . 1 , . 3

XXI

4 3 . (

r t M t s ? BLQRCST 4 i LOST 4 i

5PCCTSLm"'"B8 3 . 0 . 1 0 0 . 0 1 6 1 . 0 ,

4 0 2 . 9 , 2 . 3 4 0 4 . 0 ,94 . 6

. 3

RETEHniJf TImC " I .18 5 . 0 , 6 6 . 6 1 6 2 . 0 , 6 3 . 6

Y » 1 . 0 0

l e e ;

68*

6 8

48 '

2 0

8

ICO......... ‘ 3 6 8 ' 3 t b ' ' - ' ' " 4 2 ? ...... ' " ' 4 4 ÿ ........ ' 4 6 t ......... ' ' " ' 4 6 8

60^

4 8

2 0 .

c '' 5 3 8 • 6 - 8 ' * 6 5 ■ ‘ 6 0 0 ' f i t - ‘ * 6 ^

r i L CLQR6ES1

MA S:

6 6 7 61 8 2

%

SPCCTKUN 2 1 2 6 3 r CR K S KT> 1 . 4 8 MIH M S E PCAK» 9 9 3 2

MASS % X M S 5 X n n s s X HASS X n o s r X4 9 . 1 1 . 2 7 6 . 0 3 . 8 1 0 3 . 1 3 . 9 1 2 9 . 8 6 . 8 1 6 9 . 2 1 . 1 1 9 6 . 0 1 . 3 2 4 4 . 1 1 . 6

7 . 8 7 7 . 0 2 1 . 4 1 8 4 . 1 2 . 4 1 3 1 . 8 1 . 6 1 6 1 . 0 1 . 3 1 9 7 . 2 1 . 4 2 6 4 . 1H ' i 1 0 . 1 7 8 . 0 2 0 . 7 1 0 5 . 8 1 3 . 7 1 3 2 . 1 1 6 2 . 2 . 8 1 9 9 . 2 2 . 0 2 6 6 . 2

H i1 . 7 7 9 . 1 1 5 . 7 1 0 6 . 1 1 6 . 8 1 3 3 . 1 2 . 9 1 6 3 . 1 1 . 8 2 8 7 . 1 1 . 4 2 5 6 . 2 1 :93 . 1 8 0 . 1 6 . 7 1 0 7 . 1 2 7 . 9 1 3 4 . 0 3 . 2 1 6 4 . 1 4 7 . 2 2 0 8 . 0

h i2 5 7 . 1

I s ' i2 . 1 8 1 . 1 1 1 . 7 1 8 8 . 1 1 8 . 7 1 3 5 . 1 1 0 . 3 1 6 5 . 1 9 . 8 2 0 9 . 1 2 6 1 . 1

1 6 . 2 8 2 . 0 J . 4 1 8 9 . 1 1 2 . 3 1 3 6 . 8 5 . 8 1 6 6 . 1 2 . 8 2 1 0 . 1 2 . 7 2 6 3 . 0 i l l6 . 4 8 3 . 0 8 8 . 3 1 1 8 , 1 4 . 8 1 3 7 . 0 2 9 . 1 1 6 7 . 1 4 . 1 2 1 1 . 2 1 . 3 2 6 4 . 2

5 Î * ‘ 1 9 . 6 8 4 . 1 8 . 5 1 1 1 . 2 7 . 2 1 3 0 . 0 6 . 1 1 6 8 . 8 1 . 7 2 1 2 . 8 2 . 0 2 6 0 . 1 1 :36 9 . 1 1 . 7 8 5 . 8 5 8 . 5 1 1 2 . 1 3 . 8 1 3 9 . 1 6 . 1 1 6 9 . 1 1 . 0 2 1 3 . 1 1 . 8 2 6 9 . 16 0 . 1 4 . 3 0 6 . 1 4 . 7 1 1 3 . 2 6 . 1 1 4 0 . 8 2 . 4 1 7 1 . 1 i . e 2 2 2 . 1 1 . 9 2 C 0 . Î 1 :35 1 * } 1 . 6 8 7 . 8 1 8 . 0 1 1 4 . 8 2 . 7 2 4 1 . 1 4 . 2 1 7 5 . 2 2 2 4 . 2 2 7 1 . 8 1 . 6

1 . 3 8 9 . 6 7 . 6 1 1 6 . 1 4 . 0 1 4 2 . 0 1 7 6 . 1 l i 2 2 5 . 1 1 l e 2 7 7 . 0 2 3 . 09 0 . 0 9 . 9 1 1 6 . 2 1 . 0 1 4 3 . 8 2',Q 1 7 7 . 1 1 . 7 2 2 7 . 3 . 9 2 7 6 . 0

6 4 . 1 2 . 6 91 . 1 1 9 . 7 1 1 7 . 1 2 . 5 1 4 4 . 9 1 . 5 1 7 8 . 0 . 9 2 2 9 . 1 . 9 2 ( 2 . 2 2 :61 7 . 7 9 2 . 1 6 . 5 1 1 8 . 8 6 . 5 1 4 7 . 0 2 . 4 1 7 9 . 3 1 . 4 2 2 9 . 2 1 . 1 2 5 5 . 1 1 . 3

4 . 0 9 3 . 1 7 . 7 1 1 9 . 1 5 . 3 1 4 8 . 1 2 . 2 1 0 0 . 1 1 0 . 9 2 3 1 . 1 . 8 2 : 6 . 1 3 . 09 4 . 1 1 2 0 . 8 5 . 1 1 4 9 . 0 1 9 . 6 181 . 1 1 4 . 9 2 3 2 . 0 . 8 4 . 4

3 . 3 9 5 . 1 1 2 1 . 1 11 . 8 1 5 8 . 0 7 . 8 1 3 2 . 1 2 . ( 2 3 3 . 1 1 . 45 8 4 9 £ . l 6 . 4 1 2 1 . 0 5 . 6 1 5 1 . 1 1 0 8 . 0 1 8 3 . 2 2 . 0 2 3 c . 2 2 l l 2 9 9 . 2 9 . 3

6 . 7 9 7 . 1 1 8 . 4 1 2 3 . 2 6 . 2 1 5 2 . 1 1 8 5 . 1 2 . E 2 : 7 . 2 1 . 3 : : : . 1 2 . 3U ' l 1 2 . 7 9 1 . 1 5 . 7 1 2 4 . 1 3 . 0 1 9 1 . 1 . 6 2 : % . l 1 . 07 2 . e 2 . 2 9 > . \ 4 . 7 1 2 5 . 1 4 . 5 1 5 4 . 0 1 9 2 . 0 1 . 2 2 3 S . I 1 . 0 1 : 3 :2 1 : 57 3 . 07 4 . 07 5 . 1

6 . 62 . 31 . 2

1 0 0 . 1 101 . 0 1 C 2 . 1

! . 4 « . 3 1 . 5

1 2 6 . 01 2 7 . 21 2 5 . 1

7 . 04 . 1 1 . 8

1 5 5 . 21 5 6 . 01 5 7 . 1

1 9 3 . 21 9 4 . 11 9 5 . 1

1 . 5 1 . 6

2 4 1 . 12 4 2 . 22 4 3 . 2

1 . 1 4 : 2 . 9

2 7 2

F I G U R E V - 3 5

300 MHz hWR Spec t rum o-f B i a r y l Compound

2 , 2 ' - d i - < N - T r i f 1u o r o a c e t y l a m i n o e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i p h e n y l

XXII (CDClg/TMS).

mCD

m

XXII

_D_D

_n_Dm

enm

_D

m ru

1 . 5 5 . 0

1 T "

2 . 5

2.5 3 MICROMETERS i 9 10 I? U *-16 20 25

100lO'J100ICO

0 0 - i80

AO60

H2CH2NHCOCF3

O O uÔCH3 OCH3

'4040t- 40 3 HCI

XXII

20

4003000 (CM) 2500 16003500

ro- n Iw

F i g u r e V-36 . IR Spec t rum o-f2 , 2 ' - D i - < N - t r i f 1 u o r o a c e t y l a m i n o e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i phenyl XXII <KBr)

2 7 4

F I G U R E V - 3 7

Mass Spec t rum o-f

2 , 2 ' - d i - ( N - T r i - f 1 u o r o a c e t y l a m i n o e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i phenyl

XXI I .

XXII

F F h i f - C i U u n ^ "— t C T C N Î l i M T I n C rz - - - - - - - - -LB9CST 4 i 2 9 9 .2 .18P .P 6 9 .0 , 34 .6 1 2 6 .0 , 2 9 .6 2 6 6 .1 , 26 .2tOST 41 6 5 2 .2 , 17.7 5 5 3 .2 , 5 .1 6 5 4 .1 , 1.® 5 5 5 .2 , .1

Y • l . W

" ietl'n 1^ 12iD" uV

r i L C 5 5 7 4 SPECTRUM 6 5 3 2 5 PEAKS R T - 4 . 4 7 MIH BASE PE A K - 1 4 9 4 3L f iP C ES T 1 6 2

n a z z X MAS: MOSS MASS MASS X MASS X MASS5 0 . 1 . 7 9 6 . 0 1 . 0 1 3 1 . 0 1 6 8 . 8 2 . 7 2 1 0 . 1 2 . 8 2 6 2 . 1 2 . 3 2 9 6 . 1 1 . 45 1 . 8 1 . 3 9 7 . 0 8 . 9 1 3 2 . 0 1 . 7 1 6 9 . 0 3 . 3 2 1 . 1 5 . 4 2 5 3 . 1 2 . 7 2 9 7 . 1 . 25 3 . 0 . 8 9 8 . 1 1 . 9 1 3 3 . 1 1 . 7 1 7 8 . 1 2 1 2 . 1 1 3 . 3 2 5 4 . 1 2 . 2 2 9 8 . 2 1 1 . 15 5 . 1 1 . 8 1 0 2 . 0 1 . 1 1 3 3 . 8 2 . 0 1 7 1 . 1 . 1 2 1 3 . 1 4 . 7 2 5 5 . 1 4 . 8 2 9 9 . 2 1 0 8 . 05 6 . 1 2 . 3 1 0 3 . 1 . 8 1 3 5 . 1 1 . 8 1 7 6 . 1 . 6 2 1 4 . 0 1 . 0 2 5 6 . 1 2 . 7 3 0 0 . 1 2 2 . 45 7 . 1 . 8 1 0 4 . 1 . 0 1 3 9 . 1 3 . 9 1 7 7 . 1 1 . 1 2 2 8 . 1 . 9 2 5 7 . 1 3 . 7 38 1 . 2 3 . 05 8 . 1 1 . 6 1 0 5 . 0 . 9 1 4 0 . 0 1 2 . 7 1 7 8 . 1 1 . 4 2 2 1 . 1 1 . 4 2 6 4 . 0 . 7 3 1 1 . 2 . 95 9 . 2 . 9 1 0 6 . 0 3 . 6 1 4 1 . 1 7 . 4 1 7 9 . 1 1 . 2 2 2 2 . 1 1 . 3 2 6 5 . 1 1 . 0 3 1 2 . 1 . 66 3 . 1 , 8 1 0 7 . 1 1 . 1 141 . 9 2 . 1 1 8 8 . 0 1 . 6 2 2 3 . 1 2 . 2 2 6 6 . 1 1 . 1 3 1 3 . 2 1 2 . 16 5 . 1 : 7 1 1 1 . 1 . 6 1 4 3 . 0 1 . 2 1 8 1 . 1 5 . 0 2 2 4 . 1 3 . 5 2 6 7 . 1 5 . 6 3 1 4 . 2 2 . 86 6 . 0 . 7 1 1 2 . 2 1 . 1 1 4 7 . 1 3 . 8 1 8 2 . 1 2 . 9 2 2 5 . 1 5 . 2 2 6 8 . 0 1 8 . 5 3 8 0 . 2 . 76 7 . 1 1 . 1 1 1 2 . 9 1 . 9 1 4 7 . 0 2 . 1 1 8 3 . 1 2 . 7 2 2 6 . 1 3 . 4 2 6 9 . 1 9 . 0 3 9 4 . 2 1 . 16 8 . 1 2 . 2 1 1 4 . 1 2 . 9 1 4 9 . 0 1 0 4 . 0 1 . 5 2 2 7 . 1 3 . 3 2 7 0 . 1 4 . 1 3 9 5 . 1 5 . 76 9 . 0 3 4 . 6 1 1 5 . 1 ^ 1 1 4 9 . 9 1 8 5 . 1 . 7 2 2 8 . 1 2 . 2 2 7 1 . 1 1 0 . 7 3 9 6 . 1 . 77 0 . 0 1 . 6 1 1 6 . 1 1 5 1 . 0 1 9 1 . 1 . 7 2 2 9 . 1 . 6 2 7 2 . 1 3 . 0 4 0 8 . 27 2 . 1 1 . 6 1 1 7 . 1 1.1 1 5 2 . 0 1 9 3 . 1 . 3 2 3 5 . 2 1 . 1 2 7 9 . 2 . 8

1 . 2 1 1 9 . 2 1 . 1 1 9 4 . 2 2 . 0 * 2 3 6 . 1 1 . 3 2 9 0 . 1 1 . 21 . 4 1 1 9 . 2 1 . 6 1 9 5 . 1 2 3 7 . 1 1 . 7 2 C 1 . 1 2 . 0

7 7 . 0 1 2 3 . 1 1 . 5 2 3 0 . : 2.0 292.2 2 1 . 47 7 .3 1 9 . 7 12.1 1 9 7 . 0 2 3 9 : 1 4 .3 7 . 1

1 . 5 1 9 2 . 0 2 4 0 . 1 2.e 2 r 4 i i e .21 . 7 2« .6 1 9 9 . 0 2 4 1 .1 : .9 2 : 2 . 1 1 0 . 5 4 4 :

5 .T 1 * 4 . 1 2 ? : . i 1 . 7 2 0 6 . 1 2 6 . 2 4 - : r . i1 .1 1 15.1 1 .3 4 .7 5 7 : . :9 2 .0 1 . 4 123.0 ! : 1 2?=.0 2 5 8 . 1 .7 2 * 3 . 1 . 8 5 " ? . :

.0 1 3 7 . 0 2 7 9 . 0 2^9 2 5 1 . 2 253.1 1 . 5 5 5 4 . 1

2 7 5

s p e c t r o m e t e r .

N , N ' - d i c y c 1 o h e x y l c a r b o d i i m i d e , g l y c i n e , e thyl g l y c i n a t e hydr o ­

c h l o r i d e , n i t r o me t h a n e , and 3 , 4 - d i me t h o x y b e n z a l d e h y d e we re o b t a i n e d

■from A l d r i c h Chemical Company, I n c . , Mi lwaukee, Wi . T I 2O3 was

o b t a i n e d -from Al pha , Da nve r s , Ma. Gl yc i ne t e r t - b u t y l e s t e r

h y d r o c h l o r i d e was o b t a i n e d ■from Vega B i o c h e m i c a l s , Tu c s o n , Az .

H e x e s t r o l was o b t a i n e d ■from Sigma Chemical Company, S t . L o u i s , Mo.

S y n t h e s e s of o - c a r b o x y p h e n y l t h a l 1 ium d i t r i f 1 u o r o a c e t a t e ( I I ) , ^

o - i o d o b e n z o i c a c i d , l ^ l i - Q - i o d o b e n z o i c a c i d , 3 c o - c a r b o x a mi d o -

phenyl t h a l 1 ium d i t r i f l u o r o a c e t a t e ( I V ) , 2 , 5 - x y l y l t h a l 1ium

d i t r i f l u o r o a c e t a t e (V) ,8 and £ - i o d o a n i s o l e 2 we re p e r f o r me d as

d e s c r i b e d in t h e l i t e r a t u r e .

P r e p a r a t i o n of Thai 1 ium(111) T r i f l u o r o a c e t a t e (TTFA)3b

T12O3 (50 g , 110 mmol) was r e f l u x e d for 46 h o u r s in 200 ml of

t r i f l u o r o a c e t i c a c i d and 25 ml of H2O, wi t h s t i r r i n g and in the

a b s e n c e of l i g h t . A f t e r f i l t r a t i o n t o remove u n r e a c t e d T12O3

( 13 . 0 g) , t h e c l e a r s o l u t i o n was c o n c e n t r a t e d in v a c u o t o a wh i t e

s emi s o l i d mas s , p l a c e d on a h i g h vacuum l i n e , and d r i e d t o a f f o r d

8 0 . 5 7 9 (91.5% y i e l d ) of w h i t e powdery TTFA.

IR s p e c t r u m (KBr, Fig V-5) 3450 ( m ) , 1682 ( s ) , 1443 ( m ) , 1213-1132

( s ) , 904 ( w ) , 848 ( m ) , 812 (m) , 729 (m) cm"^ .

S y n t h e s i s of 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1i o - h i p p u r i c Ac id (IX)

o - Ca r b o x y p h e n y l t h a l 1i urn d i t r i f l u o r o a c e t a t e ( I I ) ( 3 . 6 7 9 , 6.6

mmol) ( p r e p a r e d a c c o r d i n g t o t h e p r o c ed u r e g i v e n by McKi l l op , e t

a l . ) 3 and 1.51 9 ( 7 . 3 mmol) of N , N ' - d i c y c l o h e x y l c a r b o d i i m i d e

(DCC)^l in 25 mL of THF we r e s t i r r e d f o r 30 m i n u t e s , wh i l e

p r o t e c t e d f rom l i g h t and a i r . Then , 0 . 5 9 ( 6 .6 mmol) of g l y c i n e in

10 ml of THF was added, and t h e r e s u l t i n g mi x t u r e was s t i r r e d f o r IB

h o u r s . T r i f 1u o r o a c e t i c a c i d ( 2 mL) was added to decompose any

u n r e a c t e d DCC, and t he r e s u l t i n g c o l d riiilky s u s p e n s i o n was f i l t e r e d

276

t o remove d i c y c l o h e x y l u r e a . The - f i l t r a t e was c o n c e n t r a t e d in vacuo

t o a s e m i s o l i d w h i t e mass which was aga in - f i l t e r e d a f t e r s t a n d i n g

o v e r n i g h t in t h e r e f r i g e r a t o r . The m e l t i n g p o i n t of t h e c r u d e w h i t e

s o l i d was 198-205°C.

NMR s p ec t r u m (60 MHz, DMS0-d6, F i g s V-20 and V - 1 5 ) : & 15,6

( d , 1 H, o - H ) , 11,4 (d , 1 H, m " - H ) , 10,4 ( t , I H, m-H) , 8 ,6 ( t , 1 H,

£ “ H) , 6 , 7 ( t , 1 H, £“ H) , 5 , 3 ( t , 2 H, m-H) , 4 , 9 ( d , 1 H, m-'-H) , 3 , 6

( s , 2 H, CH2> , - 8 , 1 (d , IH, o - H ) ;

IR s p e c t r u m (KBr, Fig V - 2 1 ) : 3405 ( s ) , 3080 (b) , 2650 ( m ) , 2530

(m) , 1740 (m) , 1665 ( s ) , 1580 ( m ) , 1530 ( w ) , 1470 ( w ) , 1440 (m) , 1377

( w ) , 1278 ( s ) , 1200 ( s ) , 1133 ( s ) , 1038 (w) , 1018 ( w ) , 980 ( m ) , 927

(m) , 877 (w) , 837 (m) , 799 ( s ) , 741 ( s ) , 723 ( s ) c m ~ K

S y n t h e s i s of 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1i o - e t h y l H i p p u r a t e ()<)

o - C a r b o x y p h e n y l t h a l 1ium d i t r i f 1u o r o a c e t a t e ( I I ) ( 1 , 0 g , 1,8 mmol)

and 0 , 4 2 g ( 2 , 0 mmol) of DCC in 25 mL of THF were s t i r r e d f o r 36

m i n u t e s i n a f l a s k p r o t e c t e d f rom l i g h t . Et hyl g l y c i n a t e

h y d r o c h l o r i d e ( 0 , 2 5 g, 1,8 mmol) , d i s s o l v e d in a minimum amount of

w a t e r , was t hen added, t h e m i l k y s u s p e n s i o n was s t i r r e d 4 h o u r s ,

quenched wi t h 1 ml of CF3CO2H, and t he i n s o l u b l e u r e a was

f i l t e r e d . In vacuo c o n c e n t r a t i o n of t h e c l e a r s o l u t i o n f o l l o w e d by

c o o l i n g and f i l t r a t i o n gave 0 , 3 7 g of c r ude (X) ,

^H NMR s p ec t r u m (60 MHz, DMSO-d^j, F i g V-16) : S 15,4 ( d , 1 H,

o - H) , 11 , 3 ( d , 1 H, m ' - H ) , 10,3 ( t , 1 H, m-H), 8 , 9 (m, 1 H, NH) , 8, 4

( t , 1 H, £ - H) , 6 , 7 ( t , 1 H, e - H ) , 5 . 4 ( t , 1 H, m- H ) , 5 , 1 ( d , 1 H,

m ' - H ) , 4 , 2 ( q , 2 H, e t h y l CH2) , 3 , 8 ( d , 2 H, CH2) , 1 , 3 ( t , 3 H,

CH3) , 0 , 3 ( d , 1 H, o - H ) ;

IR s p e c t r u m (KBr, Fig V - 1 7 ) : 3000 ( b ) , 2657 (w) , 2530 ( w ) , 1752 ( w ) ,

1671 ( s ) , 1581 (w) , 1470 (w) , 1434 ( m ) , 1300 (m) , 1257 (w>, 1209 ( 5) ,

1145 ( s ) , 1062 ( w ) , 1018 ( w ) , 913 ( w ) , 839 (m) , 801 ( m ) , 730 (m)

cm" 1 ,

S y n t h e s i s of 2 - B i s ( t r i f l u o r o a c e t a t o ) t h a l 1i o - t - b u t y l H i p p u r a t e (XI)

2 7 7

o-Carboxyphenyl t h a l 1 i urn di t r i -fl u o r o a c e t a t e ( I I ) ( 3 . 2 9 g , 6 . 0

mmol) and 1.23 g ( 6 . 0 mmol) o f DCC were d i s s o l v e d in 50 mL o f THF and

a l l o w e d t o s t i r f o r 30 m i n u t e s . To t h e s t i r r e d s o l u t i o n , p r o t e c t e d

f rom l i g h t , was added 1 g ( 6 .0 mmol) of g l y c i n e t e r t - b u t y l g l y c i n a t e

h y d r o c h l o r i d e d i s s o l v e d in a minimum amount of w a t e r , and t he

r e s u l t i n g s o l u t i o n was s t i r r e d f o r 4 h o u r s . The s u s p e n s i o n was

f i l t e r e d , and t he c l e a r s o l u t i o n was c o n c e n t r a t e d in v ac u o t o a f f o r d

a c r u d e m i x t u r e of XI .

1h NMR s pec t r um (60 MHz, DMSO-d^, F i g V - 1 8 ) : G 15. 3 ( d , 1 H,

o - H ) , i l . 4 ( d , 1 H, m ' - H ) , 10 . 2 ( t , 1 H, m-H), 8 . 5 ( t , 1 H, f i -H) , 6 . 7

( t , 1 H, Ê-H) , 5 . 5 ( t , 1 H, m - H ) , 5 . 0 ( t , 1 H, m ' - H ) , 4 . 4 ( s , 2 H,

CH2 ) , 1 . 5 ( s , 3 H, t - b u t y l H) , 0 . 3 ( d , 1 H, o-H) ;

IR s p e c t r u m (KBr, F i g V - 1 9 ) : 3153 ( b ) , 1650 ( s ) , 1575 ( m ) , 1464 ( m ) ,

1377 ( s ) , 1275 ( m ) , 1203 ( s ) , 1143 ( s ) , 1111 ( w ) , 1028 ( m ) , 878 ( w ) ,

835 (w) , 793 (m) , 735 ( s ) , 660 (m) , 645 (m) cm"L

A t t e m p t e d In S i t u Thai 1 a t i o n - i o d i n a t i o n of Methyl H i p p u r a t e (XI I )

Methyl h i p p u r a t e ( XI I ) ( 3 . 5 6 g , 18.4 mmol) was added t o 35 mL of

d r y CH3CN c o n t a i n i n g 10 g ( 1 8 . 4 mmol) of TTFA ( n o t e : upon mi xing

CH3CN and TTFA, t h e s o l u t i o n became b l ack - b r own in c o l o r ) and t he

r e s u l t i n g m i x t u r e was s t i r r e d a t r e f l u x f o r 61 h o u r s . A f t e r 36 h o u r s

t h e s o l u t i o n became c l e a r y e l l o w . A s o l u t i o n of p o t a s s i u m i o d i d e

( 7 . 0 3 g , 424 mmol) in 20 mL o f w a t e r was added t o t h e cool s o l u t i o n

which became b r i g h t y e l l o w . Na2S205 ( 2.0 g) was added a f t e r 20

m i n u t e s and the m i x t u r e s t i r r e d was f o r s e v e r a l h o u r s . The

s u s p e n s i o n was r e n d e r e d b a s i c w i t h 4N NaOH, c h l o r o f o r m was a d d e d , t he

s u s p e n s i o n was vacuum f i l t e r e d , and t he f i l t r a t e was r o t a r y

e v a p o r a t e d t o a f f o r d a swee t s m e l l i n g o i l . The NMR and IR ( F i g s V-22

and V- 2 3 , r e s p e c t i v e l y ) i n d i c a t e d u n r e a c t e d methyl h i p p u r a t e , but t he

mass s p e c t r u m ( F i g V-24) shows t h e e x p e c t e d 319 m/e m o l e c u l a r ion of

o - i o d o me t h y l h i p p u r a t e ( X I I I ) .

iH NMR s pec t r um (CDCI3 , F i g V - 2 2 ) : G 8 . 9 ( t , J = 6 Hz, 1 H,

2 7 8

N- H) , 7 . 9 5 (m, 2 H, A r - H ) , 7 . 5 (m, 3 H, A r - H ) , 4 . 1 ( d , J = 6 Hz, 2H,

CH2> , 3 . 6 5 ( s , 3 H, CHg);

IR s p e c t r u m (NaCI p l a t e s , Fi g V - 2 3 ) : 3340 ( m ) , 1750 ( s ) , 1650 ( s ) ,

1550 (s> , 1495 ( m ) , 1445 <m) , 1330 ( m ) , 1240 ( s ) , 1013 ( m ) , 715 (m)

cm"l ;

Mass s p e c t r u m (70 eV, F i g V-24) : m/e ( r e l a t i v e i n t e n s i t y ) 319 (M"* ,

6 . 1 ) , 231 ( 1 1 . 3 ) , 134 ( 1 7 . 9 ) , 105 ( 1 8 0 . 0 ) , 77 ( 3 8 . 1 ) .

