The Use of NMR Spectroscopy for Chiral Discrimination · Assigning Absolute Stereochemistry •Mechanism of discrimination is understood and characteristic changes in chemical shifts

Post on