S y n t h e s i s o-f o - I o d o h i p p u r i c Ac i d (XIV)

To 3 . 9 4 g (20 .4 mmol) o-f met hyl h i p p u r a t e was added 35 mL o-f TFA

c o n t a i n i n g 11. 07 g ( 20 . 0 mmol) o-f TTFA, and t h e s t i r r e d m i x t u r e was

re - f l uxed u n d e r N2 -for 22 h o u r s . To t h e h o t s o l u t i o n was added 7 . 7 9

g o-f p o t a s s i u m i o d i d e i n 15 mL of w a t e r , c a u s i n g t h e s o l u t i o n t o

become p u r p l e - b l a c k . A f t e r 15 m i n u t e s , 0 . 1 g of Na2S2Ü5 was

added t o t h e s t i r r e d s o l u t i o n . F i f t e e n m i n u t e s l a t e r t h e dark

s o l u t i o n was r e n d e r e d b a s i c w i t h 4N NaOH, s u c t i o n f i l t e r e d , and t h e

f i l t r a t e e x t r a c t e d wi th CHCI3 . N e u t r a l i z a t i o n of t h e a q u e o u s l a y e r

p r oduc ed a w h i t e p r e c i p i t a t e whi ch was c o l l e c t e d by s u c t i o n

f i l t r a t i o n . The crude p r e c i p i t a t e was d i s s o l v e d in 10% NaHCOg and

upon a c i d i f i c a t i o n d e p o s i t e d w h i t e n e e d l e s of o - i o d o h i p p u r i c a c i d

XIV: mp 172-173°C ( l i t . 20 170OC).

NMR s p e c t r u m (300 MHz, DMSO-d^/TMS, F i g V - 2 5 ) : G 8 . 7 0 ( t ,

J = 5 . 7 8 Hz, 1 H, N-H) , 7 . 8 9 ( d , J = 7 . 5 7 Hz, 1 H, Ar - H) , 7 . 4 6 ( t , J

= 7 . 5 3 Hz, 1 H, A r - H ) , 7 . 3 6 ( d , J = 7 . 3 2 , 1 H, A r - H ) , 7 . 1 8 ( t , J =

7 . 04 Hz, 1 H, A r - H ) , 3 . 8 9 ( d , J = 5 . 6 2 Hz, 2 H, CH2) , 2 . 50

(DMSO-d^) ;

IR s p e c t r u m (KBr, Fig V - 2 6 ) : 3265 ( m ) , 3083 ( m ) , 1740 (m) , 1625 ( s ) ,

1590 (m) , 1555 ( m ) , 1410 ( m ) , 1320 ( w ) , 1228 ( m ) , 1199 (w) , 1178 ( w ) ,

996 ( w ) , 737 (m) cm"^;

Mass s p e c t r u m (70 eV, F i g V-27) : m/e ( r e l a t i v e i n t e n s i t y ) 305 (M'*',

2 6 . 1 ) , 261 ( 1 1 . 1 ) , 260 ( 4 7 . 9 ) , 231 ( 1 0 0 . 0 ) , 203 ( 3 1 . 0 ) , 105 ( 1 2 . 9 ) ,

76 ( 2 2 . 7 ) .

2 7 9S y n t h e s i s o f 3 , 4 - b i s ( f i - A n i s y 1 ) h e x a n e ( XV ) 2 0

H e x e s t r o l (10 g, 38 mmol) was d i s s o l v e d in 10 mL of w a t e r and 75

mL of n - p r o p a n o l . NaOH ( 5 . 1 4 g , 125 mg) was t hen added , and t h e

m i x t u r e was b r o u g h t t o r e f l u x . Then , 14.4 g (114 mmol) of d i me t hy l

s u l f a t e was c a u t i o u s l y added d r o p w i s e , and r e f l u x was c o n t i n u e d f o r

3% h o u r s . The mi lky s o l u t i o n became p a l e y e l l o w , and

p r e c i p i t a t i o n of w h i t e s o l i d f o l l o w e d s h o r t l y . A f t e r c o o l i n g ,

f i l t r a t i o n of t h e cold s o l u t i o n gave 9 . 16 g (83% y i e l d ) of

d i m e t h y l a t e d p r o d u c t XV: mp 142-143°C ( l i t . 15 mp 143-144°C) .

S y n t h e s i s of 3 , 4 - b i s ( 3 - l o d o - £ - a n i s y l ) hexane (XVI)

3 , 4 - b i s ( £ - A n i s y l ) hexane (XV, 3 . 0 g, 10.1 mmol) in 10 mL o f TFA

was added t o 10.92 g ( 20 . 1 mmol) of TTFA in 20 mL of TFA a t -25°C

and was s t i r r e d f o r 15 mi n u t e s ( a b l a c k s o l u t i o n formed i mme d i a t e l y

upon mi x i n g ) . A s o l u t i o n of 7 . 6 7 g of po t a s s i um i o d i d e in 15 mL of

w a t e r was added a l l at o n c e , and t h e r e s u l t i n g m i x t u r e was s t i r r e d

f o r an a d d i t i o n a l 15 m i n u t e s . Na2 S205 ( 3 . 0 g) was added t o

d e s t r o y f r e e i o d i n e and t h e s o l u t i o n was r e n d e r e d b a s i c wi t h 4N

NaOH. Ye l l ow t h a l l i u m i o d i d e was removed v i a s u c t i o n f i l t r a t i o n and

t h e m i x t u r e was r o t a r y e v a p o r a t e d , t h e r e b y a f f o r d i n g an o r a n g e o i l

which p a r t i a l l y s o l i d i f i e d upon s t a n d i n g a t room t e m p e r a t u r e . T h i s

was d i s s o l v e d in CHCI3 and f i l t e r e d t hrough a s h o r t s i l i c a gel

column. E v a p o r a t i o n of t he e l u a n t f o l l o w e d by r e c r y s t a l 1i z a t i o n f rom

hexane a f f o r d e d a w h i t e , c r y s t a l l i n e compound: mp 19 9 . 5°C ( c f .

r e f e r e n c e 3 c , mp 199-200°C) .

i H NMR s p e c t r u m (300 MHz, CDCI3 , F i g V - 2 8 ) : £ 7 . 5 4 ( d , J =

2 . 2 Hz, 1 H, Ar - H) , 7 . 26 (CDCI3) , 7 . 0 5 (dd, J = 8 . 4 Hz, J ' = 2 . 2

Hz, 1 H, Ar - H) , 6 . 17 ( d , J = 8 . 4 Hz, 1 H, A r - H ) , 2 . 41 ( dd , J = 5 . 3

Hz, J ' = 3 . 0 Hz, 1 H, b e n z y l i c - H ) , 1 . 39 ( dqd, J = 13 Hz, J ' = 7 . 3 Hz,

J " = 3 Hz, 1 H, CH ( e t hy l CHg) , 1. 26 ( dqd , J = 13 Hz, J ' = 7 . 3 Hz,

J " = 5 . 3 Hz, 1 H, CH ( e t h y l CH2) , 0 . 5 5 (dd, J = 7 Hz, = 6 . 7 Hz,

3 H, CH3) ;

2 8 0

IR s p e c t r u m (CDCI-a s o l u t i o n c e l l , F i g V-29) : 2950 (m) , 1602 (w) ,

1490 ( 5) , 1445 ( m) , 1405 ( w ) , 1280 ( s ) , 1257 < s ) , 1187 ( m ) , 1050 ( s ) ,

1021 ( m ) , 814 (m) c m" l ;

Mass s p e c t r u m <70 eV, F i g V-30) : m/e ( r e l a t i v e i n t e n s i t y ) 550 (M'*’,

0 . 5 ) , 276 < 1 0 . 3 ) , 275 < 1 0 0 . 0 ) , 274 < 2 1 . 5 ) , 148 <10 . 0 ) .

Anal . C a l c u l a t e d -for C20H24 I 2O2 ! C, 4 4 . 6 6 ; H, 4 . 4 0 .

Found; C, 4 3 . 6 9 ; H, 4 . 3 8 . 3 c

S y n t h e s i s o-f a - < 3 , 4 - D i m e t h o x y p h e n y l ) - ^ - n i t r o e t h e n e <XVII)

3 , 4 -Di me t hoxybe nza l dehyde <10 g , 6 0 . 2 mmol), ammonium a c e t a t e

<4.0 9 , 5 1 . 9 mmol) , 5 mL <81. 9 mmol) o-f n i t r o m e t h a n e , and 40 mL o-f

g l a c i a l a c e t i c a c i d were g e n t l y re - f l uxed -for 1% h o u r s . Upon

c o o l i n g t o room t e m p e r a t u r e , p r e c i p i t a t i o n o-f y e l l o w c r y s t a l s

e n s u e d . R e c r y s t a l 1 i z a t i o n -from e t h a n o l gave 10.23 g <81% y i e l d ) o-f

ye l l o w c r y s t a l 1 i ne XVII : mp 1 4 1 - 142°C < l i t . ^ ^ ^ m p 140-142°C) .

S y n t h e s i s o-f a - <3 , 4 - D i me t h o x y p h e n y l ) - P - n i t r o e t h a n e <XVIII)

To 12 9 <57.4 mmol ) o-f a - <3 , 4 - d i me t h o x y p h e n y l ) - P - n i t r 0-

e t h e n e <XVII) in 300 mL of v i g o r o u s l y s t i r r e d a c e t o n i t r i l e a t 0°C

was added dropwi se a s o l u t i o n of 10.92 9 <288.6 mmol) of sodium

b o r o h y d r i d e i n 225 mL of H2O c o n t a i n i n g 1% mL of a 40% sodium

h y d r o x i d e s o l u t i o n . ^ 7 c The pH was k e p t between 3 and 6 by a d d i t i o n

of 3N HCl . Af t e r an a d d i t i o n a l 2 h o u r s a t 0°C, t h e m i x t u r e was

d i l u t e d wi t h 200 mL of H2 O and e x t r a c t e d t h o r o u g h l y wi t h

d i c h l o r o m e t h a n e . The o r g a n i c l a y e r s were combined, d r i e d over

MgS0 4 , and p a r t i a l 1 y e v a p o r a t e d . Upon c o o l i n g , 3 . 61 g of u n r e a c t e d

XVII p r e c i p i t a t e d f rom t h e m i x t u r e and was s e p a r a t e d by s u c t i o n

f i l t r a t i o n . F u r t h e r e v a p o r a t i o n a f f o r d e d an o r a nge s e m i s o l i d o i l

which was vacuum d i s t i l l e d <99°C, 0 . 6 t o r r ; l i t . 139- 140°C,

0.1 t o r r ) p rod u c i n g a ye l l ow s e m i s o l i d mass which was r e c r y s t a l l i z e d

f rom E t 20 / p e n t a n e : mp 50-52°C <1i t . l ^e mp 51-52°C) .

2 8 1

S y n t h e s i s o-f 3 , 4 - D i m e t h o x y p h e n e t h y l a m i n e ( X I X )

To a 1 l i t e r round b o t t o m -f lask equ i pped wi t h a CaCl2 d r y i n g

t ube and c o n t a i n i n g 13.7 g (361 mmol) o-f LAH in 300 mL o-f d r y THF was

added 25 g (120 mmol) o-f a - ( 3 , 4 - d i m e t h o x y p h e n y l ) - P - n i t r o e t h e n e

(XVII) i n 200 mL o-f d ry THF d r o p w i s e . The r e s u l t i n g m i x t u r e was

re - f l uxed -for 2 h o u r s , c o o l e d t o room t e m p e r a t u r e , and 41 g o-f wa t e r

was added d r o p wi s e . The s o l u t i o n was - f i l t e r e d and t h e o r g a n i c l a y e r

was s e p a r a t e d , d r i e d over MgSO^, and c o n c e n t r a t e d i n v a c u o t o an

o r a n g e o i l . Vacuum d i s t i l l a t i o n o-f t h e o i l a f f o r d e d 17.57 9 (BIX

y i e l d ) o f p a l e ye l l ow l i q u i d ; 99°C, 0 . 6 t o r r ( l i t . 140°C,

2.0 t o r r ) .

S y n t h e s i s of N - t r i f l u o r o a c e t y l - 3 , 4 - d i m e t h o x y p h e n e t h y l a m i n e (XX)

Us i n g s t a n d a r d p r o c e d u r e s ,18 t r i f l u o r o a c e t i c a n h y d r i d e (11 . 07

g, 5 2 . 7 mmol) and 250 mL of benzene were p l a c e d in a dry 500 mL

3- neck r o u n d bottom f l a s k e q u i p p e d wi t h a CaCl2 d r y i n g t u b e . A f t e r

a d d i t i o n of 9 . 63 g ( 5 3 . 1 mmol) of 3 , 4 - d i m e t h o x y p h e n e t h y l a m i n e (XIX)

in 25 mL of b e n z e n e , t h e m i x t u r e was r e f l u x e d f o r 1 hour and was

a l l o w e d t o s t i r o v e r n i g h t . The r e s u l t i n g da r k o r a n g e m i x t u r e was

e x t r a c t e d s e v e r a l t i me s wi t h 10% b i c a r b o n a t e ( c a u s i n g t h e s o l u t i o n to

become y e l l o w ) , washed w i t h w a t e r , d r i e d ove r MgSO^, and r o t a r y

e v a p o r a t e d t o a dark brown l i q u i d which formed 9 . 2 3 g (63% y i e l d ) of

s o f t g l a s s y c r y s t a l s f rom p e n t a n e : mp 8 3 - 8 4 . 5°C.

iH NMR s p ec t r u m (300 MHz, CDCI3 , F i g V- 3 1 ) : i 6 . 8 3 ( d , J =

8 . 1 Hz, 1 H, o-H) , 6 . 7 2 ( d d , J = 8 . 0 Hz, J ' = 2 . 1 Hz, 1 H, m- H) , 6 . 69

( d , J = 2 . 2 Hz, 1 H, o - H ) , 6 . 4 7 ( b r , 1 H, N - H ) , 3 . 8 6 ( s , 6 H,

OCH3) , 3 . 5 9 ( d t , J = 13. 2 Hz, J ' = 6 . 9 Hz, 2 H, CH2N ) , 2 . 8 3 ( t , J

= 6 . 9 H z , 2 H, CH2A r ) ;

IR s p e c t r u m (CCI4 s o l u t i o n c e l l . F i g V - 3 2 ) : 3347 ( w ) , 2940 ( w ) ,

1733 ( s ) , 1510 ( m) , 1464 ( m ) , 1262 ( s ) , 1240 ( s ) , 1211 ( s ) , 1159

( v s ) , 1033 (m) cm"^;

Mass s p e c t r u m (70 eV, F i g V-33) : m/ e ( r e l a t i v e i n t e n s i t y ) 278 (M -t-

2 8 2

7 . 8 ) , 277 <M+, 5 7 . 1 ) , 164 ( 4 2 . 9 ) , 151 ( 1 0 0 . 0 ) .

An e l e m e n t a l a n a l y s i s o-f t h i s new compound h a s n o t been per-formed.

In S i t u Thai 1 a t i o n - i o d i n a t i o n o-f

N - t r i-f 1 u o r o a c e t y l - 3 , 4 - d i m e t h o x y p h e n e t h y l amine (XX)

To 3 . 9 2 9 ( 7 . 2 mmol) o-f TTFA i n 2 mL o-f TFA a t -25°C was added

d r o p w i s e w i t h s t i r r i n g 2 . 0 g ( 7 . 2 mmol) o-f N - t r i - f l u o r o a c e t y l - 3 , 4 - d i ­

me t h o x y p h e n e t h y l amine (XX) in 10 mL o-f THF and the r e s u l t i n g b l a c k

m i x t u r e was s t i r r e d -for 25 m i n u t e s . P o t a s s i u m i o d i d e ( 2 . 7 5 g , 16.6

mmol) i n 7 mL o-f wa t e r was added a l l a t o nce , and t h e s t i r r i n g was

c o n t i n u e d -for an a d d i t i o n a l 15 m i n u t e s a f t e r t h e r e a c t i o n had r e a c h e d

room t e m p e r a t u r e . Na2S2Û5 ( 1.0 g) was added and t h e s t i r r i n g

was c o n t i n u e d -for 15 m i n u t e s . The s o l u t i o n was r e n d e r e d b a s i c w i t h

4N NaOH, d i l u t e d wi t h c h l o r o f o r m , and s u c t i o n f i l t e r e d . The

c h l o r o f o r m l a y e r was d r i e d ove r an h y d r o u s M9SO4 , f i l t e r e d , and

r o t a r y e v a p o r a t e d t o a f f o r d a w h i t e s o l i d wh i c h , on t he b a s i s of NMR,

IR, and mass s p e c t r a , i s b e l i e v e d t o be

2 , 2 ' - d i - ( N - t r i f 1u o r o a c e t y l a m i n o e t h y l ) - 4 , 4 ' , 5 , 5 ' - t e t r a m e t h o x y b i p h e n y l

( X X I I ) : mp 204-206OC.

^H NMR s p e c t r u m (300 MHz, CDCI3 , F i g V - 3 5 ) : & 7 . 2 6 (CDCI3 ) ,

6 . 7 6 ( s , 2 H, Ar - H) , 6 . 67 ( s , 2 H, A r - H ) , 6 . 4 5 ( b t , J = 6 . 4 Hz, 2 H,

N - H ) , 3 . 9 2 ( s , 6 H, OCH3) , 3 . 8 5 ( s , 6 H, OCH3) , 3 . 41 (d d d , J =

12.05 Hz, J ' = 6 . 5 Hz, J " = 6 . 3 Hz, 4 H, NCH2) , 2 . 6 8 ( d t , J = 13.5

Hz, J ' = 6 . 0 Hz, 2 H, ArC-H) , 2 . 5 9 ( d t , J = 13.5 Hz, J ' = 6 . 0 Hz, 2

H, A r C - H ) ;

IR s p e c t r u m (KBr. F i g V - 3 6 ) : 3320 ( s ) , 3121 ( w ) , 2950 (m) , 1717 ( s ) ,

1610 ( m ) , 1567 ( m) , 1507 ( s ) , 1460 ( m ) , 1253 ( s > , 1180 ( b s ) , 1113

( m ) , 1040 ( m ) , 863 ( m ) , 789 (m) , 722 (m) c m " 1 ;

Mass s p e c t r u m (70 eV, F i g V - 3 7 ) ; m/ e ( r e l a t i v e i n t e n s i t y ) 552

( 1 7 . 7 ) , 313 ( 1 2 . 1 ) , 300 ( 2 2 . 4 ) , 299 ( 1 0 0 . 0 ) , 298 ( 11.1) , 286 ( 2 6 . 2 ) ,

285 ( 1 0 . 5 ) , 282 ( 2 1 . 4 ) , 271 ( 1 0 . 7 ) , 268 ( 1 0 . 6 ) , 212 ( 1 3 . 3 ) , 140

( 1 2 . 7 ) , 126 ( 2 9 . 6 ) , 78 ( 1 9 . 7 ) , 69 ( 3 4 . 6 ) .

2 8 3

As s t a t e d in t h e d i s c u s s i o n ( v i de s u p r a ) , G C/MS o-f t h e p r o d u c t

r e s u l t i n g -from t h e in s i t u t h a l l a t i o n - i o d i n a t i o n o-f XX r e v e a l e d a

minor component o-f m o l e c u l a r we i g h t 403 which i s t he same a s t h a t of

t h e a n t i c i p a t e d i odo compound XXI.

Mass s p e c t r u m of XXI <70 eV, Fig V-34) : m./e ( r e l a t i v e i n t e n s i t y ) 403

<M+, 2 . 8 ) , 277 ( 2 3 . 0 ) , 181 ( 1 4 . 9 ) , 180 ( 1 0 . 9 ) , 164 ( 4 7 . 2 ) , 153

( 1 0 . 8 ) , 152 ( 8 5 . 9 ) , 151 ( 100 . 0 ) , 137 ( 2 9 . 1 ) , 135 ( 1 0 . 3 ) , 121 ( 1 1 . 8 ) ,

109 ( 1 2 . 3 ) , 108 ( 1 0 . 7 ) , 107 ( 2 7 . 9 ) , 106 ( 1 5 . 8 ) , 105 ( 1 3 . 7 ) , 97

( 1 8 . 4 ) , 95 ( 1 4 . 3 ) , 91 ( 1 9 . 7 ) , 87 ( 1 0 . 0 ) , 85 ( 5 8 . 5 ) , 83 ( 8 8 . 2 ) , 81

( 1 1 . 7 ) , 79 ( 1 5 . 7 ) , 78 ( 2 0 . 7 ) , 77 ( 2 1 . 4 ) , 71 ( 1 2 . 7 ) , 69 ( 5 0 . 4 ) , 65

( 1 7 . 7 ) , 57 ( 1 9 . 6 ) , 55 ( 1 5 . 2 ) , 51 ( 1 0 . 1) .

2 8 4

BIBLIOGRAPHY

1. (a) Mc Ki l l o p , A . : T a y l o r , E. C. Adv. O r o a n o m e t a l . Chem. 1973.11, 147. (b) T a y l o r , E . C . : Mc Ki l l o p . a 7 Ac c . Chem. R e s .~T770 .37 338. (c) McKi l l op . A . ; T a y l o r , E. C. Chemi s t r y in B r i t a i nT973 . 9 , 4 . (d) McKi l lop, A . ; T a y l o r , E. C. Endeavor 1976. 35.8 8 . ( e ) La r ock , R. C . ; F e l l o w s , C. J . Oro. Cheml 195B. 45.363.

2 . Deacon, G. B. ; Tuna l e y , D . ; Smi t h , R. N. M. J . O r o a n o me t a l . Chem. 1 978 . 144 . 111.

3 . (a) Mc Ki l l o p , A . ; Fowler , J . S . ; Z e l e s k o , M. J . ; Hu n t , J . D . ;T a y l o r . E. C. T e t r a h e d r o n L e t t . 1969 . 2423. (b) McKi l l op , A . . ;F o wl e r , J . S. : ZelesKo, M. J . ; H u n t , J . D. ; T a y l o r , E. C . : K i e n z l e , F . : McGi11i v a r y , G. J . Am. Chem. S o c . 1971. 9 3 , 4841, 4845. (c ) G i l l i l a n d , D. L . : Ba s ma d j i a n , U. P . ; Marchand, A.P . ; H i n k l e y , G. H . ; Ea r l y wi n e , A. D . ; I c e , R. D. J . R a d i o a n a l . Chem. 198 1 . 107.

4 . McKi l l o p , A . ; Hunt , J . D. : T a y l o r , E . C . J . O r o a n o me t a l . Chem. 1970. 24 , 77.

5 . (a) Maher , J . P . ; Evans, D. F . J . Chem. S o c . 1965■ 637.(b) H i n t o n , J . F . ; Br i ggs , R. W. J . Maon. Re s o n ■ 1976. 22, 447.

6 . K a g a r i s e , R. E. J . Chem. R h y s . 1957 . 27, 519.

7 . B a i l l i e , M. J . ; Brown, D. H. ; Moss , K. C. ; S h a r p e , D. W. A. ^ Chem. S o c . 1968. 3110.

8 . T a y l o r , E. C. ; Ki enz l e , F . ; McKi l l o p , A. Oro. S y n . 1976. 5 5 ,70.

9 . Mc Ki l l o p . A . ; : Fowl er , J . S . : Z e l e s k o , M. J . ; Hunt , J . D . ; T a y l o r , E. C. ; McGi11i v a r y , G. T e t r a h e d r o n L e t t . 1969. 2427.

10. De acon , G. B . ; Tuna l ey , D. J . F l u o r i n e Chem. 1977. 10. 177.

11. S h e e h a n , J . C. J . Am. Chem. S o c . 1955 . 7 7 . 1067.

12. ( a) S h e e h a n , J . C . ; e t a l . J . P r o . Chem. 1961, 26, 2525.<b) S h e e h a n , J . C . ; P r e s t o n . J . J . Am. Chem. S o c . 1965. 8 7 .2492.

13. ( a ) O n d e t t i , M. A. : Thomas, P. L. J . Am. Chem. S o c . 1965, 87,4373. <b> Hoare , D. G . ; Koshland J r . . D. E . J . BTo. Chem.1967, 2 4 2 , 2447. <c) Sheehan, J . C . ; Hl avka . J . J . J . Pro .

üï ïëm. T7ÏÏ6. 21, 439

14. " Ba s i c P r i n c i p l e s o-f Organic C h e m i s t r y " ; 2nd. ed . , R o b e r t s , J .D . , C a s e r i o , M. C . , E d s . ; W. A. B e n j a m i n , I n c . : Menlo Pa r k ,C a . , 1977; p 1239.

15. P r a t t , R. J . ; J e n s e n , E. V . J . Am ■ Chem. S o c . 1956. 7 8 . 4430.

16. T a y l o r , E. C. ; Andrade, J . G. ; R a i l , G. J . H. ; McKi l l op, A.

17.

2 8 5

J . Am. Chem. S o c . 1 9 8 0 . 1 0 2 , 6513.

( a) Worral 1 , D. E. Oro. S v n . 1929 . 9 , 6 6 . (b) Rai - ford, L. C. ; F o x . D. E. J . Oro. C h e m . T 9 4 4 . 9 , 170. ( c ) Me y e r s , A. I . ; S i r c a r , J . C. J . 6'rQT~ChemT~T 9 6 7 . 3 2 , 4 1 3 4 . <d) Cann, P. F. ; S t i r l i n g , C. J . M. J . Chem. “Soc . Perki n T r a n s . 1 9 7 4 . 2 , 817.( e ) S e e b a c h , D . : Henni no. R . : Bonnerman. J . Chem. B e r . 1979,1 12 . 23 4 . ( f ) P a u l , B . ; Anand, N. J . S c i . I n d . Res earch l 9 5 8 .T7H. 219 .

18. V o g e l , A. I . " P r a c t i c a l Organic C h e m i s t r y " ; 3rd e d . , V o g e l , A. I . , E d . , 1956; p 540 .

19. Mc Ki l l o p , A . ; T u r r e l l , A. G . ; T a y l o r , E. C. J . Oro. Chem. 19 7 7 , 4 2 . 76 4 .

20 . N o v e l l o , N. J . : Miriam, S. R . ; S h e r wi n , C. P. J . B i o l . Chem. 1926 . 6 7 , 5 6 3 .

PART VI

SYNTHESIS AND NUCLEAR MAGNETIC RESONANCE STUDY OF A SERIES OF

1 . 4 . 4 A . 8A-TETRAHYDR0-END0- 1 . 4-METHAN0NAPHTHALENE-5. 8 -DIONES AND OF

P E N T A C Y C L O [5 .4 .0 .0 2 ,6 .0 3 ,1 0 . 0 5 , 9 ] UNDECANE-8 , 1 1-DIONES 1

I n t r o d u c t i o n

D i e l s - A l d e r c y c l o a d d i t i o n o-f an a p p r o p r i a t e l y s u b s t i t u t e d

c y c l o p e n t a d i e n e ( l a - c ) t o an a p p r o p r i a t e l y s u b s t i t u t e d f i - b e n z o q u i n o n e

( I l a - c ) - fo l l owed by p h o t o c y c l i z a t i o n o-f t h e r e s u l t i n g endo c y c l o a d -

duc t ( I I I a - d ) was employed t o s y n t h e s i z e t h e f o l l o w i n g s e r i e s of

p e n t a c y c l 0 1 5 . 4 . 0 . 0 2 , 6 . 0 3 , 10 . 0 5 , 9 ] y r , d e c a n e - 8 , 1 1- d i o n e s :

u n s u b s t i t u t e d ( I V a ) , and s u b s t i t u t e d compounds 1- me t h y l ( I V b ) ,

2 - me t h y l ( I V c ) , and 3 - met hy l ( I V d ) . In a d d i t i o n , a h i g h r e s o l u t i o n

NMR s t u d y o f t h e s e compounds was c o m p l e t e d .

R e s u l t s and D i s c u s s i o n

As p a r t o f a c o n t i n u i n g s t u d y o f t h e s y n t h e s i s 2 (Scheme V I - 1 )

and c h e m i s t r y 2 - 7 o f s u b s t i t u t e d p e n t a c y c l o E 5 . 4 . 0 . 0 2 , 6 . 0 3 , 10

0 5 , 9 ] u n d e c a n e s , the s y n t h e s i s and c h a r a c t e r i z a t i o n o f u n s u b s t i ­

t u t e d , 1- m e t h y l , 2 - m e t h y l , and 3 - me t hy l p e n t a c y c l o E 5 . 4 . 0 . 0 2 , 6 . -

g 3 , 1 0 . 0 5 , 9 ] und e c a n e - 8 , 1 1 - d i o n e s ( compounds IVa-IVd) was

u n d e r t a k e n . In a l l c a s e s t h e b a s i c s y n t h e t i c approach i n v o l v e s

D i e l s - A l d e r c y c l o a d d i t i o n o f t h e a p p r o p r i a t e l y s u b s t i t u t e d c y c l o p e n t a ­

d i e n e ( l a - c ) t o an a p p r o p r i a t e l y s u b s t i t u t e d g - b e n z o q u i n o n e ( I l a and

l i b ) f o l l o w e d by i n t r a m o l e c u l a r 1 2 -i- 2 ] pho t o c y c l i z a t i o n o f t he

r e s u l t i n g endo c y c l o a d d u c t ( I V a - d ) . 2

The u n s u b s t i t u t e d i somer I l i a was o b t a i n e d p r e v i o u s l y ® by

2 8 6

2 8 7

SCHEME V I - 1

S y n t h e s i s o-f t h e s e r i e s o-f P e n t a c y c 1 o [ 5 . 4 . 0 . 0 2 » o , 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e s I V a - I V d .

• < >

%I l a R3 = H I l b R3 = CH3

I a R1 — CH3 Ib R2 = CH3

I l i a R i

I l l b R3 I I I c Ri I l l d R2

hypyrex/ EtüAc

IVa Ri IVb R3 IVc Ri IVd R2

HCH3CH3CH3

D i e l s - A l d e r a d d i t i o n o-f c y c l o p e n t a d i e n e t o £ - b e n z o q u i n o n e ( I l a ) . The

f a c t t h a t t h i s D i e l s - A l d e r r e a c t i o n p r o c e e d s w i t h endo r e g i o s p e c i -

f i c i t y has been v e r i f i e d by the f a c i l e i n t r a m o l e c u l a r p h o t o c y c l i -

z a t i o n of I l i a t o IVa. ^

The 6 -me t hy l i somer ( I l l b ) o b t a i n e d v i a D i e l s - A l d e r a d d i t i o n of

c y c l o p e n t a d i e n e t o t o i uqui none ( l i b ) * ® i s a s i n g l e , i s o m e r i c a l 1 y

pure s u b s t a n c e . The endo r e g i o s p e c i f i c i t y o f t h i s r e a c t i o n was a l s o

v e r i f i e d by t h e f a c i l e i n t r a m o l e c u l a r p h o t o c y c l i z a t i o n of I l l b to

IVb. I n t e r e s t i n g l y , compound I l l b c o u l d not be i n d u c e d to undergo

f u r t h e r D i e l s - A l d e r a d d i t i o n t o c y c l o p e n t a d i e n e even when I l l b was

r e f l u x e d o v e r n i g h t w i t h e x c e s s c y c l o p e n t a d i e n e in b e n z e n e s o l u t i o n .

The r e m a i n i n g two m o n o m e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . -

0 5 ) 9 ] u n d e c a n e - 8 , 1 1 - d i o n e s (IVc and IVd) we r e p r e p a r e d v i a a s i m i l a r

s e q u e n c e s t a r t i n g w i t h t h e D i e l s - A l d e r c y c l o a d d i t i o n of m e t h y l c y c l 0 -

p e n t a d i e n e t o g - b e n z o q u i n o n e . Thermal c r a c k i n g o f t he m e t h y l c y c l o -

p e n t a d i e n e di mer a f f o r d s a m i x t u r e o f 1- m e t h y l - and 2 - m e t h y l c y c l 0 -

p e n t a d i e n e s . 12 D i e l s - A l d e r c y c l o a d d i t i o n o f t h e d i e n e mi x t u r e to

I l a a f f o r d s a m i x t u r e o f a d d u c t s I I I c and 11 Id ( p r o d u c t r a t i o c a .

4 5 : 5 5 ) . The m i x t u r e of i s o m e r i c a d d u c t s I I I c and II Id c o u l d be

2 8 8

s e p a r a t e d c o n v e n i e n t l y v i a - f r a c t i o n a l r e c r y s t a l 1 i z a t i on from

met hanol . That each o-f t h e s e i s o m e r i c a dduc t s p o s s e s s e s t h e endo

c o n f i g u r a t i o n was shown by t h e i r r e s p e c t i v e f a c i l e i n t r a m o l e c u l a r

p h o t o c y c l i z a t i o n s to IVc and IVd.

As p a r t o f t h i s s t u d y , a s i n g l e - c r y s t a l X- ray s t r u c t u r a l a n a l y s i s

on IVd was perf ormed. A p e r s p e c t i v e v i e w of IVd i s shown i n Fi g

V I - 1 . Much of the s t r a i n i n h e r e n t i n t h i s r i n g s y s t e m i s

accommodated by a 1engh t e n i n g o f t h e C2 -Cy and C4 -C5 bonds ,

[ b o t h 1 , 5 8 9 (2) S i . The c o r r e s p o n d i n g car bon- c ar bon bonds in a

c l o s e l y r e l a t e d po l y c y c l i c s y s t e m s t u d i e d by Mehta and co-workers^*^

have an a v e r a g e l e n g t h of 1 . 59 S .

With t he e x c e p t i o n o f t h e e x o c y c l i c atoms on Cj and Cg, the

compound woul d have a mi r r o r p l a n e b i s e c t i n g t h e Co- Cy,

C4 - C5 , and C9 - C 10 bonds . T h i s mi rror i s a p p r o x i m a t e l y

p r e s e n t in t he s o l i d s t a t e . Bonds e q u i v a l e n t by mi r r o r symmetry show

a maximum v a r i a t i o n in bond l e n g t h o f 40' for bonds i n v o l v i n g Cj

or Cg. Howe-ver, mi rror e q u i v a l e n t bonds betwes'- atoms not bonded

to Cl or Cg have d i f f e r e n c e s l e s s than o'. Bond a n g l e s show a

s i m i l a r mi r r o r e q u i v a l e n c e , w i t h a n g l e s between atoms f u r t h e s t from

C1 and Cg h a v i n g t h e s m a l l e s t d i f f e r e n c e s .

The two f i ve - membered r i n g s t h a t c o n t a i n C i , have a n e a r l y

i d e a l e n v e l o p e c onf or mat i on as shown by t he v a l u e s o f the asymmetry

p a r a me t e r s 15 jCs<2-7) = 0 . 9 0 ° , -4 5 ( 9 - 10) = 0 . ? £ ° . In

c o n t r a s t , t h e conf or mat i on of t h e f i ve - me mbe re d r i n g s wi t h carbonyl

gr oups i s h i g h l y d i s t o r t e d [ ^ 8 5 ( 4 - 10) = 1 1 . 2 ° , ^C2 ( 2 - 3 ) =

1 8 . 9 ° , and ^Cs ( 5 - 9 ) = 1 2 . 9 ° , -482(6-7) = 2 8 . 0 ° ] . The

f our- membered r i n g i s p l anar w i t h a maximum atorriic d i s p l a c e m e n t of

8 . 0 0 1 1 ( 12) A.

The C1- C 12 bond [ 1 . 519 (2) i s c o n s i d e r a b l y s h o r t e r than

t h e normal 1 . 54 T h i s s h o r t e n i n g can be e x p l a i n e d in terrris o f a

h y b r i d i z a t i o n e f f e c t at C1 . The s t r a i n e d r i n g s y s t e m i n c r e a s e s the

C i 2 ~ Ci - Ci bond a n g l e s beyond t he normal 1 0 9 . 5 ° Ei = 2 ,

1 1 4 . 0 6 ( 1 1 ) ° ; i = 10, 115 . 58 ( 1 0 ) ° ; i = 11, 118 . 34 ( 1 1 ) ° ] .

2 8 9

FI GURE V I - 1

P e r s p e c t i v e Vi ew of IVd. Carbon and oxygen atoms are shown as 50%

P r o b a b i l i t y e l l i p s o i d s ( o x y g e ns ar e s h a d e d ) . Hydrogens are

d i s p l a y e d a s a r b i t r a r y s p h e r e s . E s t i m a t e d s t andar d d e v i a t i o n s

of bond l e n g t h s are ± 0 . 0 0 2 A.

2 9 0

T h i s s u g g e s t s an i n c r e a s e i n t he p c h a r a c t e r o-f t h e m o l e c u l a r

o r b i t a l s d i r e c t e d toward t h e r i n g s y s t e m and an i n c r e a s e in t h e s

c h a r a c t e r o-f t h e o r b i t a l d i r e c t e d t oward C \ 2 -

There a r e t h r e e s h o r t i n t e r m o l e c u l a r c o n t a c t s : O g - - -H

- i ^ x , % - y , z - % ) 2 . 4 8 ( 2 ) &, Og- - -Hg < - x , - y , - z )

2 . 5 5 <2) and O3 " <- x , - y , - 2 ) 2 . 5 9 ( 2 ) 3 .

Expe r i me nt a l

M e l t i n g p o i n t s are u n c o r r e c t e d . A l l h i gh r e s o l u t i o n NMR s p e c t r a

were r e c o r d e d on a Varian XL-300 s p e c t r o m e t e r . P r o t o n , HOMCOR, and

H0M2DJ s p e c t r a we r e r e c o r d a t 300 MHz, and HETCOR s p e c t r a we r e

r e c o r d e d a t 300 MHz ( i n t h e p r o t o n domain) and at 75 MHz ( i n t he

13c domain) . S t a c ke d p l o t s of s p i n e c ho and 13q s p e c t r a we r e

r e c o r d e d on an IBM/Bruker NR80 s p e c t r o m e t e r a t 20 MHz. The s i g n a l s

in a l l p r o t o n s p e c t r a are r e p o r t e d in p a r t s per m i l l i o n (£)

d o w n f i e l d f rom i n t e r n a l t e t r a me t h y l s i 1a n e . S i g n a l s in a l l 13[ and

s p i n e c h o s p e c t r a are r e p o r t e d i n p a r t s per m i l l i o n (£) r e l a t i v e

to t h e c e n t r a l l i n e of t h e d e u t e r i o c h l o r o f o r m t r i p l e t . A s s i g n m e n t s

of t h e c a r b o n y l 13[ chemi cal s h i f t s o f compounds ' b ' through ' d ' in

bot h s e r i e s are t e n t a t i v e . I n f r a r e d s p e c t r a were o b t a i n e d on

Pe r k i n - E l me r Model 1330 and Beckman Model 4250 i n f r a r e d s p e c t r o p h o ­

t o m e t e r s . Mass s p e c t r a we r e o b t a i n e d on a He wl e t t - P a c k a r d Model

59858 mas s s p e c t r o m e t e r (70 e V ) . El e me nt a l m i c r o a n a l y s e s were

per f ormed by G a l b r a i t h L a b o r a t o r i e s , I n c . , K n o x v i l l e , Tn.

Scheme V I - 2 i l l u s t r a t e s the number i ng schemes us e d in a l l NMR

s p e c t r a d i s c u s s e d in t he Ex p e r i me n t a l s e c t i o n and in T a b l e s V I - 6

through V I - 1 3 . Thes e s chemes d i f f e r from t h a t which was i l l u s t r a t e d

e a r l i e r i n F i g VI - 1 dur i ng t he d i s c u s s i o n of the X- r ay c r y s t a l

s t r u c t u r e o f c a g e p h o t o l y s i s product IVd.

Chemical s h i f t a s s i g n me n t s o f s yn and a n t i Hy p r o t o n s o f t h e

D i e l s A l d e r adduct s e r i e s o f compounds ( l l l a - I I I d ) were p r i m a r i l y

d e t e r mi n e d by t h e l ong r a ng e v i n y l c o u p l i n g between Hyg and v i n y l

2 9 1

SCHEME V I - 2

Numbering Schemes Used in the D i s c u s s i o n o-f a l l NMR S p e c t r a in the

Ex p e r i me n t a l S e c t i o n and in T a b l e s V I - 6 t hrough V I - 1 3 .

(a) D i e l s Al de r a d d u c t s I l i a t hr ough I l l d .

I l i a : R1-R3 = H

I l l b : R2 & R3 = H, Rl = CH3 .

I I I c : Rl & R3 = H, R2 = CH3 .

I l l d : Rl & R2 = H, R3 = CH3 .

R

R

( b ) P h o t o l y s i s p r o d u c t s I V a t h r o u g h I V d .

IVa : R 1- R 3 = H .

IVb: R2 & R3 = H, Rj = CH3 .

I V c : Ri & R3 = H, R2 = CH3 .

IVd. Ri & R2 = H, R3 = CH3 .

p r o t o n s H2 and H3 ( s e e Scheme V I - 2 a ) . 1 6 The AB p a t t e r n o-f

Hps and i s e a s i l y i d e n t i f i e d and f a r u p f i e l d . The general

s e q u e n c e o f p r o t o n as s i gnme nt was a s f o l l o w s : ( 1) d e c o u p l i n g of

H9 5 and Hça r e a d i l y i d e n t i f i e s b r i d g e h e a d p r o t o n s H3 and H5

and c o n f i r m a t i o n i s prov i ded upon d e c o u p l i n g v i n y l i c H2 and H3 ;

(2) d e c o u p l i n g of H3 and H5 c o n f i r m s t h e p o s i t i o n of H4 j and

2 9 2

Hgai ( 3 ) p r o c e s s o-f e l i m i n a t i o n l e a v e s and H7 .

I d e n t i f i c a t i o n o f t h e p r o t o n s o f I l l b - I I I d f o l l o w s a s i m i l a r s e q u e n c e

w i t h m o d i f i c a t i o n s for each compound whi ch are n e c e s s a r y b e c a u s e of

t h e l o s s o f mo l e c u l a r symmetry due t o methyl s u b s t i t u t i o n . The

2 - d i m e n s i o n a l NMR s p e c t r a were a l s o us ed as an a i d in s i g n a l

i d e n t i f i c a t i o n .

The g e n e r a l s equence o f s t e p s us ed to a s s i g n i n d i v i d u a l

r e s o n a n c e s f o r compounds IVb-IVd was as f o l l o w s : <1) t h e AB p a t t e r n

o f p r o t o n s Hqg and i s e a s i l y i d e n t i f i e d and f a r u p f i e l d ; ( 2 )

d e c o u p l i n g o f and H^a r e s u l t s in major c h a n g e s in p r o t o n s

H3 and H5 ; ( 3 ) d e c o u p l i n g o f H3 and H5 i d e n t i f i e s t h e group

o f p r o t o n s whi ch i n c l u d e s H2 , , Hy, and H10 but d o e s not

i d e n t i f y i n d i v i d u a l r e s o n a n c e s ; <4> d e c o u p l i n g o f any one o f the

l a t t e r f o u r p r o t o n s r e s u l t s in a change in Hj and H7 , but

d e c o u p l i n g o f H2 and p r o d u c e s t h e g r e a t e s t change i n Hj and

H7 b e c a u s e of a l a r g e v i c i n a l c o u p l i n g and two 4 - bond c o u p l i n g

pat hways ( e . g . , v i a C2 and v i a C7 ) ; ( 5) i d e n t i f i ­

c a t i o n o f Hqs was a c c o mp l i s h e d by t he d e c o u p l i n g o f Hi and H7

[ a s i m i l a r r a r e 5-bond c o u p l i n g h a s been obs e r ve d in c age compounds

o f c o mp a r a b l e s t r u c t u r e ( c f . F i g VI - 2 ) 1 17; (<5> 2 - D i m e n s i o n a l NMR

was a l s o e x t e n s i v e l y used i n making t h e s e proton a s s i g n m e n t s .

FIGURE V I - 2

Examples o f 5-Bond Long-Range I r- I h C o u p l i n g . ( 17)

H H

V (J = 2 Hz) VI (J = 2 . 3 Hz)

2 9 3

1 . 4 . 4 a . 8 a - T e t r a h v d P O - e n d o - l . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

( I l i a ) . S y n t h e s i s o-f I l i a was a c c o m p l i s h e d by us i ng t h e method

p r e v i o u s l y r e p o r t e d in t h e l i t e r a t u r e . 8

NMR s p e c t r u m ( 3 0 0 MHz, CDCI3 , F i g V I - 3 ) : & 6 . 5 8 ( s , 2 H ,

H d , ? ) , 6 . 0 6 ( d d , J2 C3 I - 1I 4 ] = J2 C3 I - 4 C1 3 = 1*9 Hz, 2 H,

H 2 ,3 > i 3 . 5 4 (m, J l [ 4 ] - 8 a [ 4 a ] = 4 . 0 , J i [ 4 ] - 2 [ 3 ] = 1 ' ? ,

J l [ 4 ] - 3 [ 2 ] = 1 ' 9 , J l [ 4 ] - 9 a = I - ? , J l [ 4 ] - 9 s = 1- 8 Hz, 2 H,

H i , 4 ) , 3 . 2 4 ( d , J 4 a C 8 a ] - 4 [ l ] = 4 . 0 Hz, 2 H, H4a, 8a' i 1 - 5 5 ( ddd,

J ? a - 9 s = 8 . 7 , J p a - l = 1 . 9 , J ? a - 4 = 1 - 9 Hz, 1 H, H ? a ) , 1 . 4 5

(ddd, J y s - 9 a = 8 . 7 , J y g - i = 1 . 8 , J 9 S - 4 = 1 . 8 Hz, 1 H, Hpg);

IR spect rum (KBr, F i g V I - 4 ) : 3325 ( w ) , 3070 ( m ) , 3040 (m) , 2992 ( s ) ,

2960 ( m ) , 29 3 8 ( m ) , 2882 (w) , 1667 ( v s ) , 1607 ( s ) , 1390 (m) , 1338

(m) , 1300 ( s ) , 1282 ( s ) , 1235 ( s ) , 1142 (m) , 1067 ( m ) , 1000 ( w ) , 970

(m) , 917 (m) , 872 ( m ) , 853 (m), 728 ( m ) , 710 ( w) , 698 (w) cm"l;

Mass spec t rum (70 eV, Fig VI - 5 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 175 (M

1, 5 . 3 ) , 174 (M+, 4 3 . 9 ) , 91 ( 1 7 . 7 ) , 6 6 ( 1 0 0 . 0 ) , 39 ( 1 0 . 7 ) ;

13ç and Spi n Echo s p e c t r a ( 20 MHz, CDCI3 , F i g VI - 62: G 198 . 70

( 8 5 , 3 ) , 1 4 1 . 3 5 ( 8 4 , 7 ) , 136 . 64 ( 8 3 , 3 ) , 4 7 . 9 1 ( 8 1 , 4 ) , 4 7 . 8 3

( 8 9 ) , 4 7 . 5 3 ( 8 4 a , 8 a ) !

H0M80R NMR s p e c t r um (300 MHz, 8 D8 I 3 , F i g V I - 7 ) ;

HET80R NMR s p e c t r u m ( 300 and 75 MHz, CD8 I 3 , F i g V I - 8 ) .

Pen t a c v c l o [ 5 . 4 . 0 . 0 %,6 . 0 3 , 10 . 0 5 , 9 ] y r , t j g c a n e - 8 . 1 1 - d i o ne ( I Va) .

S y n t h e s i s o-f IVa was performed by u s i n g the method p r e v i o u s l y

r e p o r t e d i n t h e l i t e r a t u r e . 9

NMR s p e c t r u m (300 MHz, 8 D8 I 3 , F i g V I - 9 ) : 6 3.19 ( dddd,

J2C63-1C7] = 7.0, J2C6I-3C5] = 5 . 9 , J2I6I-7I1] = 1-6,J2C63-10I93 = 1.5 Hz, 2 H, H2 , 6 > , 2.95 ( dddd, J3C53-2C63 = 5 . 9 ,

J3I53-10C93 = 4.1, J3[5]-4s = 1.7, J3C53-4a = 1.6 Hz, 2 H,

H3 , 5 ) , 2.80 (ddd, Jl[73-2C63 = 7 . 0 , Jl C7 3 - 1 0 [ 93 = 2 . 7 ,

J1C73-6I23 = 1.6 Hz, 2 H, H i , 7 ) , 2.70 ( ddd, J9C103-5C33 = 4 . 1 ,

J9C10I-7C13 = 2.7, J9C103-6C23 = 1.5 Hz, 2 H, Hy^i g) , 2.06 ( d t ,

^4s-4a “ 11.3, J4s-3,5 “ 1*7 Hz , 1 H, H4 5 ) , 1.90 ( d t , J4a-4s

2 9 4

FI G UR E V I - 3

300 MHz NMR Spect rum o-f

1 . 4 , 4 a . 8 a - T e t r a h v d r o - endo- l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i one

I I l a (CDCIg/TMS).

H D

2 5 3 MICROMETEPS 4 8 9 10 12 14 16 20 2

100100

irr:

80

'6060

4040V- 40

20202020

6001000 ICM'l 000140016003000 (CM 'I 2500 2000 100035004000

N.1•<>Ol

F i g u r e V I - 4 . IR Spectrum o f 1 . 4 . 4 a . 8 a - T e t r a h v d r o - endo- l . 4 - m e t h a n o n a p h t h a 1 e n e - 5 , 8 - d i o n e I l i a(KBr) .

296

FIGURE V I - 5

Mass Spectrum o-f

1 , 4 , 4 a , 8 a - T e t r a h y d r o - e n d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e I l i a ,

i T - g i m v m ir wilC N t . 2 7 r * « 4 « 173 n CMhtipttn nasas- ~

tra.e

i a 12 IK3 3 , 1237CRK3 # *T 1 .1 7 MM,

. M S % mm % M83* • % m a 1# r . i .7 7 8 .1 .1 1 8 3 .8 1 .5 137 .8» • ! 7 1 .1 .2 184 .1 1 3 9 .8*# # i e . 7 7 2 .1 .2 1 8 5 .8 141 .14 # # 3 .# 7 3 .1 .2 1 8 4 .8 143 .84 1 .1 i . e 7 4 .8 •8 1 8 7 .8 144.14 1 .1 •2 7 8 .8 .1 1 8 8 .0 145.1 44 $ . l .4 7 4 .1 .* 1 89 .8 4 .8 144 .1 74 4 .1 .1 7 7 .1 3 .2 118.1 1 4 7 .8 2

.4 7 8 .1 2 .4 111 .1 1 48 .84 4 .1 .2 7 8 .1 1 .3 112 .1 1 4 9 .84 # .e .8 8 8 .1 •* 113.1 1 *8 .8## # 2 .4 8 1 .8 1 .4 1 1 4 .8 1*1.1• i . t 4 , 7 82 8 8 .1 1 1 5 ,8 4 .3 1*5.1w e 2 .1 8 3 .8 * 1 1 4 .8 1 .7 1 *6 .8 1w e 3 .7 84.2 .2 117 .1 9.2 1 57 .1* 4 .0 8 .7 8*.8 •3 1 18 .8 2.3 158 .1« . 0 1 .4 8-5.0 .4 119.9 1.0 159 .8*4.0 .2 87.8 .3 120.1 .3 U Q .l*7.1 .5 89.1 2 .4 12: .0 .1 165.1Ct.O .3 9 8 .1 1 .2 122.1 .1 167.8*5.0 .1 9 1 .1 17.7 125.1 .1 173.1 34 » .0 .2 92.1 3.4 129.1 • 1 174.1 434 1 .0 .7 93.1 .4 1:7.0 1 .8 175.1 S4 2 .0 2 .1 9 4 .8 .3 128.1 2.2 176.14 2 .0 4 .4 9 5 .1 .2 129.1 2.144.0 1.8 Î5.1 1.4 1 30 .0 .44 * . l 18.7 9 7 .8 .3 131 .0 4.34 4 .1 100.0 93.8 .1 1 22 .0 1 .4-147.0 8 .7 9 ? . I I 133.1 .348.0 .7 1C1.8 .1 124.0 .14 $ U .4 182 .8 * 1:5.1 .1

"iIT41— r t l T f TT------------- "" ' '* # , 1 M,18D/M,288D 3 4 -3 2 8129 PEAK* BASE ABUNDANCE 747 4 BASE PEAK 44* 8

W# 3 4 .0 ML«32e.O Ml" 3 8 .8 M 2"378.8 H3TRP" 8

■ ■ -IF T H '-T S n -------SR1I 8

18*

80

4*

44

21

1 ,

4 8 " ' 63 "ii " ià o ' ■ ...... ï i » ■ "iVo • ' • ■ ' - J a ' ■' 1 L': ■ zl :1 %8Î

4 Î

1' . . . . . . i i ï . . . . . . - ~àJn-- - , 6 " -ii-i

, ,T.,

2 9 7

FI GURE V I - 6

20 MHz and Spin Echo NMR S p e c t r a o-f

1 , 4 , 4 a . 8 a - T e t r a h v d r o - endo- 1, 4 - m e t h a n o n a p h t h a l e n e - S , 8 - d i one I I l a

( CDCl g ) .

f

.(HI z i î ! '" ! 1 ii:'

;::ik r 4 r

Wï i;’: f : ri*i!r i: Z : 1 Z ' ili; :üt iii: ;iÜ

-• -

■Z: H iiil'i:- : Z - ;i i;:i - n.i

i4 ■

:■ ” ■j.i : z ;

i; ? h iü; ; " 44 iiii 1: !: n i : " r r .il: "r

M iiii i -• i:!! !!:;:x S X i r : . :

l 'y■■■4z üli i ' ..,ir

t:x.j i : - i Z :f iifi J

fii’:; r.li !Z ;r ; .

! ; : :N ' 4;-: ni: i:n :!:■L|:: ii;: 1' j r j . ■ ! :: : ;; i a ;|: r i; in- •1k .zi.--: iiü ifii

■■ j :i.; Z :;: Z I : ,- f " hL.1:. ■ . : ; : . .1

z ii:;" 7; . : ;ir; ■14

r -::

■ ■ : i • ■ :- .r i i;: rii i;i :, Z Zi ___ : ; . ■ .z :

!

z .

. . . . :ri-

i â k i

r r

1

r " - T T - r1

. , : r r : ' ::-r rk i 1 - 4 # w _

■ r Z Z " ' - ai- lîtf! %iii: aii : V r i; r i: -B îli: : •

; _ ■

üi- & ;!i; .4:: iii: - ::b 4 iZ H ,ivi:

'ii; •ii: ni;Z i un ■Z:

i'. . . . ■f: a-:i:|%a' i ^ i'i ' ' : !

!- - ■ “■

. . J . . . z :

: v4 ■ "I : ■ " i" :. iir : :1 I I

- - -. 1 ■

- 4 — ■ — ______ L z 'i ■ , ! . r ürli-.: !

î t

■ i ; X':) -k lii- ' ' ! .

' " t : • - f " “ ■ •- k - 4 ! 4 - 1 - :,:i:

■ I 'i- : 4

•i. 4 4 4 ' ^ • 1 :

T : f :: il

• ' - ^ 4 - . 4 -1 " Z. 1 .1 :

z h

z !

■ ■ r 'j r .

: iI

: ■"! 1

4 \■■■“

z * z n - (k l - ; : "1;

■ '.'T7 -a . f z**; •

:j'.i

. 4 _ _ 1 •:

• j- -

-•h:

- •: ■ ! ■ : r | r■ ::: iiü iin

'- f "

. jT .Z: 1. . . . . . . !

- j- iiJ : ' . -• i

- j .

“ “ f " '. ' j— ■:| ; . . . . . — z 'i f : “ J " "■ n" i - | 7

.i. ._ ....i 1- Z : ' - ' i ! - ! • J '.. . z z . t i i : _ L . 1 . - . .

1 .* ', _ , »' , 1.

N t t . r t ■'-il i H i H ' i m Lui - j u

2 9 8

F I G UR E V I - 7

300 MHz iH HOMCOR NMR Spectrum o-f

1 . 4 . 4 a . 8 a - T e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i one II l a

(CDCI3 ) .

J. I L-

2 9 9

FI GURE V I - 8

308 MHz 1h and 75 MHz 13c HETCOR hMR Spectrum of

1 , 4 . 4 a . 8 a - T e t r a h v d r o - e ndo- 1 , 4 - m e t h a n o n a p h t h a ï e n e - 5 . 8 - d i one I l l a

(CDCI3 ) .

i

u n un a zr ru u j un c ] r a

un_ n

□ur □ru

3 0 0

F I G U R E V I - 9

3 0 0 MHz i H NMR S p e c t r u m o f

P e n t a c y c l o [ 5 . 4 . 0 . 0 2 | ^ , 0 3 i 1 0 . 0 5 i ? ] u n d e c a n e - 8 , 1 1 - d i o n e I V a

< C D C l 3 / T M S ) .

3

3 0 1

= 1 1 . 3 , J 4 a - 3 , 5 = 1-6 Hz , 1 H, ;

IR s pe c t r um (KBr, F i g V I - 1 8 ) : 3455 ( w ) , 2995 ( s ) , 2938 ( m) , 2870

( m ) , 1755 < v s ) , 1724 ( v s ) , 1455 (w) , 1300 ( w ) , 1280 ( m ) , 1265 ( m ) ,

1220 ( m) , 1190 (m) , 1125 (m), 1070 ( m) , 1057 ( s ) , 1040 ( s ) , 963 (m) ,

947 ( m) , 913 ( m) , 860 ( m) , 822 ( w ) , 780 ( w ) , 753 (m) c m' l ;

Mass s pe c t r um (70 eV, Fi g V I - 1 1 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 175 (M +

1, 7 . 6 ) , (M+, 6 4 . 1 ) , 146 ( 1 8 . 5 ) , 145 ( 2 4 . 5 ) , 131 ( 1 7 . 9 ) , 118

( 3 0 . 4 ) , 1 17 ( 1 0 0 . 0 ) , 116 ( 1 1 . 3 ) , 115 ( 2 2 . 9 ) , 91 ( 3 6 . 9 ) , 77 ( 1 0 . 1 ) , 66

( 3 5 . 8 ) , 65 ( 1 6 . 4 ) , 51 ( 1 1 . 8 ) , 39 ( 1 6 . 4 ) ;

and Soi n Echo s p e c t r a (20 MHz, CDCI3 , F i g V I - 1 2 ) : G

2 1 2 . 0 3 (C8 , i i ) , 5 4 . 3 8 ( 8 9 , 10) , 4 4 . 2 5 8 3 , 5) , 4 3 . 4 2 ( C i , ? ) ,

4 0 . 0 4 (C4 ) , 3 8 . 3 2 ( 8 2 , 4 ) ;

H0M8QR NMR s pe c t r um ( 300 MHz, 8 D8 I 3 , F i g V I - 1 3 ) ;

H0M2DJ NMR s pec t rum (300 MHz, 8 D8 I 3 , F i g V I - 1 4 and V I - 1 5 ) ;

HET80R NMR s pec t rum ( 300 and 75 MHz, 8 D8 I 3 , F i g V I - 1 6 ) .

6 - M e t h v l - l , 4 . 4 a , 8 a - t e t r a h v d r o - e n d o - l . 4 - m e t h a n o n a p h t h a l e n e - 5 . 8 -

d i o n e ( 11 Ib) . S y n t h e s i s o-f I l l b was per f ormed by u s i n g t he method

p r e v i o u s l y r e p o r t e d in t he l i t e r a t u r e . 18

1h NMR spec t rum (300 MHz, 8 D8 I 3 , F i g V I - 1 7 ) : £ 6 . 5 ( q ,

^7 - met hy l = 1 . 4 Hz, 1 H, H7 ) , 6 . 0 7 ( ddd, J2 - 3 = 5 . 8 , J2 - 1 =

2 . 9 , J2 - 4 = 1.1 Hz, 1 H, H2 ) , 6 . 0 3 ( ddd , J3 - 2 = 5 . 8 , J3 - 4 =

2 . 8 , J3 - 1 = 1.1 Hz, 1 H, H3 ) , 3 . 5 3 (m, J4 - 4 a = 4 . 1 , J4 - 3 =

2 . 8 , J 4 - 9 a = 1 . 7 , J4 - 9 S = 1 . 5 , J 4 - 2 = 1.1 Hz, 1 H, H4 ) , 3 . 5 3

(m, J i - 8 a = 4 . 1 , J i _ 2 = 2 . 9 , J i - 9 a = 1 . 7 , J l - 9 s = 1 . 5 , J 1 - 3

= 1.1 Hz, 1 H, H i ) , 3 . 24 (m, J 8 a - 4 a = 8 . 0 , J8a-1 = 4 . 1 Hz, 1 H,

Hsa^ , 3 . 2 4 (m, J 4 a - 8 a ~ 8 . 0 , J 4 a —4 ~ 4 . 1 Hz, 1 H, H4 a ) , 1 . 94

( d , J m e t h y l - 7 = 1 . 4 Hz, 3 H, 8 H3 ) , 1 . 54 (ddd, J9 a - 9 s = 8 . 7 ,

J 9 a - l = 1 . 7 , J 9 a - 4 = 1.7 Hz, 1 H, H9 a ) , 1 . 46 ( ddd, J 9 s - 9 a =

8 . 7 , J 9 5 - 1 = 1 . 5 , J9 S- 4 = 1.5 Hz, 1 H, H9 5 ) ;

IR s pe c t r um ( 8 8 I 4 , F i g V I - 1 8 ) : 3080 ( m) , 2980 ( m ) , 2948 ( m ) , 2912

( w ) , 2870 ( w ) , 1713 ( v s ) , 1625 (m) , 1440 ( w ) , 1380 ( m ) , 1350 ( w) ,

1332 ( m ) , 1320 ( m ) , 1292 (w) , 1260 ( s ) , 1210 ( m ) , 1128 ( m) , 1058 (m) .

v> I LKb 4 10 )2 14 16 20 2

|—i 100 ;too100

80

6060

40 !4040

70

3000 (CM) 7300 14002000 1800 16003500

toCDro

F i g u r e V I - 1 0 . I R S p e c t r u m o f P e n t a c y c l o C 5 . 4 . 0 . 0 2 > < ^ . 0 3 # 1 0 , 0 5 > 9 ] u n d e c a n e - 8 , 1 l - ( J i o n e I V a( K B r ) .

3 0 3

FI GURE V I - 1 1

Mass Spectrum o-f

Pe n t a c y c l o [ 5 . 4 . 0 . 0 2 )< .0 3 , 1 8 , 0 5 , 9 ] u n d e c a n e - 8 , 11 - d i o n e IVa.

"WHIN S4.I ifirax 3 W . 0 TIN 7111--------1 ? ) SFCCTRfi#W,»n,Z#B/n,Z7*D 33-3ZU

ICN 6 .S 3 E *e 4 m 174 n 7 9 3 63 H P P E D HCW<yg A

1 7 4 .0

H r 53 -T T T -n — r a n — r g -------------------------l« e D ,lM ,2 0 D /M ,2 7 8 D 3 3 - 3 2 8 162 PEAKS BASE ABUNBQNCE 1 61 73

M * 3 3 . 6 M L » 3 2 6 .0 M l " 3 6 . 6 6 2 - 2 7 0 .6BASE PEAK 1 1 7 .1

NSTRP- 6

r r i H 7 5 1 &SRH 19 RT .7

t i i

• Î

i ]

s j I1 II

Î .1. i lh 1 1 ,1.1 . j M i , 1........... ... . '

40 6 0 80 100 1 20 140IC I

e i

2 Î

i 1 1, , , .i6 o 2 0 6 2i9 Ï - Ü ..........‘ .......... i T ô ..........'

MISS X MASS %BIG 66 95.1 2.636.1 3.6 96.0 2.139.6 16.4 102,1 2.140.8 3.3 163.0 0 .641 .1 1.6 164.1 4.666.8 6.6 165.1 2.361 .0 11.8 168.6 3.762.0 9.2 169.0 3.263.6 6.5 115.0 22.954.6 2.3 116.1 11 .355.6 6.2 117.1 160.067.9 4.5 118.6 30.461 .0 1.2 119.0 4.162.6 3.3 120.1 1.263.6 7.6 127.8 3.664.6 2.3 128.1 6.266.1 16.4 129.1 5.766.6 35.6 131 .0 17.967.0 2.5 122.0 4.3£8.0 3.7 145.1 24.574.1 1 .7 H6.1 13.675.0 1 .3 147.0 3.376.1 1 .6 156.1 1.977.1 IC .l 157.1 1.37£.l 8.0 173.1 5.979.1 3.3 174.1 £4.180.0 6.6 175.1 7.601 .0 6.202.0 1 .689.1 5.791 .1 36.992.1 7.093.1 1 .694.1 7.0

CO<s■a-

J I L J I L

F i g u r e V I - 1 2 . 2 0 MHz a n d S p i n E c h o NMR S p e c t r a o fP e n t a c y c l o [ 5 . 4 . 0 . 0 2 > ° . 0 3 , 1 0 . 0 5 , y ] u n d e c a n e - B , 1 1 - d i o n e I V a ( C D C I 3 ) .

3 0 5

F I G U R E V I - 1 3

3 0 0 MHz i H HOMCOR NMR S p e c t r u m o-f

P e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 8 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e I V a

( C D C I 3 ) .

• A

» #

4 t

uj nj r j CD uj nj r j nnm o m n =r 3- m m m n un CZ3 m ru ru — —

3 0 6

F I G UR E V I - 1 4

300 MHz iH H0M2DJ hMR Spectrum o-f

Pent a c y c l o E 5 . 4 . 0 . 0 2 »^. 0 3 , 10 . 0 5 , 9 ] i j n d e c a n e - 8 , 1 1- di one IVa

<CDCl3 > .

J U

28 -

2 b -

2H -

22 -

20 -

1 8 -

I b -

I H-

12 -

500 H50 HDD 350 300 250 200 150 100

3 0 7

FI GURE V I - 1 5

S t a c k e d P l o t o-f t h e 3 6 0 MHz H0 M2 DJ NMR S p e c t r u m o-f

P e n t a c y c l o [ 5 . 4 . 0 . 0 2 5 <^.0 3 i l 0 . 6 ^ i ^ ] u n d e c a n e - 8 , 1 1 - d i o n e I V a

( C D C I 3 ) .

F5 fS Æ m n S 5 ^ E

3 0 8

FI GURE V I - 1 6

300 MHz 1h and 75 MHz HETCOR NMR Spectrum o-f

P e n t a c y c l o [ 5 . 4 . 0 . 0 2 )6 . 0 3 , 1 0 . 0 5 ) 9 ] u n d e c a n e - S , 1 1 - d i o n e IV

(CDCI3 ) .

“ m

_ _ [ 31r ] C ] r ] C ] r 3 [ = ] C 3 [ = i

m zr m m nj ru — —

3 0 9

FIGURE V I - 1 7

300 MHz NMR Spectrum o-f

6 - Me t h y l - 1 , 4 , 4 a . 8 a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i one

I l l b (CDClg/TMS) .

3 MICROMETERS 4

1000 (CM'I3000 (CM I >>1)00 20004000

CO

ra

F i g u r e V I - 1 8 . IR Spectrum of6 -Methyl - 1 . 4 . 4 a . 6 a - t e t r a h v d r o - e ndo- l , 4 - m e t h a n o n a p h t h a l e n e - 5 , B - d l o n e 11Ib (CCI4 )

3 1 1

915 (m) , 893 ( m) , 844 ( m) , 678 (m) cm“ ;

Mass s pec t rum ( 7 0 eV, F i g V l - 1 9 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 189 (M +

1, 2 . 5 ) , 188 ( 1 6 . 0 ) , 91 ( 1 3 . 3 ) , 66 ( 1 0 0 . 0 ) , 65 ( 1 4 . 4 ) ;

and Spi n Echo s p e c t r a (20 MHz, CDCI3 , Fig V I - 2 0 ) : G

198 . 88 (Cg or C5 ) , 198. 37 (C5 or Cg) , 150 . 94 (C^) , 1 3 9 . 02

(C7 ) , 134 . 90 ( C2 ) , 134. 34 (Cg) , 4 8 . 3 5 ( 8 4 3 ) , 4 8 . 1 9 (C4 ) ,

4 8 . 1 2 (C9 ) , 4 7 . 8 9 ( C p , 4 7 . 5 1 (Cga) , 1 5 . 6 3 ( Cme t hy P !

HOMCOR NMR s p e c t r u m (300 MHz, CDC13, F i g V I - 2 1 ) ;

HETCOR NMR s p e c t r u m (300 and 75 MHz, CDClg, Fi g VI - 2 2 t hrough

V I - 2 5 ) .

1- Methyl pen t a c vc 1 q [ 5 . 4 . 0 . 0 ^ i * ^ . 0 ^ ) 1 8 . 0 5 , 9 ] u n d e c a n e - 8 . 1 1 - d i one

I V b ) . A 500 mL e t h y l a c e t a t e s o l u t i o n c o n t a i n i n g 7 . 5 g (40 mmol) of

6 -methyl - 1 . 4 . 4 a . B a - t e t r a h y d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

( I I I b ) 1 8 was i r r a d i a t e d for 16 h o ur s under n i t r o g e n wi t h a Hanovia

me d i u m- p r e s s u r e Hg lamp (Pyrex f i l t e r ) . The s o l u t i o n was

c o n c e n t r a t e d , whereupon IVb c r y s t a l l i z e d as a c o l o r l e s s , m i c r o c r y s t a l ­

l i n e s o l i d : 6 . 3 q , 84%; mp 64-64°C;

1h NMR s pe c t r um (300 MHz, CDClg, F i g V I - 2 6 ) : £ 3 . 1 7 (dddd,

J6 - 2 = 8 . 4 , J (£-7 = 6 . 0 , J ^ - s = 5 . 3 , = 1 . 8 Hz, 1 H,

H5 ) , 2 . 9 4 ( dddd , J g - a = 5 . 8 , J5 - 9 = 4 . 8 , J5 - 4 S = 1 . 6 , J 5 - 4 a

= 1 . 5 Hz, 1 H, H5 ) , 2 . 8 8 ( dddd, Jg_g = 5 . 4 , J 3 - 1 0 = 4 . 6 ,

J g - 4 s = 1 . 6 , J g - 4 a = 1 . 5 Hz, 1 H, H g ) , 2 . 8 3 (dddd, J 2-6 ~

8 . 4 , J2 - g = 5 . 4 , Jg - 1 0 = 1 . 9 , J2 - 7 = 1 . 3 Hz, 1 H, H2 ] , 2 . 7 2

(ddd, J 1 0 - 9 = 1 1 . 2 , J 1 0 - 3 = 4 . 6 , J 1 0 - 2 = 1 . 9 Hz, 1 H , , H i g ) ,

2 . 6 6 ( dddd, ^9 —10 ” 1 0 . 5 , J9 —5 “ 4 . 8 , J9 —9 — 2 . 8 , J9 — — l . S

Hz, 1 H, H9 ) , 2 . 3 6 (ddd, J 2-6 ~ 6 . 0 , J7 - 9 = 2 . 8 , J7 - 2 = 1 .3

Hz, 1 H, H7 ) , 2 . 0 5 ( d t , 0 4 s - 4 a = 1 1 . 2 , J 4 s - 3 , 5 = 1 . 6 Hz, 1 H,

H4 s) I 1 . 91 ( d t , J4 a - 4 s ” 1 1 . 2 , J4 a - 3 , 5 ~ 1 . 5 Hz, 1 H, H4 a ) ,

1 . 16 ( s , 3 H, CHg ) ;

IR spec t rum (KBr, F i g V I - 2 7 ) : 2980 ( s ) , 2970 ( s ) , 2936 ( s ) , 2872

( m ) , 1746 ( v s ) , 1730 ( s h , v s ) , 1443 ( m ) , 1286 (m) , 1227 (m) , 1195

( m ) , 1181 ( m ) , 1111 (m) , 1081 ( s ) , 1060 ( s ) , 912 ( m ) , 876 (m) cm"l ;

312

FIGURE V I - 1 9

Mass Spec t rum o f

6 - M e t h y l - 1 . 4 , 4 a . S a - t e t r a h v d r o - e n d o - 1 , 4 - me t hanonapht ha l e n e - 5 , 8 - d i one

I l l b .

ÏDE-hY C 1Ÿ H 1202 leé 220cfé2 +KJ0O,in,30O'«,27OD 50-300 riCH 9.7lE*04ii 183 n $339 STRIPPED A_____f lS C -4 7 C12H1202 188 220CT82 TKFRH10643, SPECTRUM 3. 11jPEAK: . RT .38 1IN.HOST INTENSE 113 WARNING.... .POSSIBLE OVERPLOHASS *< MASS X MASS X MASS X60.1 1.0 81.1 .3 115.1 3.5 140.9 .051.1 2.1 82.1 1 .8 116.1 1 .2 153.1 . 852.1 .8 83.1 .1 117.1 5.9 155.1 .253.1 1 .6 84.2 .0 118.2 .8 156.1 .054.1 1.8 85.0 .1 119.1 .0 157.1 . 165.1 .8 86.1 .2 128.2 .4 159.1 1.756.2 .0 87.1 .2 121 .1 .2 160.1 2.957.3 .1 89.1 1.9 122.1 .6 161.1 1 .357.6 .1 90.1 .6 123.1 6.4 162.1 .259.1 • 1 ?! .1 13.3 124.1 .5 169.1 . 260.1 .2 92.1 2:2 125.1 .1 178.8 .961.1 .3 93.1 .6 12b.1 .1 171.1 .362.1 1 .0 94.1 1.0 127.2 1 .1 172.1 .163.1 3.0 95.1 .8 128.2 1 .1 173.0 .964.1 1 .2 96.1 1.8 129.0 1.0 174.1 .165.1 14.4 97.1 .3 138.1 .2 187.1 .9*6.1 m e . 0 98.1 .1 131 .1 2.1 109.1 16.067.1 6.7 99.1 .8 132.1 .9 169.1 2.568.1 5.2 108.0 .0 133.1 .3 198.1 .269.1 1.1 101.0 .1 134.0 .170.1 .1 102.1 .4 135.0 .171 .1 .1 103.1 .8 139.0 .172.2 .0 184 .2 .4 140.8 .073.0 .1 105.1 .9 141.1 1 .074.1 .5 106.2 .1 142.1 .775.1 .4 107.1 .1 143.1 1 .076.1 .3 103.1 .1 144 .1 .777.1 3.1 110.1 3.2 145.1 5.778.1 2.1 111.1 .2 146.0 .879.1 1 .8 112.8 .0 147.0 .280.1 .3 113.1 .0 149.0 .8

io E ^4 7 cT2^Ti 2 0 2 l a e 'tk30D,lM,30D/h,270D 50-300 113 PEAKS BASE ABUNDANCE 3922 40" SO.0 ML=3O0.0 Ml= 59.0 M2«390.0tOf

BASE PEAK 66.1 NSTPpm 9

10!si6Ï*]

z i

"TTfkl128 149 "uo”

I^R H 1 06 43 SRN 3RT .4

3 1 3

F I G U R E V I - 2 0

2 8 MHz a n d S p i n E c h o NMR S p e c t r a o-f

6 - M e t h y l - 1 , 4 , 4 a , 8 a - t e t r a h v d r o - e n d o - 1 . 4 - m e t h a n o n a o h t h a ï e n e - 5 , 8 - d i o n e

I l l b <CDCl3).| , 1. - f - - - t ■■ i -i;

g

[ z t :

^4

1. . 1 . I . . . L . . . 1 . 1 . É , I ■ I ■ I . I . I . I . I . L . 1 ■ I . I ■ I ■ I . . L

3 1 4

F I G U R E V I - 2 1

3 0 0 MHz I r HOMCOR NMR S p e c t r u m o-f

6 - m e t h y l - 1 . 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I l l b ( C D C 1 3 ) .

J ___& L l

3 1 5

F I G UR E V I - 2 2

3 0 0 MHz 1h a n d 7 5 MHz HETCOR NMR S p e c t r u m o-f

6 - M e t h y l - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - l . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

J_ Oi_n

b - 5 l . 5

3 1 6

F I G UR E V I - 2 3

E x p a n d e d C o n t o u r P l o t o f t h e HETCOR S p e c t r u m o f F i g V I - 2 2 w h i c h

I n c l u d e s t h e 1 . 2 - 3 . 6 ppm a n d 4 7 - 5 0 p p m S p e c t r a l R e g i o n o f

6 - M e t h y l - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - 1 . 4 - m e t h a n o n a o h t h a l e n e - 5 , 8 - d i o n e

ru

_ I T

am

3 . b

3 1 7

F I G U R E V I - 2 4

Expanded Contour P l o t of t h e HETCOR Spect rum of F i g VI - 2 2 which

I n c l u d e s t h e 5 . 6- 6 .5 and 133-141 ppm ^^C S p e c t r a l Region of

6-Methyl - 1. 4 . 4 a . B a - t e t r a h v d r o - e n d o - 1 , 4 - me t hanonaph t ha l e n e - 5 , B - d i o n e

I l l b (CDCI3 ) .

m

b . 4 5 . 1

3 1 8

F I G UR E V I - 2 5

S t a c k e d P l o t o-f t h e HETCOR S p e c t r u m o-f F i g V I - 2 2 o f

é - l i e t h v l - 1 . 4 . 4 a . 8 a - t e t r a h v d ; o - e n d o - l . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I l l b < C D C l 3 > .

3 1 9

F I GURE V I - 2 6

3 0 0 MHz NMR S p e c t r u m o-f1 - M e t h y 1 p e n t a c y c 1 o [ 5 . 4 . 0 . 0 2 , 6 . 8 3 , I G . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

IVb (CDCI3/ T MS ) .

2 5 3 MICROMETERS 4 l ü 12 14 16 2 0 2

100100100too

80

60

4040

20

5C 0 0 (C M ) 2 5 0 0 100 0 (CM') RUO1200 6 0 03500

COtots

F i g u r e V I - 2 7 . I R S p e c t r u m o-f1 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 , 0 2 | O . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e I V b ( K B r ) .

3 2 1

Mass s p e c t r u m (70 eV, Fig V I - 2 8 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 189 (M +

1, 1 4 . 7 ) , 188 (M+, 100 . 0 ) , 160 ( 3 9 . 4 ) , 159 ( 1 7 . 5 ) , 145 ( 4 4 . 4 ) , 132

( 3 4 . 2 ) , 131 ( 2 5 . 8 ) , 118 ( 1 0 . 6 ) , 117 ( 8 1 . 4 ) , 116 ( 1 0 . 5 ) , 115 ( 2 7 . 9 ) ,

105 ( 1 0 . 5 ) , 94 ( 2 2 . 2 ) , 91 ( 3 6 . 9 ) , 80 ( 2 . 6 ) , 79 ( 7 . 8 ) , 77 ( 1 5 . 5 ) , 66

( 3 4 . 6 ) , 65 ( 1 8 . 5 ) ;

and Spin Echo NMR s p e c t r a (20 MHz, CDCI3 , F i g V I - 2 9 ) : G

2 1 2 . 4 6 ( C i i or Cg) , 2 11 . 78 (Cg or C n ) , 54 . 41 ( C i g ) , 5 4 . 2 4

(C9) , 5 0 . 1 1 (C7) , 48.10 ( C l ) , 4 4 . 7 5 (C2> , 4 3 . 9 5 (C5) , 4 3 . 3 2

IC3) , 4 0 . 4 6 (C4) , 3 5 . 8 9 (C^) , 15.36 ( C m e t h y l ) ;

HOMCQR NMR s p e c t r u m (300 MHz, CDCI3 , F i g V I - 3 0 ) ;

HQM2DJ NMR s p e c t r a (300 MHz, CDC13 , F i g VI - 31 and V I - 3 2 ) ;

HETCOR NMR s p e c t r u m (300 and 75 MHz, CDCI3 , F i g V I - 3 3 ) .

Anal . C a l c u l a t e d -for C12H12O2 : C, 7 6 . 5 7 ; H, 6 . 4 3 . Found: C,

7 6 . 6 8 ; H, 6 . 3 8 .

D i e l s A l d e r A d d i t i o n o-f Methyl cyc l o p e n t a d i e n e s to g - Be n z o q u i n o n e

To a s o l u t i o n o-f g - b e n z o q u i n o n e (116 g , 1.07 mmol) in met hanol

(200 mL) was added a s o l u t i o n o-f - f r e s h l y c r a c k e d methyl cyc l 0-

p e n t a d i e n e ( m i x t u r e o-f 1- m e t h y l - and 2-met hyl cycl o p e n t a d i e n e s , 12

8 6 . 5 g , 1 .08 mmol) in c o l d me t h an o l (50 mL). The s o l u t i o n was

a l l o w e d t o warm s l o wl y t o room t e m p e r a t u r e , and t h e p r o d u c t was

c o l l e c t e d by s u c t i o n - f i l t r a t i o n . Ye l l ow brown c r y s t a l s ( I l i e and

11 I d , 176.9 g , 94%) were o b t a i n e d . I n t e g r a t i o n o-f t h e p r o t o n NMR

s p e c t r u m o-f t h e c r u d e p r o d u c t m i x t u r e r e v e a l e d t h a t I l i e and I I Id

we r e -formed in t h e r a t i o o-f c a . 4 5 : 5 5 . T h i s m i x t u r e o-f i s o m e r i c

a d d u c t s was s e p a r a t e d by c a r e f u l f r a c t i o n a l r e c r y s t a l l i z a t i o n f rom

a b s o l u t e m e t h a n o l . The i somer t h a t was l e s s s o l u b l e in met hanol was

i s o l a t e d by t h i s p r o c e d u r e . A f t e r s e v e r a l r e c r y s t a l l i z a t i o n s , an

a n a l y t i c a l s ampl e of 1-me t hv l - 1 . 4 . 4 a . 8a - t e t r a h v d r o - e n d o - 1, 4 - me t h a n o -

n a p h t h a l e n e - 5 , 8- d i o n e ( I I Id) was i s o l a t e d as a p a l e ye l l ow

m i c r o c r y s t a l l i n e s o l i d : mp 116-1170C. Con t i nue d f r a c t i o n a l r e c r y s ­

t a l l i z a t i o n o f t h e mother l i q u o r f rom t h e above r e a c t i o n ( u s i n g a 1:1

322

FIGURE VI - 2 8

Mass Spec t rum o-f

1- M e t h y l - 1 , 4 , 4 a , 8 a - t e t r a h v d r o - endo- 1 . 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

IVb.

C12H1232 léS cirC'CTôS ;0D,1M,38D/M,270D 56-300 nCN 108 n 16562I T A l P p r r .

M C -Sl .C12H1202 180 220CT82 TkrRN10046, SPECTRUM 4 . 187PERKS f RT .46 MIN.MOST INTENSE 187

- MASS \ HASS \ MASS X MASS X58 .1 3.1 66.1 .5 119.1 3 .7 168.1 39 .451 .1 5 .7 87.1 .6 120.1 2 .2 161 .1 6 .452 .1 2 .9 88.1 .2 121.1 ,7 162.1 .653 .1 4 .7 89.1 4.1 122.1 1 .4 169.8 1 .654 .1 1.1 96.1 1 .4 123.1 4 .7 176.0 2 .6.65 .1 2 .3 91.1 36.9 124.1 .4 171 .1 I .95 6 .2 .2 92.1 6 .7 126.1 .1 172.2 .25 7 .6 .9 93.1 2 .2 124.1 .3 173.0 6 .2

>61 .1 .4 94.1 22.2 127.2 4 .3 174.8 .862 .1 1 .9 95.1 9 .2 129.2 5 .4 187.1 4 .363 .1 6 .4 96.1 1 .7 129.8 6 .5 160.1 190.064.1 3 .4 97.1 .3 130.8 2 .3 189.1 14 .765 .1 18.5 98.1 .3 131.8 2 5 .8 190.1 1.4

:6 6 .1 3 4 .6 99.8 .1 J 2 2 .1 34«2 191.1 .16< .1 181.1 .3 133.8 6 .668.1 2 .0 182.1 2 .4 134.0 1 .269 .1 1 .8 183.1 6 .6 125.8 .270.1 .2 104.2 3 .8 139.1 .171 .2 .2 185.1 18.5 141.1 4 .37 3 .0 .1 186.1 2 .0 142.1 3 .374,1 1 .5 187.2 1 .6 143.1 4 .875.1 1 .5 168.1 9 .5 141^.1 44 .476 .2 1.2 109.1 1 .7 146.0 6 .277.1 15.5 110.1 1 .9 147.0 1.278.1 7 .6 n 1 .0 .2 149.0 .279.1 7 .8 112.1 .1 149.0 .280.1 2 .6 113.2 .3 153,8 .181 .1 4 .5 115.1 27.9 155.0 .6# 2 .0 2 .0 116.1 10.5 156.2 .1

' 83 .1 .3 117.1 Î1 .4 157.1 .35 #5 .1 .3 116.1 iw .6 159.1 17.5

p D C ^l C12H12Û2 188 22ÛCT62 TK 30D.1M,38D/M,27Ü[ 56-300

l e ? PERK? BfiSC ArUNDRNCC M07B 10s 5 a .0 rtL*308.e h i> s o .o n2»388.e

Fflrc PEAK 168.( H2TRP» 8

60 180 120 140 160(81

"â-iû" 360240 280 308 321

3 2 3

FI G UR E V I - 2 9

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o-f

1- M e t h y l p e n t a c y c l o C 5 . 4 . 0 . 0 2 ! < ^ . 0 3 , 1 0 . 0 5 j 9 ] ^ n d e c a n e - S , 1 1 - d i o n e

I V b ( C D C l g ) .

H ,C

_ l ____1___ 1____I____■ I ■ 1 . I . I . I . I . I .___ I . I . 1 ■ I_________I___ I___ I___ _____I___ ____ I------,------1------ L_

3 2 4

F I GURE V I - 3 8

3 0 0 MHz HOMCOR NMR S p e c t r u m o f

1 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 ^ i ^ . 0 ^ i ^ ^ . 0 ^ i u n d e c a n e - 8 , 1 1 - d i o n e

I V b ( C D C l s ) .

_ J U

3 2 5

FI GURE V I - 3 1

3 0 0 MHz I n H0M2DJ W R S p e c t r u m o-f

1- M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 . 0 3 , 10 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I Vb ( C D C I 3 ) .

_Av\—/L L&

i ML, v-j

3 H - Î

3 2 - 1

3D H

2 D - :

3 b -

3 H -

32

f i.

i l

Hz3G-

!0 Ib

I H -

1 3 -

1 0 -

B -

f ; ü •

^ c: é f S

s • ê 6 • ! 0. '

0 • &

!» I

bbD bOD 550 500 H5D HDD 350 300 350

3 2 6

F I G U R E V I - 3 2

S t a c k e d P l o t o-f t h e H0 M2 DJ NMR S p e c t r u m o f F i g I V - 3 1 o f

1 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 | i4 , 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V b ( C D C I 3 ) .

I I i ru ru r j ru ri_i^y—- — — — —

3 2 7

F I G UR E V I - 3 3

3 0 0 MHz 1h a n d 7 5 MHz HETCOR NMR S p e c t r u m o-f

1- M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 ) ^ . 0 3 ) 1 6 . 0 5 ) 9 ] u n d e c a n e - 8 , l l - d i o n e

I V b ( C D C I 3 ) .

_ nm

Ln

3.3 l . 3

3 2 8

m i x t u r e o-f me t h a n o l - h e x a n e ) a f f o r d e d 2 - m e t h y l - l , 4 , 4 a , 8a - t e t r a h y d r o - e n -

d o - 1 . 4 - m e t h a n o n a p h t h a l e n e ( l l l c ) as a p a l e ye l l ow m i c r o c r y s t a l l i n e

s o l i d ; mp 1 0 1 . 0 - 1 0 1 .5°C.

2 - H e t h v l - 1 . 4 , 4 a . 8a - 1 e t r a h v d r o - e n d o - 1 . 4 - m e t h a n o n a p h t h a l e n e - 5 . 8-

d i one ( I I I c ) .

NMR s p e c t r u m <300 MHz, CDCI3 , F i g V I - 3 4 ) : & AB p a t t e r n

(JAB = 10. 4 Hz) &B 6 . 63 (1 H, H?) , 6a 4 . 5 8 (1 H, H^) ,

5 . 62 <dq, J 3-4 = 3 . 0 , J g-met hyl = 1.6 Hz, 3 H, H3) , 3 . 41 (m,

J4~4a ~ 4 , 2 , J 4—3 — 3 . 0 , 'I4—9a ~ 1. 6 , 'I4—9s “ 1.4 Hz, 1 H,

H4) , 3 . 30 (m, J i - 8a = 3 . 9 , J i - 9a = 1 . 6 , J i - 9s = 1.4 Hz, 1 H,

Hj ) , 3 . 2 9 ( d d , Jga_4a = 8 . 7 , J g a -1 = 3 . 9 Hz, 1 H, Hga) , 3 . 2 4

<dd, Ü4a-8a — 8 . 7 , J4a—4 — 4 . 2 Hz, 1 H, H4a) 1 1.62 ( d ,

J me t h y l -3 ~ 1 .6 Hz, 3 H, CH3 ) , 1 . 5 7 ( d d d , J 9a - 9s ~ 8 . 6 , J 9a -1

= 1 . 6 , J 9 a-4 = 1.6 Hz, 1 H, H y a ) , 1.43 ( ddd , J 9s - 9a = 8 . 6 ,

J 9S-I = 1. 4 , J 95-4 = 1.4 Hz, 1 H, Hps) ;

IR s pec t r um (CCI 4 s o l u t i o n c e l l . F i g V l - 3 5 ) : 3058 ( w ) , 2990 (m),

2970 (m), 2940 (m), 2915 (m) , 2870 (m) , 1678 ( v s ) , 1605 (m), 1442

(m), 1375 (m) , 1321 (w) , 1296 ( s ) , 1274 ( s ) , 1135 (m) , 1115 (m) , 899

(w), 858 ( s ) c m ' l ;

Mass s p e c t r u m (70 eV, Fig V I - 3 6 ) : m/e ( r e l a t i v e i n t e n s i t y ) 189 (M

1, 5 . 6 ) , 188 (M+, 3 9 . 4 ) , 91 ( 1 4 . 4 ) , 80 ( 1 0 0 . 0 ) , 79 ( 5 2 . 8 ) , 77

(20. 1) , 66 ( 3 . 4 ) , 65 ( 7 . 8 ) ;

and Soin Echo s p e c t r a (20 MHz, CDCI3 , F i g V I - 3 7 ) : G

199.49 (Cg or C5) , 199.13 (C5 or C g ) , 145.42 (C2) , 141.75

(C7) , 141.35 (Cé>, 127.45 (C3) , 5 3 . 4 4 ( C ; ) , 49 . 26 (C4a ) ,

49 . 02 (C4) , 4 8 . 6 3 (C9) , 48 . 06 (Cgg) , 16.21 (Cmethyl>;

HOMCOR NMR s o e c t r u m (300 MHz, CDCI3 , F i g V I - 3 8 ) ;

H0M2DJ NMR s p e c t r u m (300 MHz, CDCI3 , F i g V I -39 t h rough VI-41) ;

HETCOR NMR s p e c t r u m (300 and 75 MHz, CDCI3 , F i g VI-42 through

VI-44) .

A n a l . C a l c u l a t e d f o r Ci2Hi2^2* 8 , 7 6 . 5 7 ; H, 6 . 4 3 . Found: C,

76 . 3 5 ; H, 6 . 4 1 .

3 2 9

FI GURE V I - 3 4

3 0 8 MHz NMR S p e c t r u m o-f

2 - M e t h y l - l . 4 , 4 a , 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a ! e n e - 5 , 8 - d i o n e

I I I c ( C D C I 3 / T M S ) .

3 M I C K U M t l b K S

a ; m l

III

1?0004000 3000 (CM 7500

WCOG5

1700 1 0 0 0 (C M ') 8 0 0

F i g u r e V I - 3 5 . IR Spec t rum of2-Methv1- 1. 4 . 4 a . 8a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e I I I c ( C C I g ) .

331

FIGURE VI - 3 6

Mass Sp ec t r u m o-f

2-Methyl - 1 , 4 , 4 a , S a - t e t r a h y d r o - e n ^ - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n eI I I c

$er.lM,3@D/M,270D 50-300 riCN 1.02E+05# 168 n $428 ITftTPPCB WQSSrS ft_________

TÂN 18529 "99 SPECTRA

nniN seMMQX 300

S^E-45 l:i2 H lé0 2 180 22SEPT82 TK ^eD.)M,30D/M,270D S0-3P©

100 PEAKS BASE ABUNDANCE 13777 10> 50 .9 PL«30O.O Ml" 50 .0 M2"298.0

BASE PEAK HSTfiP" 0

fhAw 10529 SPH 3R7 .4

10!8!6 !

4!2!i i i i n T t i t » i n H t i

100 Tie”

MASS \ MASS %BIG 60 110.1 2 .3

5 0 .e 2 .6 115.1 5 .451.2 6 .2 116.2 1 .952.2 3.4 117.1 4 .753.1 4 .8 116.1 .654.1 8 .5 119.1 .855.1 1 .6 127.1 1 .757.2 .4 126.1 1 .462.1 1 .2 129.1 1 .263.1 3 .5 131 .1 2 .464 .2 .9 132.1 1 .865.1 7 .8 133.1 .666.1 3 .4 141 .1 1 .167.1 .7 142.1 .774.1 1.1 143.1 .875.1 .9 145.0 6 .377.1 20.1 146.1 1 .176.1 7 .2 147.0 .679.1 62 .8 159.1 i .580.1 $08.0 160>.l 4 .68 1 . 1 161 .0 .982.1 4 .0 171 .0 .486.0 .4 173.0 2 .489.1 1 .9 174 .1 .591.1 14.4 188.1 39-492.2 2 .2 IS r.O 6 .b93.2 .7 190.2 .6

102.2 1 .0103.1 3 ,4104.2 .6 LAST 4105.1 3 .5 174 .1 .5106.1 1.1 180.1 39 .4107.1 .6 109.0 5 .6109.1 1 .9 190.2 .6

3 3 2

F I G UR E V I - 3 7

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o-f

2 - M e t h v 1 - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c ( C D C I 3 ) •

■■ . . - i . i . : i . '

' : :- i .

3 3 3

F I G U R E V I - 3 8

3 0 0 MHz 1h HOMCOR NMR S p e c t r u m o f

2 - M e t h y l - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c ( C D C I 3 ) .

A l?L

« #

o - oCD

m t

□- S

a□ goo §□

3 3 4

F I G U R E V I - 3 9

3 0 0 MHz H0 M2 DJ ^ t i R S p e c t r u m o-f

2 - M e t h y l - 1 . 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

i _ j

u r

n; IibDD

3 3 5

F I G U R E V I - 4 0

Expanded Contour P l o t o-f t h e H0M2DJ Spect rum o-f F i g VI - 3 9 which

I n c l u d e s t he 3 . 3 - 3 . 5 ppm and 15-35 Hz S p e c t r a l Region o-f

2 - M e t h y l - 1 . 4 . 4 a . 8 a - t e t r a h v d r o - en d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e

I I I c (CDCI3 ) .

Hz

34

33

3D

3B

Eh34

33

30

IB

I b

V

3 3 6

F I G UR E V I - 4 1

S t a c k e d P l o t o-f t h e H0 M2 DJ S p e c t r u m o-f F i g V I - 3 9 o-f

2 - M e t h y l - 1 , 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c ( C D C I 3 ) .

□ m a m □ m a mL n D ~ z r m m r u r u — —

3 3 7

F I GURE V I - 4 2

3 0 0 MHz a n d 7 5 MHz HETCOR NMR S p e c t r u m o f

2 - M e t h y l - 1 . 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c (CDCl3) .

J

0

3 3 8

FI GURE V I - 4 3

Expanded Cont our P l o t of t h e HETCOR NMR Spect rum of F i g VI - 22 which

I n c l u d e s t h e 2 . 8 - 3 . 4 and 4 7 - 5 5 ppm l^C Sp e c t r a l Regi ons of

2 - Me t h y l - 1 , 4 , 4a . 8a - t e t r a h v d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i one

I I I c (CDCl3) .

s 2.90

3 3 9

F I G UR E V I - 4 4

S t a c k e d P l o t o-f t h e HETCOR S p e c t r u m o-f F i g V I - 4 2 o-f

2 - M e t h y l - 1 ■ 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I c ( C D C l 3 ) .

3 4 0

1-M&thvi - 1 . 4 , 4 a , 8a - t e t r a h v d r o - e n d o - 1 . 4 - me t hanonaph t ha l e n e - 5 . 8 -

d i o n e ( 1 I l d ) .

NMR s p e c t r u m (300 MHz, CDCl3 , F i g V I - 4 5 ) : G AB p a t t e r n

( J a b = 10 . 3 HZ) Gb 6 . 5 7 (1 H, H^) , Ga 6 . 5 3 (1 H, H7 ) ,

6 . 0 4 ( d d , J 3-2 = 5 . 6 , J 3-4 = 2 . 8 Hz, 1 H, H3) , 5 . 8 6 ( d , J 2-3

= 5 . 6 Hz, 1 H, H2> , 3 . 44 (m, J 4 - 4 a = 4 . 2 , J 4-3 = 2 . 8 , J 4- 9a =

2 . 0 , J 4—9s “ 1.4 Hz, i H, H4) , 3 . 3 7 ( dd , J 4a —8a ~ 8 . 2 , J 4a —4

= 4 . 2 , 1 H, H4a ) , 2.88 ( d , J 8 a - 4 a = 8 . 2 Hz, 1 H, H8a > 5 1 . 57 ( s ,

3 H, CH3 ) , 1.44 (dd , J 9 a - 9 s = 8 . 7 , J 9a -4 = 2 . 0 Hz, 1 H, H9a ) ,

1 . 39 k d d , J 9S—9a “ 8 . 7 , J 9 s —4 “ 1.4 Hz , 1 H, H95 ) $

IR s p e c t r u m (CCI 4 s o l u t i o n c e l l , F i g V I - 4 6 ) : 3062 (w) , 3000 (w) ,

2970 (m) , 2936 (m), 2872 ( w ) , 1678 ( v s ) , 1450 (w) , 1381 ( w ) , 1342

(w) , 1297 ( m ) , 1274 (m), 1143 (w) , 1117 (w) , 1079 (m) , 1036 (w) , 858

(w) cm~l ;

Mass s p e c t r u m (70 eV, Fig V I - 4 7 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 189 (M +

1, 6 . 6) , 188 (M+, 4 4 . 4 ) , 91 ( 1 2 . 8 ) , 80 ( 1 0 0 . 0 ) , 79 ( 5 1 . 6 ) , 77

( 18.6) , 66 ( 1 . 3 ) , 65 ( 4 . 7 ) ;

^8ç and Spin Echo s p e c t r a (20 MHz, CDCl3 , F i g V I - 4 8 ) : G

199.26 (Cg or C5) , 198.60 (C5 or 83) , 141.90 (C7) , 141.40

( C 4 ) , 138. 76 (C2>, 134.70 (C3) , 5 7 . 39 ( C p , 5 4 . 9 7 (C9) ,

52 . 29 ( Cg a ) , 5 0 . 50 ( 84a ) , 48.80 ( 84) , 17 . 08 ( C ^ e t h / l ) :

HCrCOR NMR s p e c t r u m (300 MHz, CDCl 3 , F i g V I - 4 9 ) ;

HETCOR NMR s p e c t r u m (300 and 75 MHz, CDCl3 , F i g VI-50 and V I - 5 1 ) .

Anal . C a l c u l a t e d f o r C12H12O2 : C, 7 6 . 5 7 ; H, 6 . 4 3 . Found: C,

7 6 . 8 7 ; H, 6 . 6 7 .

2 -Me t h v l p en t a c v c l 015 . 4 . 0 . 0 2 , 6 . @3 , 10 . 0 5 , 9 ] u n d e c a n e - 8 . 1 1 - d i o n e

( IVc) . I n t r a m o l e c u l a r p h o t o c h e mi c a l c y c l i z a t i o n of I I I c t o IVc was

p e r f o r me d by u s i n g the method d e s c r i b e d above f o r t h e p h o t o l y t i c

c o n v e r s i o n of I l l b t o IVb. Compound IVc p r e p a r e d v i a t h i s p r o c e d u r e

was o b t a i n e d a s a c o l o r l e s s m i c r o c r y s t a l l i n e s o l i d ( 88%); mp

181-1820C.

NMR s p e c t r u m (300 MHz, CDCl3 , F i g VI - 5 2 ) : G 2 . 9 5 ( d d t d ,

341

FIGURE V I - 4 5

300 MHz NMR S p e c t r u m of

1-Methyl - 1 . 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a ï e n e - 5 , S - d i o n e

IVd (CDCI3/T M S ) .

r

.1 -li

“ H TH.O

3 MICROMETERS

I

illlH

wto

4000 3 5 0 0 3000 (CM) 2500 2000 1000 1600 1400 1700 1 0 0 0 (CM ) OOO

F i g u r e V I - 4 6 . IR Spec t rum of1 - M e t h v I - l , 4 , 4 a . 8 a - t e t r a h v d r o - endo- l . 4 - m e t h a n o n a p h t h a ï e n e - 5 , 8- d i o n e l l l d ( C C I q ) .

343

FIGURE V I -47

Mass Spect rum of

1-Methyl - 1 , 4 , 4 a , 8 a - t e t r a h y d r o - endo- 1, 4 - m e t h a n o n a p h t h a l e n e - 5 , 8- d i o n e

I l l d (CDC13/TMS).

llC -4^SflD.in»ricH 1 .CTPTPPr

C12HI202 166 220CT62 38D/M.270D 50-380 28C*65# 168 n 16130 0 MASSES A

"TK-------- rRN18644. SPECTRUM MOST INTENSE 136

MASS % MASS4 . 136PEAK: UARHtHC..........

\ MASS, RT .48 MIN, BASE PEAK 80.2 .POSSIBLE OVERFLOW

•< MASS % MASS •<51 .1 3.0 83.1 .3 115.1 5 .7 147.0 , 6 187.1 .762.1 2.2 84 .1 .1 116.1 1 .9 148.0 1 IP"» .1 4 4 . 4

I 53.1 3.0 85.1 . 2 117.1 6.1 149.0 2 169.1 6 , 6\ 54 .1 5.2 86.8 .3 118.1 1 . 0 150.0 e 190.1 .6\ 56.1 .8 87.1 .3 119.1 .7 151.2 0\ 6 6 .2 .1 88.1 .1 120.1 .1 151.9 0\ j 67.1 .2 89.1 1 .7 121 .1 ,1 153,1 1\ / 6 8 .8 .0 90.1 .5 122.0 .0 153.9 e

59 .2 .0 91 .1 13.9 123.1 .1 155.1 1

V ^ 61 .16 2 .163.1

.2

.02.3

92.193.194.1

2 .7.7.3

124.3125.1126.1

.6

.0

.1156.1157.0153.0

011

U H . e64 .1 . 6 95.1 .2 1 2 7 . 2 I . 7 159.1 7

A65.1 4.7 96.1 .2 1 2 5 . 2 1 . 6 1 6 0 . 1 6 96 6 .1 1.3 97.1 .2 1 2 9 . 0 1 .2 1 ( 1 . 1 267.16 C . 1

.4

. 29 8 , 19 9 . 0

. 1

. 113^.0 1 1 . 0 2 . 5

1 6 2 . 1 1 6 3 , 2

I0

6 9 . 1 . 2 101 .1 . 2 i : c . o 1 . 3 1 ( 5 . 1 07 0 . I . 1 1 0 2 , 1 17*' - . 0 . 6 1 6 7 . 1 071 . 1 .1 1 0 3 , 1 3 , 0 I : •«. 1 I 6 - ^ . 0 17 2 . 1 .1 1H4 . 3 . 9 1 . 0 !i I 7.5 Û 37 : . 1 .1 1 0 5 , 1 3 . 6 1 : - . 1 .0 17 1 . 1 57 4 . 1 . ? 1 0 5 , 1 1 , 5 1 : 9 . o .0 1 7 2 . 6 175 .1 . 6 1 0 7 . 1 . 4 i ? ? . i 1 1 7 3 . 0 2 67( . 1 . 6 I P S , I 1 . 4 1 4 1 4 . n . 0 1 7 4 . 0 57 7 . 1 1 3 . 6 I P Q . l 2 . 4 14 ! . 0 1 . 2 1 7 5 . Ô I? e . 1 5 . 5 1 1 0 . 1 1 . 9 i 4 . : . i . 5 1 7 6 , 0 0

V 79 . 1 5 1 . 6 111 .1 1 1 2 . 1

. 2 14 : . 1 , 9 1 7 7 . 1 0

. 1 1 . 0 1 7 9 1 0> 2 3 51.1 7 . 6 113.1 . 1 14Ç.1 5 .9 105.1 1

C12H1^02 1 8 b 2 2 0 C T 8 2 T E MD,1M,3BD/M,2?0D 50-3OC 136 PEAKS BASE ABUf'DAHCE 3556

16» 5 0 .6 ML-308.0 Ml» 5 0 .0 M2"39G.0BASE PEAK 86.2

NSTRP» 0lej

41

21

60 80 UO140

268 280 300 340 380

3 4 4

FI GURE V I - 4 8

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o f

1 - M e t h y l - 1 , 4 , 4 a , 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a ï e n e - 5 , 8 - d i o n e

I l l d ( C D C l g ) .

CH,

3 4 5

F I GURE V I - 4 9

3 0 0 MHz HOMCOR NMR S p e c t r u m o-f

1 - M e t h y l - l . 4 , 4 a . 8 a - t e t r a h v d r o - e n d o - 1 . 4 - m e t h a n o n a p h t h a ï e n e - 5 , 8 - d i o n e

I I I d ( C D C I 3 ) .

* *« "

3 4 6

F I GURE V I - 5 0

3 0 0 MHz 1 r a n d 7 5 MHz HETCOR NMR S p e c t r u m o-f

1 - M e t h y I - l . 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - 1 , 4 - m e t h a n o n a p h t h a ï e n e - 5 , 8 - d i o n e

I I I d ( C D C l g ) .

i

3

1cz] O □ C7J □ [ ! □ □ □ a

3 4 7

FI GURE V I - 5 1

Expanded Contour P l o t o-f the HETCOR Spectrum o-f F i g VI - 5 0 which

I n c l u d e s t he 5 . 8 - 6 . 1 and 138-145 ppm S p e c t r a l R e g i o n s o-f

1- Me t h y l - 1 . 4 . 4 a . 8 a - t e t r a h y d r o - endo- 1 , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e

I I I d (CDCI3 ) .

[%]

cn

a C 3 [Z] c ] [-71 cz i [73 cz i c ] a

Qi m rn r— r _ n _ f ] i l l u i 3 -

3 4 8

FI G UR E V I - 5 2

3 0 0 MHz NMR S p e c t r u m o-f

2 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 ) 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V c ( C D C I g / T M S ) .

TI c

3 4 9

^ 5 - 6 ~ 5 . 3 , J 5 - 9 = 4 . 0 , J 5 - 4 C = 1 . 6 , J s - 4 a ~ 1 - 6 , J 5 - 3 =

1 . 2 Hz, 1 H, Hg) , 2 . 8 0 (dddd, J 5 - 7 = 6 . 6 , J ^ - 5 = 5 . 3 , =

1 . 6 , J ^ - 9 = 1 . 5 Hz, 1 H, H4 ) , 2 . 7 7 ( ddd , J ^ - i = 8 . 4 , =

6 . 6 , J 7 - 9 = 2 . 6 Hz, 1 H, H7 ) , 2 . 7 3 ( ddd , J 1 0 - 9 = 1 0 . 1 , J 1 0 - 3

= 3 . 9 , J 1 0 - 1 = 2 . 9 Hz, 1 H, Hi 0 ) , 2 . 6 7 (dddd, J 9 - 1 0 = 1 0 . 1 ,

J 9 - 5 = 4 . 0 , J 9 - 7 = 2 . 6 , J 9 - 6 = 1 . 5 Hz, 1 H, H9 ) , 2 . 5 4 ( d t d ,

J 3 - I 8 = 3 . 9 , J 3 - 4 5 = 1 . 6 , J3 - 4 a = 1 . 6 , J 3 - 5 = 1 . 2 Hz, 1 H,

Hg) , 2 . 4 8 ( ddd, J 1 - 7 = 8 . 1 , J l - 1 0 = 2 . 9 , J i - 6 = 1 . 6 Hz, 1 H,

Hi >, 1 . 97 ( d t , J 4 a - 4 s = 1 1 . 4 , J 4 a - 3 = 1 . 6 , J 4 a - 5 = 1 . 6 Hz, 1

H, H4a^) 1 . 9 3 ( d t , J 4 S—4a “ 1 1 . 4 , J 4 s —3 ~ 1 . 6 , J 4 S—5 — 1 . 6

Hz, 1 H, H4 5 ) , 1 . 28 ( s , 3 H, CHg);

IR spec t rum (KBp , F i g V I - 5 3 ) : 2978 ( s h , s ) , 2961 ( s ) , 2950 ( s h , v s ) ,

2918 ( m) , 2870 ( s h , v s ) , 2868 (m) , 1750 ( v s ) , 1730 ( s h , v s ) , 1710

( s h , v s ) , 1451 ( m) , 1368 ( w ) , 1320 ( m) , 1284 ( m ) , 1272 ( m) , 1239 ( m) ,

1217 (m) , 1191 ( m ) , 1180 ( m ) , 1137 ( m ) , 1121 ( m ) , 1058 ( s h , m ) , 1040

( s ) , 969 (m>, 949 ( m) , 893 (m), 855 (w) , 842 ( w ) , 835 ( s h , w ) , 776

( w ) , 762 ( w ) , 751 (w) c m' l ;

Mass s pect rum (70 e V , F i g V I - 5 4 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 189 (M +

I, 1 4 . 1 ) , 188 (M+, 1 0 0 . 0 ) , 160 ( 1 4 . 5 ) , 159 ( 1 1 . 8 ) , 145 ( 2 9 . 1 ) , 133

( 1 1 . 3 ) , 131 ( 1 4 . 1 ) , 118 ( 5 . 8 ) , 117 ( 4 2 . 5 ) , 1 16 ( 6 . 5 ) , 1 15 ( 2 0 . 1 ) , 105

( 1 0 . 5 ) , 94 ( 7 . 1 ) , 91 ( 2 0 . 8 ) , 88 ( 7 0 . 7 ) , 79 ( 1 3 . 2 ) , 77 ( 8 . 7 ) , 66

( 6 . 4 ) , 65 ( 8 . 2 ) ;

13ç and Spi n Echo s p e c t r a (20 MHz, CDCI3 , F i g V I - 5 5 ) : i

2 1 1 . 6 7 ( C g ) , 2 1 0 . 4 6 ( C i j ) , 5 5 . 6 4 ( C i g ) , 5 3 . 0 4 (C9 ) , 5 0 . 2 1

( C g ) , 4 8 . 3 8 ( C p , 4 5 . 9 9 ( Cg) , 4 4 . 6 1 ( C g ) , 4 4 . 0 6 ( C^) , 4 0 . 3 0

(C7 ) , 3 7 . 7 7 (C4 / , 2 0 . 6 9 (Cmethyl^I

HOMCOR NMR spec t rum ( 300 MHz, CDClg, F i g V I - 5 6 ) ;

H0M2DJ NMR spe c t r um ( 300 MHz, CDClg, F i g V I - 5 7 and V I - 5 8 ) ;

HETCOR NMR spec t rum ( 300 and 75 MHz, CDClg, F i g V I - 5 9 and V I - 6 0 ) .

Anal . C a l c u l a t e d -for C12H12O2 : C, 7 6 . 5 7 ; H, 6 . 4 3 . Found: C,

7 6 . 4 2 ; H, 6 . 4 7 .

100

zo

3 MICROMETERS A

HtirlOOr|r-* , 1 0 0

lAon

wcnCD

4000 3500 3000 (CM ') 7500 7000 0.00 1000 (CM')

F i g u r e V I - 5 3 . I R S p e c t r u m o-f2 - M e t h y l p e n t a c y c l o C S . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 0 5 , y ] u n d e c a n e - 8 , 1 1 - d i o n e I V c ( K Br >

351

FIGURE V I - 5 4

Mass Spect rum of

2-Methyl p e n t a c y c 1o [ 5 . 4 . 8 . 8 2 , 6 . 0 3 , 18 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 -d ione

IVc.

PR TÏÏ iTOTTffS Tkl@eD,lM,3eD/M,270D 50-300 rtCN 2 .01E*04# 168 n 806 C TP TP PrO A

168.0

« K 84 C12H1202 180 TKrUMieSBÔ, SPECTRUM 6. 245PERKS. RT .98 MIN. BASE PEAK 186.MOST INTENSE 245 WARNING... ..POSSIILE OVERFLOW

MASS •< MASS \ MASS •< MASS 4 MASS %8 0.1 1.1 63.1 1 .4 114.1 .3 145.0 29.1 177.1 . 88 1 .2 3 .8 84 .1 .5 115.1 28.1 146.0 6 .9 178.1 .58 2 .2 1 .1 85.1 1.7 116.2 6 .5 147.1 2 .0 179.1 .563 .1 2 .5 66,1 .4 117.1 42 .5 149.6 6 . 0 180.1 ,284 .1 .7 87.1 .5 118.1 6 . 6 158.0 .9 181 .1 .386 .1 2.1 89.1 .2 119.1 3 .6 151.1 .6 182.2 .26 8 .1 .4 89 .8 2.5 128.1 1 . 8 152.1 .5 183.2 .487.1 1.8 90.1 .8 121 .1 1.3 153.1 . 6 184.2 .18 0 .1 .1 91 .1 26.8 122.1 .9 154.1 .3 185.1 .361 .1 .2 92.2 6.8 123.1 1.4 155.0 1.0 186.1 .182 .1 .8 93.1 2.4 124.1 .5 156.1 .3 187.1 3.883 .1 2 .3 94 .1 7.1 126.2 1 . 6 157.0 .5 188.1 108.884 .1 2 .5 95.1 5.0 126.1 . 6 159.1 .3 189.1 14.165.1 8 .2 96.1 2 .2 127.1 4 .5 159.1 11 .8 198.1 1 .468.1 8 .4 97.1 2.2 128.1 4 .6 160.1 14.587.1 2.1 98.1 .7 129.1 5 .7 161 .6 3 .06 8 . 1 1 . 0 9 9 . 1 .8 130.0 1 . 8 1 6 2 . G . . 66 9 .0 2.1 1 0 0 1 4 . 1 1 6 3 . 1 .670 .1 1 01 .1 . 4 1 3 2 . 0 11 . 3 11- 4 . 1 .271 .2 1 . 0 1 0 2 . 1 I .4 1 33 . 0 5.1 I 65.1 .872 .2 .3 1 0 3 . 1 4.0 124 . 0 1 . 4 1 6 6 . 1 .37 3 .0 104.1 2.3 126.0 .9 167.1 1 .174 .0 . 6 105.1 6.7 1 3 6 . 1 .3 163 . 1 . 275 .1 .7 106.1 2.6 1 3 7 . 0 . 8 I .376 .1 .7 107.1 1 .6 133.0 .5 170.1 1 .577.1 8 .7 ICS.I 5.9 129.1 .7 171 . I 1 .878 .1 4 .2 109.1 4.2 140.2 .3 .379.1 13.2 1 1 0 . 1 5.1 141 .0 3 .6 173.1 9 .8

- 6 0 . 1 70 .7 111.1 1 .2 1 4 2 . 0 2 .3 174 .1 1 .581 .1 3 .7 112.2 .6 143 .1 4 .2 175 .2 .382 .1 1 .9 113.2 .9 144.1 2 .4 176.1 .3

i58 ' -------iaeD,|M ,30D/M ,2?0D ♦200V 56-300 245 PEAKS BASE ABUNDANCE 3756

40- 50 .0 ML-300.0 hl« 50 .e M2-390.0BASC PEAK 106.1

HSTfiP- 010£

*r*r 66 100 120 140 180 2 0 0t0£

616f4f

280 300 320 340

3 5 2

F I G UR E V I - 5 5

2 0 MHz a n d S p i n E c h o NMR S p e c t r a o-f

2 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 , @ 3 , 1 0 , 0 5 , 9 ] y n d e c a n e - 8 , 1 1 - d i o n e

I V c ( C D C I 3 ) .

3 5 3

FI GURE V I - 5 6

3 0 0 MHz 1h HOMCOR m R S p e c t r u m o-f

2 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 | 4 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I Vc ( C D C I 3 ) .

J

f-1 — un unlin r i [:] en cn cn en en cc cn enun cn un cm m cn un eu un □ un un un n - n~ en nn ru ru

3 5 4

F I G U R E V I - 5 7

3 8 0 MHz H0 M2 DJ NMR S p e c t r u m o-f

2 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 | 6 . 0 3 , 1 0 . 0 5 ! 9 ] y n ( j e c a n e - 8 , 1 1 - d i o n e

2 5 -

2 2 -

ic _

c _

Li: c.

3 5 5

F I G U R E V I - 5 8

S t a c k e d P l o t o-f t h e H0 M2 DJ NMR S p e c t r u m o f F i g V I - 5 7 o f

2 - M e t h y l p e n t a c y c l o I 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 0 5 , ? ] u n d e c a n e - 8 , 1 1 - d i o n e

I V c ( C D C I 3 ) .

z r n j a o j - i ] i r n j c j n 3 _ D r r r u a m _ a m m m ru ru ru nj oj — — — - - —N

X

3 5 6

F I G U R E V I - 5 9

3 0 0 MHz a n d 7 5 MHz HETCOR NMR S p e c t r u m o-f

2 - M e t h y l p e n t a c y c l o E 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V c ( C D C l g ) .

_ H 3

m

_Dm

0

3 5 7

F I G UR E V I - 6 0

S t a c k e d P l o t o f t h e HETCOR NMR S p e c t r u m o f F i g V I - 5 9 o f

2 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 j ^ . 0 3 , 1 0 . 0 5 , 9 ] y n d e c a n e - 8 , l l - d i o n e

I V c ( C D C I 3 ) .

CDm

3 5 8

3 - Met hvl pen tac vc1 q [ 5 . 4 . . 0 ^ i^] unde c ane - 8 . l l - d i o n e

( IVd) . I n t r a m o l e c u l a r p h o t o c h e mi c a l c y c l i z a t i o n o-f 11 Id t o IVd was

per-formed by u s i n g t he method d e s c r i b e d above -for t h e p h o t o l y t i c con­

v e r s i o n of I l i b t o IVb. Compound IVd prepared v i a t h i s p r o c e dur e was

o b t a i n e d as a c o l o r l e s s m i c r o c r y s t a l l i n e s o l i d (85%): mp 175°C.

NMR spectrum (300 MHz, CDClg, F i g V I - 6 1 ) : G 3 . 2 8 (dddt ,

Jd - 2 = 1 0 . 8 , J 6 - 7 = 6 . 0 , J ^ - 5 = 5 . 2 , J ^ - i = 1 . 8 , = 1.8

Hz, 1 H, H^) , 2 . 8 7 (m, J y - a = 6 . 0 , J7 - 9 = 2 . 4 Hz, 1 H, Hy) ,

2 . 8 7 (m, J2 - 6 = 1 0 . 8 , J2 - I 8 = 2 . 0 Hz, 1 H, H2 ) , 2 . 8 5 (m,

= 5 . 2 , J 5 - 9 = 4 . 0 , J 5 - 4 a = 1 . 5 , J5 - 4 S = 1-4 Hz, 1 H, H5 ) ,

2 . 8 ( m, J l - 1 0 = 2 . 5 , J i _ 6 = 1 . 8 Hz, 1 H, H p , 2 . 7 8 (dddd,

Jy - 1 0 = 9 . 7 , J9 - 5 = 4 . 0 , J y - y = 2 . 4 , J9 - 4 = 1 . 8 Hz, 1 H,

Hy) , 2 . 4 5 (ddd, J 1 0 - 9 = 9 . 7 , J 1 0 - 1 = 2 . 5 , J 1 0 - 2 = 2 . 0 Hz, 1

H, H i g ) , 1 . 99 ( dd, J 4 s - 4 a “ 1 1 . 2 , J 4 s - 5 ~ 1 . 4 H z , 1 H, H4 5 ) ,

I . 8 4 \ d d , J4a—4s — 1 1 . 2 , J 4 a —5 — 1.5 Hz, 1 H, H4 &/ 1 . 22 ( s , 3

H, CHg) ;

IR s pe c t r um (KBr p e l l e t . F i g V I - 6 2 ) : 2982 ( s ) , 2962 ( s ) , 2940 ( s ) ,

2918 ( s ) , 2860 ( s ) , 2820 ( w ) , 1750 ( v s ) , 1720 ( v s ) , 1700 ( s h , v s ) ,

1447 ( s ) , 1373 ( m) , 1313 ( m) , 1273 ( s ) , 1240 ( s ) , 1181 < s ) , 1118 (m) ,

1092 ( m ) , 1057 ( v s ) , 971 ( m) , 912 ( m) , 860 (m) , 814 ( w ) , 774 ( w) , 750

(w) cm"l ;

Mass s pe c t r u m (70 eV, F i g V I - 6 3 ) : m/ e ( r e l a t i v e i n t e n s i t y ) 189 (M -t-

I , 1 3 . 5 ) , 188 (M+, 1 0 0 . 0 ) , 173 ( 8 . 6 ) , 160 ( 1 5 . 5 ) , 159 ( 1 1 . 2 ) , 145

( 3 2 . 8 ) , 132 ( 2 7 . 9 ) , 131 ( 2 5 . 3 ) , 117 ( 9 1 . 7 ) , 115 ( 2 9 . 4 ) , 91 ( 2 6 . 1 ) , 81

( 6 . 5 ) , 80 ( 3 6 . 1 ) , 79 ( 1 4 . 4 ) , 77 ( 1 5 . 9 ) , 65 ( 7 . 8 ) ;

and Spin Echo NMR s p e c t r a (20 MHz, CDClg, F i g V I - 6 4 ) : G

2 1 1 . 9 2 (Cg or C i p , 2 1 1 . 2 7 ( C n or Cg) , 5 9 . 9 1 ( C i 0 ) , 55 . 39

( C y ) , 5 2 . 3 3 ( C g ) , 4 5 . 7 9 (C4 ) , 4 4 . 3 1 (C5 ) , 4 4 . 6 8 ( C y ) , 44. 00

( C g ) , 4 2 . 8 6 ( C y ) , 3 9 . 5 0 ( C p , 15 . 58 ( C me t h y l ) : a s s i g n me n t s

f o r carbon atoms Cy and Cg a r e t e n t a t i v e ;

HOMCOR NMR spectrum (300 MHz, CDClg, F i g V I - 6 5 ) ;

H0M2DJ NMR spectrum (300 MHz, CDClg, F i g VI - 6 6 and V I - 6 7 ) ;

HETCOR NMR spectrum (300 and 75 MHz, CDClg, F i g VI - 6 8 through

3 5 9

F I G U R E V I - 6 1

3 0 0 MHz NMR S p e c t r u m o-f

3 - M e t h y l p e n t a c y c l o C 5 . 4 . 0 . 0 2 j ^ . 0 3 , 1 0 . 0 5 > 9 ] u n d e c a n e - 8 , l l - d i o n e

I V d ( C D C I 3 / T M S ) .

3

ICO

zo

3 MICROMETERS 4

t-lKlOOII

;

%

ICOO (CM') ROO1400

WCKCD

4000 3500 3000 (CM ') -4500 2000 l l j l . O

F i g u r e V I - 6 2 . I R S p e c t r u m o f3 - M e t h y l p e n t a c y c l o E 5 . 4 . 0 . 0 2 , 0 . 0 3 , 1 8 . 0 5 , ° ] u n d e c a n e - 8 , l l - d i o n e I V d ( K B r )

3 6 1

F I G UR E V I - 6 3

M a s s S p e c t r u m o-f

3 - M e t h y l p e n t a c y c l o C 5 . 4 . 0 . 0 2 , 6 . 0 3 , I 8 . 0 5 , 9 ] u n d e c a n e - 8 , l l - d i o n e

I V d .

PDC-50 C12M1202 leg^socfe #eD,lM,3eD/M,270D 56-380 rrcN % .26C*esm leen j?666LTftlPPgP

K lt-B a C12H1202 168 220CT62 TK

168.8

rRNI064S. SPECTRUM 8 , 184PERKS. RT .98 HIM.MOST INTENSE 104- MASS X Hass X MASS « HASS X

60.1 2 .3 86.1 .4 120.1 .6 169.1 .7S l . l 6 .0 87.1 .6 121 .1 • 3 170.8 1.362.1 4 .8 80.1 .2 122.1 • 1 171 .1 1 .0

>63.1 3 .8 89.1 3 .7 123.1 . .2 173.0 0 .6•64.1 1.1 90.1 1.2 126.2 • 2 174.0 1 .0S S .l 1 .7 91 .1 26.1 127.1 4 .8 175.8 .1• 67 .6 1 .3 92.1 6 .0 128.2 4 .6 187.1 1 .9(61.1 .2 93.1 1.7 129.0 6 .7 188.1 1 0 0 .g62.1 .9 94.1 2 .4 130.0 2 .8 169.1 13.5

|63 .1 3 .0 95.1 2 .3 131 .1 26 .3 190.1 1 .264.1 2 .3 96.1 .5 132.1 27 .9 191.1 .16G.1 7 .8 97.1 .3 133.0 5 .366.1 2 .7 98.1 .2 134.8 .767.1 .9 99.1 .1 135.0 .168.1 1 .6 101 .0 .4 133.9 .169.1 .5 102.1 2.1 141 .1 3 .370.1 .1 103.1 6 .2 142.1 2 .971 .1 .1 104.2 2 .7 143.1 4 .472 .5 .3 165.1 7 .6 144.1 2 .574.1 1 .0 106.1 3 .2 145.1 3 : a75.1 1 .0 107.2 1.5 1 4 6 . Û 0 .076.1 1.1 100.1 4.1 147.0 1 .777.0 15.9 109.0 2 .4 143.1 .278.1 6 .7 110.1 2.4 149.0 .379.1 14.4 111.1 . 2 153.0 . 1e e . i 36.1 113.1 .2 155.0 .401 .0 115.1 29.4 157.1 . 282.1 1 .8 116.1 9.1 159.1 11 . 2

1-63.0 .1 117.1 1 6 9 . J 1 5 . 6-8 4 .2 .1 1 4 . i 161.1 2 .6695.0 .1 119.2 2.4 162.1 . 2

Rrc-se cizHizoz l a e 5 îôcTë2TT 30D,1M,3OD/M,270D 50-300(04 PEAKS -----------------------

10- GO

IFRN 166 4S SRN 8RT .9BASE ABUNDONCE 17866

ML#308.O Ml- 50 .0 MC-390.0BASE PERK 196.1

MSTPP- e

I Ml IMI r-rnTp“ 22660 80 108 128 140 180 280

288

362

FI GURE V I - 6 4

20 MHz and Sp i n Echo NMR S p e c t r a o-f

3 - M e t h y l p e n t a c y c l o [ 5 . 4 . 8 . 8 2 , 6 . 0 3 , 1 0 . @ 5 , 9 ] u n d e c a n e - 8 , l l - d i o n e

IVd ( C D C l g ) .

3 6 3

FIGURE V I - 6 5

3 0 0 MHz HOMCOR NMR S p e c t r u m o-f

3 - M e t h y l p e n t a c y c I o [ 5 . 4 . 0 . 8 2 , 6 . 0 3 , 1 0 , 0 5 ) 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V d ( C D C l 3 ) .

-m— «hr --IhI—Hf---m

m n Xsr mm t

m ; lï i

8 ■ 1 M » i

■ m H ?! J! 1

□□

□□

C Dnzi □ □ □□ □ □- U U 1 C T

C D a

m ru□CD

3 6 4

F I G U R E V I - 6 6

3 0 0 MHz H0 M2 DJ NMR S p e c t r u m o-f

3 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 >6 . 0 3 ) 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , l l - d i o n e

I V d ( C D C l 3 ) .

X X JL_

3 5

2 5 -

Hz2 0 -

1 5 -

1 0 -

HzhOQ 150

3 6 5

F I G UR E V I - 6 7

S t a c k e d P l o t o f t h e H0 M2 DJ NMR S p e c t r u m o f F i g V I - 6 6 o f

3 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . 8 5 , 9 ] u n d e c a n e - 8 , l l - d i o n e

I V d ( C D C l 3 ) .

m -I- □ru JL ru

366

FI GURE V I - 6 8

3 0 0 MHz I n a n d 7 5 MHz l ^ C HETCOR NMR S p e c t r u m o f

3 - M e t h y l p e n t a c y c 1 o [ 5 . 4 . 8 . 0 2 , 4 . Q 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V d ( C D C I g ) .

3 . M

3 6 7

F I G U R E V I - 6 9

Expanded Contour P lo t o-f t h e HETCOR NMR Spectrum o-f Fig V I -68 which

I n c l u d e s t h e 1 . 8 - 3 . 4 and 38-62 ppm S p e c t r a l Region o-f

3-Methyl p e n t a c y c l o [ 5 . 4 . 0 . 0 2 >6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 11 -d io n e

IVd (CDCI3) .

loO

U l

T

368

F I G U R E V I - 7 0

S t a c k e d P l o t o-f t h e HETCOR NMR S p e c t r u m o-f F i g V I - 6 8 o-f

3 - M e t h y l p e n t a c y c l o I 5 . 4 . 0 . 0 2 , 6 , 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

I V d ( C D C I 3 ) .

3 6 9

V I - 7 0 ) .

A n a l . C a l c u l a t e d t o r C12H12O2 * C, 7 6 . 5 7 ; H, 6 . 4 3 . Found; C,

7 6 . 8 4 ; H, 6 . 4 8 .

S i n g l e - C r y s t a l X - r a y S t r u c t u r a l A n a l y s i s o t IVd

A p e r s p e c t i v e view o t IVd i s shown in F ig V I - 1 . A summary o t t h e

c r y s t a l 1o g r a p h i c d a t a i s l i s t e d i n T a b l e V I - 1 . The u n i t c e l l

p a r a m e t e r s w ere d e te rm in ed f rom a l e a s t s q u a r e s t i t o f t h e ±26

v a l u e s o t 40 r e f l e c t i o n s d i s t r i b u t e d t h ro u g h o u t r e c i p r o c a l s p a c e .

The mea su rem en t o t t h e d e n s i t y by f l o t a t i o n in aq u e o u s KI was

hampered by th e a p p a r e n t r e a c t i o n o t t h e m a t e r i a l w i t h w a t e r .

L a t t i c e c o n s t a n t s and i n t e n s i t y d a t a we re measured on a E n r a t - N o n i u s

CAD-4 d i f f r a c t o m e t e r . T h re e i n t e n s i t y m o n i t o r s , r e m e a s u r e d a f t e r

e v e r y 2 h o u r s o t X-ray e x p o s u r e , showed an o v e r a l l change o t 4.8%.

Ot t h e 1813 unique d a t a , 147 had measured i n t e n s i t i e s w i t h I <

2 d ( I ) . T h es e weak d a t a were a s s i g n e d I = O'(I) .

A l l non -hydrogen atoms were l o c a t e d on an E map b a s e d upon 256

d a t a w i t h t h e l a r g e s t E v a l u e s . 1? The s t r u c t u r e was r e f i n e d by

u s i n g SHELX20 wi th w e i g h t s o t w = ( T ^ < F ) . Hydrogen a tom s were

l o c a t e d on a d i f f e r e n c e e l e c t r o n d e n s i t y map. An a n a l y s i s o t th e

v a r i a n c e a f t e r r e f i n e m e n t o t t h e d a t a r e v e a l e d no s y s t e m a t i c

v a r i a t i o n o t Sw< IFqI-IF, - I ) w i t h e i t h e r s i n 6 or F . The

s c a t t e r i n g f a c t o r s t o r C and 0 w e r e from Cromer and Mann^l and th e

s c a t t e r i n g f a c t o r s t o r H w e r e f rom S t e w a r t , D a v id s o n , and

S i m p s o n . 22 Atomic p o s i t i o n a l and the rm a l p a r a m e t e r s a r e l i s t e d in

T a b l e s V I - 3 and V I - 4 , r e s p e c t i v e l y . Bond l e n g t h s and bond a n g l e s t o r

no n -h y d r o g e n a toms a r e l i s t e d in T a b l e s V I - 5 and V I - 6 , r e s p e c t i v e l y .

D i s c u s s i o n : A n a ly s i s o t NMR S p e c t r a o t Systems I I I and IV.

T a b l e V I - 7 l i s t s th e chem ic a l s h i f t s and c o u p l i n g c o n s t a n t s

o t t h e 1. 4 . 4 a . 8 a - t e t r a h v d r o - e n d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e s

I l l a - I I I d , w h i l e Ta b le VI -8 l i s t s t h e chemic al s h i f t s o t

3 7 8

T a b l e V I - 1

T a b l e o f C r y s t a l 1 o g r a p h i c D a t a f o r

3 - M e t h y l p e n t a c y c l o [ 5 . 4 . 0 . 0 2 > ^ , 0 3 , 1 0 . 0 5 | 9 ] u n d e c a n e - 8 , 1 1 - d i o n e

< I V d ) .

(a ) P r e l i m i n a r y In f o r m a t io n

F o rm u la , F.W.

Space g r o u p , Z

C e l l c o n s t a n t s

a<S)

b

c

P

V(&3)

R a d i a t i o n

Pc (g cm"3)

Pm

CizHjzOz, 188.23

P 2 i / n , 4

2 9 4 ( 2 ) K

9 . 9 3 3 ( 2 )

1 1 .576(2 )

7 . 8 6 5 ( 2 )

9 0 . 0 0 ( 2 )

9 0 4 . 4

MoKoq

1.382

1.37

1 3 8 ( 2 ) K

9 . 8 5 4 ( 7 )

1 1 .4 6 6 4 (9 )

7 . 8 1 0 0 ( 6 )

9 0 . 2 3 1 ( 7 )

8 8 2 . 5

CuKai

I n t e n s i t y D a ta and R e s u l t s

R a d i a t i o n

D a ta l i m i t

Scan method

T e m p e r a t u r e

Unique Data

R

RwMaximum on f i n a l d i f f e r e n c e

e l e c t r o n d e n s i t y map

CuKa (X. = 1.5418)

2 ( 0 X 1 5 0 0

0 . 0 6 2

0 . 20

(W)/20

138(2)K

1813

0 . 0 4 4

3 7 1

TABLE V I - 2

Atomic P o s i t i o n a l P a r a m e t e r s f o r Carbon, Oxygen, and H y d ro g e n . (

Atom X y z

Cl -4 7 7 3 (1 2 ) 33765(11) 2 6 9 1 0 ( 16)C2 7689( 12) 29952(11) 16082(16)C3 1168(12) 22499( 11) 2303( 16)C4 -85 5 2 ( 1 2 ) 14595(11) 11 67 6(16)C5 - 2 9 6 ( 1 2 ) 6469(11) 24 48K 17)C6 14656(13) 9221(11) 2 3 3 2 5 ( 16)c? 15981(12) 21853(11) 2 8 8 9 0 ( 17)Cs 7862(13) 2 2 1 4 9 ( 11) 45207( 17)C9 -50 7 1 ( 1 3 ) 14272(11) 3 9 7 1 8 ( 17)C10 -1 3 1 32(12) 22197( 11) 2 7 1 6 7 ( 16)C i i 931(14) 3 4 3 4 8 ( 12) 45168(17)C12 -1 2177(15) 4 4 3 6 5 ( 12) 19895(21)O3 2922(10) 23110(9) -13018(12)06 2 3 7 7 2 ( 1) 2583(9) 1 9637(14)H2 1312(16) 3 6 2 6 ( 15) 1116(21)H4 - 1 5 1 9 ( 18) 1111(17) 444(23)H5 - 2 9 7 ( 17) - 2 2 2 ( 15) 2433(21)H? 2548(2) 2 4 0 4 ( 17) 3044(24)He 1 2 2 3 ( 17) 1974(16) 5546(24)H? - 9 9 7 ( 16) 1103(15) 4938(21)H10 - 2 310(20) 2 3 7 5 ( 17) 2869(23)H i i a 752(20) 4023( 17) 4667(24)Hi lb - 6 2 0 (1 9 ) 3 5 5 7 ( 16) 5370(24)Hl2a - 1 5 0 7 ( 19) 4 3 1 4 ( 18) 777(26)Hi 2b -19 8 4 ( 2 0 ) 4 6 1 6 ( 18) 2670(24)H12c -61 0 ( 2 2 ) 5 0 9 4 ( 19) 2023(28)

(a) Carbon and oxygen v a l u e s a r e m u l t i p l i e d by 10^, and hydrogen

v a l u e s a r e m u l t i p l i e d by E r r o r s f o r t h e l a s t d i g i t s a r e in

p a r e n t h e s i s .

372

Atom

IIs il

TABLE VI - 3

Carbon, Oxygen, and Hydrogen Thermal 1P a r a m e t e r s . ( * )

Ul 1 U22 U33 U23 U13 U12

170(6) 160(6) 189(7) - 1 6 ( 5 ) 2 ( 5 ) 8(4)154(6) 156(6) 180(6) - 3 ( 5 ) - 8 ( 5 ) - 2 3 ( 4 )149(6) 160(6) 170( 6) - 1 0 ( 4 ) - 1 2 ( 4 ) 17(4)154(6) 175(6) 182(6) - 6 ( 5 ) - 2 9 ( 4 ) - 2 4 ( 4 )177(6) 154(6) 2 2 1 ( 7 ) 11(5) - 1 5 ( 5 ) - 3 ( 5 )179(6) 184(6) 184(6) - 2 ( 5 ) - 2 0 ( 5 ) 30(4)133(6) 196(6) 196( 6) - 3 0 ( 5 ) - 3 0 ( 5 ) - 1 ( 4 )191(6) 2 1 6 ( 6 ) 160(6) - 1 5 ( 5 ) - 3 1 ( 5 ) 19(5)192(6) 188(6) 176(6) 2 8 ( 5 ) 10(5) - 5 ( 5 )138(6) 183(6) 193(7) 3 ( 5 ) 3 ( 5 ) 3(4)2 2 1 ( 7 ) 2 0 4 ( 7 ) 192( 7) - 4 7 ( 5 ) - 9 ( 5 ) 14(5)2 6 2 ( 7 ) 180(7) 3 1 6 ( 8 ) - 7 ( 5 ) - 3 2 ( 6 ) 56(5)2 5 7 ( 5 ) 2 8 9 ( 5 ) 173( 5) - 3 ( 4 ) 18(4) - 2 8 ( 4 )22 3 ( 5 ) 2 4 2 ( 5 ) 4 0 1 ( 7 ) - 6 4 ( 4 ) - 8 ( 4 ) 82(4)

21 ( 4 )29<4)23 ( 4 )32 ( 5 )29 ( 5 )22 ( 4 )28 ( 5 )31 ( 4 )30 ( 4 )38 ( 5 )34 ( 5 )45 ( 6 )

( a ) A n i s o t r o p i c thermal p a r a me t e r s -for carbon and oxygen h a v e been

m u l t i p l i e d by and are o-f t h e form:

T = e x p [ - 2 t ( h 2 U i i a * 2 + k2u22b*2 + l2U33C*2 +

k l U 2 3 b * ' C * + h l U i 3 a * ' C * + h k U i 2 a * ' b * ) ] .

The v a l u e s f o r U<h) have been m u l t i p l i e d by 102 and a r e of

t h e form: T = e x p ( - 8 t 2 U s i n 2 e / x 2 ) ,

373

TABLE VI-4

Bond Lengt hs I n v o l v i n g

Carbon and Oxygen atoms .

oAtoms Bond Length(A)

C1-C2 1 . 5 5 7 ( 2 )

C1- C 10 1 . 5 6 2 ( 2 )

C i - C i i 1 . 5 3 2 ( 2 )

C1- C 12 1 . 5 1 9 ( 2 )

C2 -C3 1 . 5 1 5 ( 2 )

C2 -C7 1 . 5 8 9 ( 2 )

C3 - 0 3 1 . 2 1 2 ( 2 )

C3 -C4 1 . 5 1 0 ( 2 )

C4 -C5 1 . 5 8 9 ( 2 )

C4 - C 10 1 . 5 5 9 ( 2 )

C5 -C6 1 . 5 1 0 ( 2 )

C5 -C9 1 . 5 6 3 ( 2 )

C6 - 0 6 1 . 2 1 3 ( 2 )

C6 -C7 1 . 5 1 8 ( 2 )

C7 -C8 1 . 5 5 1 ( 2 )

C8 -C9 1 . 5 5 7 ( 2 )

Cs - Cl l 1 . 5 2 4 ( 2 )

C9 - C 10 1 . 5 5 3 ( 2 )

374

TABLE V I - 5

Bond A n g l e s I n v o l v i n g

Carbon and Oxygen Atoms.

Atoms A n g l e ( d e g )

C1-C2 -C3 1 0 2 . 1 8 ( 9 )C1-C2 -C7 1 0 3 . 1 2 ( 1 0 )C1- C 10- C4 1 0 8 . 0 9 ( 10)C1- C 10- C9 1 0 3 . 6 9 ( 10)C1- C 11- C8 9 6 . 0 7 ( 10)C2 - C 1- C 10 1 0 0 . 7 1 ( 0 )C2 - C 1- C 11 1 0 3 . 33( 1)C2 - C 1- C 12 1 1 4 . 0 6 ( 1 1 )C2 - C3 -O3 1 2 7 . 3 7 ( 12)C2 - C3 - C4 1 0 5 . 20( 10)C2 - C7 - C6 1 0 9 . 52( 10)C2 - C7 - C8 1 0 2 . 2 8 ( 9 )C3 - C2 - C7 1 0 9 . 4 6 ( 10)C3 - C 4 - C5 1 0 9 . 45( 10)C3 - C4 -C 10 1 0 3 . 1 1 ( 1 0 )C4 - C3 -O3 1 2 7 . 3 5 ( 12)C4 - C5 - C6 1 0 9 . 7 1 ( 10)C4 - C5 - C9 8 9 . 3 4 ( 9 )C4 - C I 0 - C9 9 0 . 7 9 ( 9 )C5 - C4 - C 10 8 9 . 3 4 ( 9 )C5 - C6 - C7 1 0 5 . 38( 10)C5 - C6 -O6 1 2 7 . 3 7 ( 12)C5 - C9 - C8 1 0 7 . 97( 10)C5 - C9 - C 10 9 0 . 5 3 ( 1 0 )C6 - C5 - C9 1 0 2 . 8 7 ( 10)C6 - C7 - C8 1 0 1 . 9 9 ( 10)C7 - C6 -O6 1 2 7 . 1 5 ( 12)C7 - C8 - C9 10 1 . 4 3 ( 10)C7 - C8 - C 1 1 1 0 4 . 15( 10)C8 -C9 - C 10 1 0 2 . 9 8 ( 10)C9 -CD-C 1 1 1 0 3 . 17( 10)C10- C 1-CI 1 1 0 2 . 5 1 ( 10)Ci 0 - C i ~ C i 2 1 1 5 . 5 8 ( 10)C1 I - C 1- C 12 1 1 8 . 3 4 ( 1 1 )

375

TABLE V I - 6

Chemical S h i f t s (G) and Co u p l i n g C o n s t a n t s (Hz) f o r t h e S e r i e s of 1 , 4 , 4 a . 8 a - T e t r a h y d r o - e n d o - l . 4 - m e t h a n o n a o h t h a l e n e - 5 . 8 - d i o n e s

I l l a - I I I d .

P r ot on <J, Hz)

HiJ l - B aJ l - 2J l - 3J l - 9 aJ l - 9 s

H4“4 - 4 3J 4 - 3J4 - 2J4-9aJ4 - 9 S

,H2J2 - 3J2 - 1J 2 - 4

H3J 3 - 2J 3 - 4J 3 - IJg-methyl

H4a"4a-8a"4a-4

,HSa« 8 a - 4 a8 a - 1

,H6J6-7

H?J 7 - 6^7-methyl

,H9aJ 9 a - 9 sJ9a-1J 9 a - 4

,H?s^ 9 s - 9 aJ9 S - IJ9 S - 4

CH3 ^ me t h y l - 3 ^ me t h y l - 7

I l i a I l l b I I I c I l l d l i t t < 14)

3 . 544( m) 3 . 5 2 8 ( m) 3 . 296( m)4 . 0 4. I 3 . 9 - 2 . 9 - 3 . 91.9 2 . 9 - - 2 . 0 - 3 . 21.9 1 . 1 ■? - 0 . 5 - . 9 51 . 9 1 . 7 K 6 - 2 . 0 - 2 . 21 . 8 1. 5 1.4 — 1 . 5 - 1 . 6

3 . 544( m) 3 . 5 2 9 ( m) 3 . 4 1 l(m) 3 . 442 ( m)4 . 0 4 . 1 4 . 2 4 . 2 2 . 0 - 3 . 91 . 9 2 . 8 3 . 0 2 . 8 2 . 0 - 3 . 21.9 1 . 1 - ? 0 . 5 - . 9 51 . 9 1 . 7 1 . 6 2^0 2 . 0 - 2 . 21 . 8 1. 5 1.4 1.4 1 . 5 - 1 . 6

6 . 063( dd> 6 . 0 7 1 ( d d d ) _ 5 . 8 5 8 ( d )- 5 . 8 - 5 . 6 5 . 6 - 6 . 1

1.9 2 . 9 - - 2 . 0 - 3 . 21.9 1 . 1 - 7 0 . 5 - . 9 5

6 . 0 6 3 ( d d ) 6 . 0 2 8 ( d d d ) 5 . 6 2 3 ( d q ) 6 . 0 4 2 ( d d )- 5 . 8 - 5 . 6 5 . 6 - 6 . 1

1 .9 2 . 8 3 . 0 2 . 8 2 . 0 - 3 . 21.9 1 . 1 ? - 0 . 5 - . 9 5- ? 1^6 ? ?

3 . 2 3 8 ( d ) 3 i 241 ( m) 3 . 2 4 1 ( d d ) 3 . 3 6 5 ( d d )- 8 . 0 8 . 7 8 . 2 7 . 4 - 9 . 2

4 . 0 4 . 1 4 . 2 4 . 2 2 . 9 - 3 . 9

3 . 2 3 8 ( d ) 3 . 243 ( m) 3 . 2 8 5 ( d d ) 2 . 8 7 9 ( d )- 8 . 0 8 . 7 8 . 2 7 . 4 - 9 . 2

4 . 0 4 . 1 3 . 9 - 2 . 9 - 3 . 9

6 . 5 7 7 ( 5 ) 6 . 5 8 2 ( d ) 6 . 5 7 0 ( d )— 1 0 . 4 10 . 3 5 . 6 - 6 . 0

6 . 5 7 7 ( 5 ) 6 . 5 0 0 ( q ) 6 . 6 2 8 ( d ) 6 . 5 2 9 ( d )- - 1 0 . 4 10 . 3 5 . 6 - 6 . 0- 1 . 4 - - ?

1 . 548( ddd) 1 . 5 3 7 ( ddd) 1 . 571( ddd) 1 . 4 4 4 ( d d )8 . 7 8 . 7 8 . 6 8 . 7 7 . 7 - 9 . 71.9 1 . 7 1 . 6 - 2 . 0 - 2 . 21.9 1. 7 1 . 6 2 . 0 2 . 0 - 2 . 2

1 . 450( ddd) 1 . 4 5 8 ( ddd) 1 . 433( ddd) 1 . 3 8 6 ( d d )8 . 7 8 . 7 8 . 6 8 . 7 7 . 7 - 9 . 71 . 8 1. 5 1.4 - 1 . 5 - 1 . 61 . 8 1. 5 1.4 1.4 1 . 5 - 1 . 6

- 1 . 9 3 6 ( d ) 1 . 6 1 9 ( d) 1 . 5 7 0 ( 5 )- - 1 . 6 ? ?- 1. 4 - - 7

376

TABLE V I - 7

Down-f ie ld <+) or U p f i e l d ( - ) Chemica l S h i f t s (G) o-f t h e

1 . 4 . 4 a . 8 a - T e t r a h v d p o - e n d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e s

I l I b - I I I d R e l a t i v e t o T h o s e o-f U n s u b s t i t u t e d P a r e n t Compound I l i a .

Pr o t o n I l i a I l l b I I I c II Id

Hi 3 . 5 4 4 - 0 . 0 1 6 - 0 . 2 4 8

H4 3 . 5 4 4 - 0 . 0 1 5 - 0 . 1 3 3 - 0 . 1 0 2

H2 6 . 0 6 3 0 . 0 0 8 - - 0 . 2 0 5

H3 6 . 0 6 3 - 0 . 0 3 5 - 0 . 4 4 0 - 0 . 0 2 1

H4 a 3 . 2 3 8 0 . 0 0 3 0 . 0 0 3 0 . 1 2 7

Hsa 3 . 2 3 8 0 . 0 0 5 8 . 0 4 7 - 0 . 3 5 9

H<5 6 . 5 7 7 - 0 . 0 0 5 - 0 . 0 0 7

H7 6 . 5 7 7 - 0 . 0 7 7 0 . 0 5 1 - 0 . 0 4 8

Hpa 1 . 5 4 8 - 0 . 0 1 1 0 . 0 2 3 - 0 . 1 0 4

H9 s 1 . 450 0 . 0 0 8 - 0 . 0 1 7 - 0 . 0 6 4

377

I l l b - I I I d r e l a t i v e t o t h o s e o-f I l i a . T a b l e V I - 9 l i s t s the

c h e mi c a l s h i f t s o f I l l a - I I I d , w h i l e T a b l e VI - 1 0 l i s t s t he

c h e mi c a l s h i f t s of I l l b - I I I d r e l a t i v e t o t h o s e o f I l i a . The

d i s t i n c t i o n between H9 5 and was made by d e c o u p l i n g H2

a n d / o r H3 which r e s u l t e d in s i m p l i f i c a t i o n o f o n l y Hpg.

S u b s t i t u t i o n o f methyl r e s u l t s in a d o w n f i e l d s h i f t o f 8 . 7 8 t o 9 . 5 9

ppm f o r t h e s u b s t i t u t e d carbon and a 4 . 7 6 t o 7 . 1 4 ppm d o w n f i e l d s h i f t

f o r a a l i p h a t i c carbon a t o ms . An u p f i e l d s h i f t f o r a v i n y l i c

c a r b o n s o f 2 . 3 3 t o 9 . 1 9 ppm was o b s e r v e d ( T a b l e V I - 9 ) f o r t h e s e

a d d u c t s .

T a b l e VI - 1 0 l i s t s t h e chemi cal s h i f t s and c o u p l i n g c o n s t a n t s

o f t h e p e n t a c y c l o C S . 4 . 0 . 0 2 ) 6 . 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 1- d i o n e s

IVa- I Vd, w h i l e Tabl e VI - 1 1 l i s t s t he c he mi c a l s h i f t s o f IVb-IVd

r e l a t i v e t o t ho s e o f IVa. T a b l e V I - 1 2 l i s t s t h e chemical

s h i f t s o f IVa-IVd, w h i l e T a b l e VI - 1 3 l i s t s t h e 13c chemi ca l s h i f t s

of IVb-IVd r e l a t i v e t o t h o s e of IVa. D i s t i n c t i o n bet ween H45 and

was made by d e c o u p l i n g Hj and/ or H7 whi ch r e s u l t e d ir,

s i m p l i f i c a t i o n of o n l y ( c f . F i g V I - 2 ) . ' W - l e t t e r ' l o n g range

c o u p l i n g was pr e s e n t be t ween H3 and H5 in compound IVc, and was

a l s o o b s e r v e d between H2 and H10 and bet ween and H9 in a l l

compounds . C r o s s - r i n g 4 - bond p r o pa n i c c o u p l i n g between

d i a g o n a l l y opposed c y c l o b u t a n e p r o t o n s ( i . e . and

JH2 -H7 ) was a l s o g e n e r a l l y o b s e r v e d . Anot he r un i q u e 4-bond

l o n g r a ng e c o u p l i n g between Hj and Hjg and be t we e n H7 and H9

was a l wa y s o bs erved in t h e s e c a g e compounds. The i n t e r e s t i n g

o b s e r v a t i o n was made t h a t t h e r e l a t i v e c hemi ca l s h i f t s o f the

and H4 a p r o t o n s were c o n s t a n t u n t i l methyl s u b s t i t u t i o n a t 8 3 was

e n c o u n t e r e d ( c f . compound V i c ) . T h i s q u a l i t a t i v e exampl e o f ' s t e r i c

d e s h i e l d i n g ' of proton H4 a r e s u l t s from a s t e r i c a l l y compressed

e n v i r o n me n t c r e a t e d by t he p r o x i m i t y and bul k o f t h e methyl group on

8 3 . 2 3 S u b s t i t u t i o n o f met hy l r e s u l t s in a d o w n f i e l d s h i f t of

4 . 6 8 t o 8 . 0 8 ppm f o r t he s u b s t i t u t e d carbon and a d o w n f i e l d s h i f t of

4 . 9 6 t o 6 . 6 9 ppm f o r t h e a a l i p h a t i c c a r b o n s ( c f . T a b l e VI - 13 ) in

378

TABLE V I - 8

Chemical S h i f t s (G) f o r the S e r i e s of

1 . 4 . 4 a . 8 a - T e t r a h v d r o - e ndo- l . 4 - m e t h a n o n a D h t h a 1 e n e - 5 . 8 - d i o n e s

I l I a - I I I d .

Carbon I l l a I l l b I I I c I l l d

Cs 1 9 8 . 7 0 ( s ) 1 9 8 . 3 7 ( s ) 199 . 13<s ) 1 9 8 . 6 0 ( s )

C8 1 9 8 . 7 0 ( s ) 1 9 8 . 8 8 < s ) 1 9 9 . 4 9 ( s ) 199 . 26<s )

1 4 1 . 35 ( d ) 1 5 0 . 9 4 ( 5 ) 1 4 1 . 3 5 ( d ) 1 4 1 . 40 ( d )

C7 1 41 . 35 ( d) 1 3 9 . 0 2 ( d ) 1 4 1 . 7 5 ( d ) 1 4 1 . 90 ( d )

C2 1 36 . 64 ( d) 1 3 4 . 9 0 ( d ) 1 4 5 . 4 2 ( s ) 1 3 8 . 76 ( d )

C3 1 36 . 64 ( d) 1 3 4 . 3 4 ( d ) 1 2 7 . 4 5 ( d ) 1 3 4 . 7 0 ( d )

4 7 . 9 1 ( d ) 4 7 . 8 9 ( d ) 5 3 . 4 4 ( d ) 5 7 . 3 9 ( s )

C4 4 7 . 9 1 ( d ) 4 8 . 1 9 ( d ) 4 9 . 0 2 ( d ) 4 8 . 8 0 ( d )

C9 4 7 . 8 3 ( t ) 4 8 . l 2 ( t ) 4 8 . 6 3 ( t ) 5 4 . 9 7 ( t )

C4a 4 7 . 5 3 ( d ) 4 8 . 3 5 ( d ) 4 9 . 2 6 ( d ) 5 0 . 5 0 ( d )

CSa 4 7 . 5 3 ( d ) 4 7 . 5 1 ( d ) 4 8 . 0 6 ( d ) 5 2 . 2 9 ( d )

Cmethyl 1 5 . 6 3 ( q ) 1 6 . 2 1 ( q ) 1 7 . 08 ( q )

379

TABLE V I - 9

Down-f ie ld <+) o r U p f i e l d ( - ) C hemi ca l S h i f t s (G) o f t h e

1 . 4 . 4 a . 8 a - T e t r a h v d r o - e n d o - l , 4 - m e t h a n o n a p h t h a l e n e - 5 , 8 - d i o n e s

I l I b - I I I d R e l a t i v e t o Those of U n s u b s t i t u t e d P a r e n t Compound I l i a ,

Carbon I l i a I l l b I I I c II Id

C5 198 . 70 - 0 . 3 3 0 . 4 3 - 0 . 1 0

Cg 198 . 70 0 . 1 8 0 . 7 9 0 . 5 6

141 . 35 9 . 5 9 0 . 0 0 0 . 0 5

C7 141 . 35 - 2 . 3 3 0 . 4 0 0 . 5 5

Ü2 136 . 64 - 1 . 7 4 8 . 7 8 2 . 1 2

C3 136 . 64 - 2 . 3 0 - 9 . 1 9 - 1 . 9 4

Cl 4 7 . 9 1 - 0 . 0 2 5 . 5 3 9 . 4 8

C4 4 7 . 9 1 0 . 2 8 1.11 0 . 8 9

C9 4 7 . 8 3 0 . 2 9 0 . 8 0 7 . 1 4

C4a 4 7 . 5 3 8 . 8 2 1 . 73 2 . 9 7

Coa 4 7 . 5 3 - 0 . 0 2 0 . 5 3 4 . 7 6

330

TABLE V I - 1 8

Ch em ic a l S h i f t s (G) and C o u p l i n g C o n s t a n t s (Hz)P e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , 1 0 . g o , 9 ] u n d e c a n e - 8 , 1 1 -

f o r t he S e r i e s o f d i o n e s IVa- IVd.

Prot on ( J , Hz)

IVa IVb IVc IVd

H2 3 . 193(dddd) 2 . 8 3 0 ( d d d d ) - 2 . 8 7 0 ( m)J2 - 6 - 8 . 4 - 10 . 8J2 -1 7 . 0 - - ?J2 - 3 5 . 9 5 . 4 - -J2 - 7 1. 6 1.3 - 9J2 - 1 0 1. 5 1.9 — 2^0

H6 3 . 193(dddd) 3 . 176(dddd) 2 . 8 0 2 ( dddd) 3 . 2 7 8 ( m)J 6 - 2 - 8 . 4 - 10 . 8J é - 7 7 . 0 6 . 0 6 . 6 6 . 0J é - 5 5 . 9 5 . 8 5 . 3 5 . 2J6 - 1 1. 6 - 1 . 6 1 . 8J é - 9 1. 5 1. 8 1. 5 1 . 8

H3 2 . 9 4 8 ( dddd) 2 . 8 8 2 ( d d d d ) 2 . 5 4 3 ( dddd) -J3 - 2 5 . 9 5 . 4 - -J3 - I 8 4 . 1 4 . 6 3 . 9 -J3 - 4 S 1. 7 1. 6 1 . 6 -J 3 - 4 a 1 . 6 1. 5 1. 6 -J3 - 5 — ? 1. 2 —

H5 2 . 948( dddd) 2 i 9 3 8 ( d d d d ) 2 . 950( ddddd) 2 . 846(m)J5 - 6 5 . 9 5 . 8 5 . 3 5 . 2J5 - 9 4 . 1 4 . 8 4 . 0 4 . 8J5 - 4 S 1 .7 1 . 6 1. 6 1. 4J 5 - 4 a 1. 6 1. 5 1 . 6 1 . 5J5 - 3 — ? 1 . 2 —

Hl 2 . 8 0 Kddd) - 2 . 4 8 0 ( d d d ) 2 . 7 9 9 ( m)J l - 7 - - 8 . 4 ?J l - 2 7 . 0 - - 9

J l - 1 0 2 . 7 - 2 . 9 2^5J l - 6 1 . 6 — 1 . 6 1 . 8

H7 2 . 8 0 1 ( d d d ) 2 . 3 6 1 ( d d d ) 2 . 7 7 3 ( d d d ) 2 . 8 7 0 ( m)J7 - I - - 8 . 4 9

J7 - 6 7 . 0 6 . 8 6 . 6 6^0J7 - 9 2 . 7 2 . 8 2 . 6 2 . 4J7 - 2 1 . 6 1. 3 — 9

H9 2. 6 9 9 ( d d d ) 2 . 6 5 6 ( d d d d ) 2 . 6 7 2 ( dddd) 2 > 8 0 ( d d d d )J9 - I 0 - 10 . 5 1 0 . 1 9 . 7J9 - 5 4 . 1 4 . 8 4 . 8 4 . 0J9 - 7 2 . 7 2 . 8 2 . 6 2 . 4J9 - 6 1 . 5 1 . 8 1. 5 1 . 8

H10 2 . 6 9 9 ( d d d ) 2 . 7 2 2 ( d d d ) 2 . 7 2 9 ( d d d ) 2 . 4 4 6 ( d d d )J 10-9 - 10 . 5 1 0 . 1 9 . 7J 10-3 4 . 1 4 . 6 3 . 9 -J I 0 - I 2 . 7 - 2 . 9 2 . 5

1 . 52 . 0 5 8 ( d t )

1 . 92 . 0 4 8 ( d t ) 1 . 925( ddd)

2 . 01 . 988<dd)

'^4s-4a 11 . 3 1 1 . 2 11. 4 1 1 . 2J4 S- 3 1. 7 1 . 6 1 . 6 -J4 S- 5 1. 7 1 . 6 1 . 6 1.4

H4a J 1 4 a - 4 s

) ^ 8 9 8 ( d t ) | ; 9%6( dt ) j j9^5( ddd) ) ; 8 | 7 < d d )

J 4 a - 3 1 . 6 1. 5 1 . 6 -J 4 a - 5 1 . 6 1 . 5 1 . 6 1. 5

Hmethyl - 1 . 164( s ) 1 . 2 3 4 ( s ) 1 . 2 2 0 ( 5 )

3 8 1

TABLE V I - 1 1

Down-field (+) o r U p f i e l d <-) C hemica l S h i f t s (G) of t h e

P e n t a c y c l o [ 5 . 4 . 0 . 0 2 , 6 . 0 3 , I 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 l - d i o n e s IVb-IVd

R e l a t i v e t o T h o s e o f t h e U n s u b s t i t u t e d P a r e n t Compound IVa.

Proton IVa IVb IVc IVd

H? 3 . 1 9 3 - 0 . 3 6 3 - - 0 . 3 2 3

3 . 1 9 3 - 0 . 0 1 7 - 0 . 3 9 1 0 . 0 8 5

H3 2 . 9 4 8 - 0 . 0 6 6 - 0 . 4 0 5

H5 2 . 9 4 8 - 0 , 0 1 0 0 . 0 0 2 - 0 . 1 0 2

Hi 2 . 8 0 1 - 0 . 3 2 1 - 0 . 0 0 2

H7 2 . 8 0 1 - 0 . 4 4 0 - 0 . 0 2 8 0 . 0 6 9

Hp 2 . 6 9 9 - 0 . 0 4 3 - 0 . 0 2 7 0 . 0 8 1

H10 2 . 6 9 9 0 . 0 2 3 0 . 0 3 0 - 0 . 2 5 3

H45 2 . 0 5 8 - 0 . 0 1 0 - 0 . 1 3 3 - 0 . 0 7 0

H4 a 1 . 8 9 8 0 . 0 0 8 - 0 . 0 6 7 - 0 . 0 6 1

382

TABLE V I - 1 2

Chemical S h i f t s (G) and M u l t i p l i c i t i e s f o r t h e S e r i e s o f

P e n t a c y c l o [ 5 . 4 . 0 . @ 2 , 6 , 0 3 , 1 0 . 0 5 , 9 ] u n d e c a n e - 8 , 1 l - d i o n e s I Va- I Vd.

Carbon IVa IVb IVc IVd

Ce 2 1 2 . 0 3 ( s ) 2 1 1 . 7 8 ( s ) 2 1 1 . 6 7 ( s ) 2 1 1 . 2 7 ( s )

C i l 2 1 2 . 0 3 ( s ) 2 1 2 . 4 é <s > 2 1 0 . 4 6 ( s ) 2 1 1 . 9 2 < s )

C? 5 4 . 3 8 ( d ) 5 4 . 2 4 ( d ) 5 3 . 0 4 ( d ) 5 5 . 3 9 ( d )

Cl 0 5 4 . 3 8 ( d ) 5 4 . 4 1 ( d ) 5 5 . 6 4 ( d ) 5 9 . 9 1 ( d )

c s 44 . 2 5 ( d ) 4 3 . 3 2 ( d ) 5 0 . 2 1 ( d ) 5 2 . 3 3 ( s )

C5 4 4 . 2 5 ( d ) 4 3 . 9 5 ( d ) 4 4 . 6 1 ( d ) 4 4 . 3 1 ( d )

Cl 4 3 . 4 2 ( d ) 4 8 . 10( s ) 4 8 . 3 8 ( d ) 4 2 . 8 6 ( d )

C? 4 3 . 4 2 ( d ) 5 0 . 1 1 ( d ) 4 0 . 3 0 ( d ) 4 4 . 0 8 ( d )

C4 4 0 . 0 4 ( t ) 4 0 , 4 6 ( t ) 3 7 . 7 7 ( q ) 4 5 . 7 9 ( q )

C2 3 8 . 3 2 ( d ) 4 4 . 7 5 ( d ) 4 5 . 9 9 ( s ) 4 4 . 0 0 ( d )

C6 3 8 . 3 2 ( d ) 3 5 . 8 9 ( d ) 4 4 . 0 6 ( d ) 3 9 . 5 0 ( d )

Cmethyl 1 5 . 3 6 ( q ) 2 0 . 6 9 ( q ) 1 5 . 5 8 ( q )

383

TABLE V I - 1 3

Down-field <+) or U p f i e l d <-) Chemical S h i f t s <£) of t h e

P e n t a c y c l oC5 . 4 . 0 . 0 2 , 6 . 0 3 , 10 . 0 5 , 9 ] u r i d e c a n e - 8 , 1 l - d i o n e s IVb-IVd

R e l a t i v e t o T h o s e o f the U n s u b s t i t u t e d P a r e n t Compound IVa .

Carbon IVa IVb IVc IVd

Cg 2 1 2 . 0 3 - 0 . 2 5 - 0 . 3 6 - 0 . 7 6

Ci i 2 1 2 . 0 3 0 . 4 3 - 1 . 5 7 - 0 . 1 1

C9 5 4 . 3 8 - 0 . 1 4 - 1 . 3 4 1. 01

C10 5 4 . 3 8 0 . 0 3 1 . 26 5 . 5 3

Cg 4 4 . 2 5 - 0 . 9 3 5 . 9 6 8 . 0 8

C5 4 4 . 2 5 - 0 . 3 0 0 . 3 6 0 . 0 6

Cl 4 3 . 4 2 4 . 6 8 4 . 9 6 - 0 . 5 6

C7 4 3 . 4 2 6 . 6 9 - 3 . 1 2 0 . 6 6

C4 4 0 . 0 4 0 . 4 2 - 2 . 2 7 5 . 7 5

Cg 3 8 . 3 2 6 . 4 3 7 . 6 7 5 . 6 8

C6 3 8 . 3 2 - 2 . 4 3 5 . 7 4 1 . 18

384

t h e s e c a g e com poun ds .

Mass S p e c t r a o-f Compounds I l l ( a - d ) and I V ( a - d ) .

T a b l e s V I - 1 4 and VI - 1 5 l i s t t h e m o l e c u l a r f r a g me n t s and t h e i r

a bunda n c e s f o r t h e D i e l s A l de r a d d u c t s ( I l l a - I I I d ) and t h e s u b s e q u e n t

c a g e d i k e t o n e p h o t o l y s i s p r o d u c t s ( I V a - I V d ) , r e s p e c t i v e l y , as

d e t e r m i n e d v i a mass s p e c t r o m e t r y of t h e i n d i v i d u a l compounds.

The b a s e p e a k s f o r D i e l s A l d e r a d d u c t s I l l a - I I I d [ i . e . m/ e 6 6 ,

6 6 , 8 0 , and 8 0 , r e s p e c t i v e l y ] c o r r e s p o n d i n g t o t he d i e n e component of

each compound, a r e c o n v e n i e n t l y a c c o u n t e d f o r by a ' f o r m a l ' r e t r o

D i e l s A l d e r f r a g m e n t a t i o n pathway (Scheme V I - 3 ) . The f a c t t h a t s o

SCHEME V I - 3

' F o r m a l ' R e t r o D i e l s A l d e r F r a g m e n t a t i o n P a t h w a y f o r A d d u c t s I l l a - d ,

+m/e 174

e“

e ”

XV

m/e 108

+

AV

/ \

1+

+

m/e 66

385

TABLE V I - 1 4

Mass S p e c t r a l Mol ecu l ar Fragments and Abundances^*) -for

D i e l s Al der Adduct s I l l a - I I I d .

Compound

I l i a I l l b I I I c 11 Id

174(M+, 4 3 . 9 ) 188(M+, 16.0) 188<M+, 3 9 . 4 ) 188(M+, 4 4 . 4 )C11H10O2 C12H12O2 C12H12O2 C12H12O2

9 1 ( 1 7 . 7 ) 9 1 ( 1 3 . 3 ) 9 1 ( 1 4 . 4 ) 9 1 ( 1 2 . 8 )C7H7 C7 H7 C7 H7 C7 H7

9 1 ( 1 3 . 3 ) ( b ) 9 1 ( 1 4 . 4 ) 9 1 ( 1 2 . 8 )C7H7 C7 H7 C7 H7

7 7 ( 3 . 1 ) 7 7 ( 3 . 1 ) 7 7 ( 2 6 . 1 ) 77( 18. 6)C6H5 C Hg C^Hg C Hg

8 0 ( 8 . 3 ) 8 0 ( 1 8 0 ) 80 ( 100)C^Hb

6 6 ( 1 0 0 ) 66 ( 1 0 0 ) 6 6 ( 3 . 4 ) 6 6 ( 1 . 3 )CgH^ CgHa CgH^ CgH^

7 9 ( 1 . 8 ) 7 9 ( 5 2 . 8 ) 7 9 ( 5 1 . 6 )C6 H7 [ 4 8 7 C^H7

6 5 ( 1 8 . 7 ) 6 5 ( 1 4 . 4 ) 6 5 ( 7 . 8 ) 6 5 ( 4 . 7 )CgHg CgHg CgHg CgHg

(a) Abundances are l i s t e d in p a r e n t h e s i s .

(b) For p a i r e d l i s t i n g s the - f i r s t - fragment in the p a i r c o r r e s p o n d s

t o t he -fragment c o n t a i n i n g t he met hy l s u b s t i t u e n t .

386

TABLE V I - 1 5

Mass S p e c t r a l Mo l e c u l a r Fragments and Abundances(&) for

Cage D i k e t o n e P h o t o l y s i s P r o d u c t s IVa- IVd.

Compound

IVa IVb IVc IVd

174(M+, 6 4 . 1 ) C11 H10 O2

188(M+, 100) C1 2 H1 2 O2

188(M+, 100) C12H1 2 O2

188(M+, 100) C12 H12O2

1 4 6 ( 18. 5) C10H10O

1 6 0 ( 3 9 . 4 )C11H12O

1 6 0 ( 1 4 . 5 )C11H12O

160(15 . 5)C11H12O

1 4 5 ( 2 4 . 5 )C10 H9 O

1 4 5 ( 4 4 . 4 )Ci i Hi i O

1 4 5 ( 2 9 . 1 )Cl l Hl l O

145(32 . 8)Ci jHi iO

118 ( 3 0 . 4 )C9 H10

1 3 2 ( 3 4 . 2 )C10H12

1 3 2 ( 1 1 . 3 )C] 0 Hi 2

132(27 . 9)C10H12

1 1 7 ( 1 0 0 ) ( c) C9 H9

1 3 1 ( 2 5 . 8 ) (b)

C9 H9

1 3 1 ( 1 4 . 1 )

C9 H9

131(25 . 3)

1 15(^1. 7)C9H9

9 1 ( 3 6 . 9 )C7 H7

105( 10. 5) C0 H9 9 1 ( 3 6 . 9 ) C7 H7

1 0 5 ( 6 . 7 )CgHg9 1 ( 2 0 . 8 )C7 H7

105( 7 . 6)CrHc9 1 ( 2 6 . 1 )C7 H7

7 7 ( 1 0 . 1 )C6 H5

9 1 ( 3 6 . 9 )

7 ^ ( l 5 . 5 )C6 H5

9 1 ( 2 0 . 8 )C7 H77 7 ( 8 . 7 )C6H5

9 1 ( 2 6 . 1 )

7/ ' (^5.0)C6 H5

8 0 ( 2 . 6 ) 8 0 ( 7 0 . 7 )C6 Hg

8 0 ( 3 6 . 1 )C6 H8

6 6 ( 3 5 . 0 )C5H6

6 6 ( 3 4 . 6 )C5 H6

6 6 ( 6 . 4 )C5 H6

6 6 ( 2 . 7 )C5 H6

7 9 ( 7 . 8 )C6 H7

7 9 ( 13 . 2 ) C6 H7

7 9 ( 14.0) C6 H7

6 5 ( 1 6 . 0 ) C5 H5

6 5 ( 1 8 . 5 )C5 H5

6 5 ( 8 . 2 )C5H5

6 5 ( 7 . 8 )C5 H5

(a) Abundances a r e l i s t e d in p a r e n t h e s i s .

(b) F i r s t f r a g me n t of p a i r e d l i s t i n g c o n t a i n s the methyl s u b s t i t u e n t

387

l i t t l e o-f t he d i e n o p h i l i c 1 , 4 - b e n z o q u i n o n e f r a g me n t s [ i . e . , m/ e 108

( 0 . 3 % ) , 122 ( 0 . 5%) , 108 ( 0 . 0 %) , and 108 ( 1 . 4 %) , f o r I l l a - I I l d ,

r e s p e c t i v e l y ] a r e obs e r ve d f o r each compound ( T a b l e V I - 1 4 ) a r g u e s

a g a i n s t t h i s c o n c l u s i o n . However, s h o u l d the 108 and 122 f r a g m e n t s

f o r I l i a and I l l b q u i c k l y d e c a r b o n y l a t e , c y c l o p e n t a d i e n o n e [ m/ e 80

( 0 . 5 %) ] and m e t h y l c y c l o p e n t a d i e n o n e [ m/ e 94 ( 1 . 0%) ] woul d be f or me d,

r e s p e c t i v e l y , but would d i s a p p e a r v e r y q u i c k l y s i n c e bo t h a r e v e r y

u n s t a b l e . S i m i l a r c o n s i d e r a t i o n o f I I I c and I l l d i s n o t p o s s i b l e

b e c a u s e m e t h y l c y c l o p e n t a d i e n e , w h i c h i s formed upon i n i t i a l

f r a g m e n t a t i o n , a l s o has an m/ e o f 80 and i s t h e b a s e peak f o r both

c ompounds . Perhaps a s t e p w i s e f r a g m e n t a t i o n o c c u r s but t h e ' f o r m a l '

r e t r o D i e l s A l d e r p r o d u c t s p r e d o m i n a t e .

The f r a g m e n t a t i o n mechani sm f o r t h e c a g e d i k e t o n e s e r i e s IVa-IVd

i s n o t s t r a i g h t f o r w a r d .

388

BIBLIOGRAPHY

1. Marchand, A. P. van der Helm, D

2 . Marchand, A. P.

3 . Marchand, A. P. 1 9 7 3 . 1948.

4 . Marchand, A. P.

5 . Marchand, A. P.

6 . Marchand, A. P.D. J . Pr o . Chem

7 . Marchand, A. P.

S u r i , S . C . ; E a r l y w i n e , A. D . , ; P o w e l l , D. R. ; J. Pro. Chem. 1 9 8 4 . 4 9 , 670 .

A l l e n , R. W. J . P r o . Chem. 197 4 . 3 9 . 1596.

Chou, T. - C. J . Chem. S o c . Perki n T r a n s . J.,

Chou, T . - C . T e t r a h e d r o n 1975 . 3 1 . 2 6 5 5 .

Chou, T. - C . T e t r a h e d r o n L e t t . 1 9 7 5 . 3 3 5 9 .

Chou, T . - C . ; E k s t r a n d , J . D . : van der Helm, 1976. 4 1 , 1438 .

Kaya, R. J . Pr o . Chem. 198 3 . 4 8 . 5 3 9 2 .

; Hudec , J . Chem. I n d . (London)8 . Cooks on , R. C . : Crundwel 1, E 1 9 5 8 . 1003.

9 . Cooks on . R. C. : Crundwel 1. E . : H i l l . R. R . . Hudec. J . J . Chem. S o c . 1 9 6 4 . 30 6 2 .

10. A l d e r . K . : F l o c k . F . H . : Be u ml i n o . H. Chem. Ber. 1960. 93 .1896. ~

11. A v a i l a b l e -from Exxon C o r p o r a t i o n ; t h e g i f t of a g e n e r o u s s a mp l e o f m e t h y l c y c l o p e n t a d i e n e dimer i s g r a t e f u l l y a c kno wl e dg e d .

12. C s i c s e r y , S. M. J . Pro. Chem. 1 9 6 0 . 2 5 . 518 .

13. J o h n s o n , C. K. "PRTEP“ : Repor t PRNL-3794 r e v i s e d ; Oak Ri dge N a t i o n a l La bo r a t o r y ; Oak R i d g e , Tn, 1971.

14. Meht a , P . ; S i n g h , V . ; S r i k r i s h n a , A . ; Cameron, T. S . ; Chan,C. T e t r a h e d r o n L e t t . 1 9 7 9 . 4 5 9 5 .

15. Duax, W. L. ; No r t o n , D. A. “A t l a s o f S t e r o i d S t r u c t u r e " ;Plenum: New York, 1975; V o l . 1, pp 16 - 2 2 .

16. Marchand, A. P . ; Rose , R . E. J . Am. Chem. S o c . 1 9 6 8 . 9 0 . 3 7 2 4 .

17. ( a ) C o a t e s , R . M . ; K i r k p a t r i c k , J . L . ; J . Am. Chem. S o c . 1 9 6 8 .9 0 , 4 1 6 2 . <b) J e f f o r d , C. W . ; H i l l , D. T . : G h o s e z , L . ; t o p p e t ,5 7 ; Ramey, K. C. J. Am. Chem. S o c . 1 9 6 9 . 9 1 . 1532.

18. Compound I l l b was s y n t h e s i z e d v i a D i e l s - A l d e r a d d i t i o n of c y c l o p e n t a d i e n e t o t o i u q u i n o n e . i® The m a t e r i a l t h e r e b y s y n t h e s i z e d was r e c r y s t a l l i z e d f rom methanol t o a f f o r d a p a l e y e l l o w m i c r o c r y s t a l l i n e s o l i d , mp 6 1 - 6 3 ° C ( l i t . * ® mp6 2 0 0 .

19. Mai n, P . ; F i s k e , S. J . ; Hu l l , S . E . ; L e s s i n g e r , L . j Germain,G . ; D e c l e r c q , J . - P . ; W o o l f s o n , M. M. "MULTAN 8 0 , A Sys t em o fComputer Programs f o r t h e Au t o ma t i c S o l u t i o n of Cr y s t a l S t r u c t u r e s from X- ray D i f f r a c t i o n Data"; U n i v e r s i t i e s of York,

389

Engl and, and L o u v a i n - 1 a - Ne u v e , Be l g i um, 1988.

20. S h e l d r i c k , G. M. "SHELX-76. Program f o r C r y s t a l S t r u c t u r e D e t e r m i n a t i o n " ; U n i v e r s i t y Chemical L a b o r a t o r y ; Cambridge, Engl and, 1976.

21. Cromer, D. T . ; Mann, J . B. Acta Cr y s t a l 1o o r . . S e c . A 1968 ,A 2 4 . 3 2 1 - 3 2 4 .

22. S t e w a r t , R. F . ; Da v i d s o n , E. R . ; Si mpson, W. T. J . Chem. R h y s . 1 9 6 5 . 4 2 , 3 1 7 5 - 3 1 8 7 .

23. Marchand, A. P. “S t e r e o c h e m i c a l A p p l i c a t i o n s o f hMR S t u d i e s in R i g i d B i c y c l i c Sys t e ms "; Marchand, A. P . , Ed . ; V e r l a g Chemie I n t e r n a t i o n a l ; D e e r f i e l d Beach, F l a . , 1982; pp 14- 19 .

top related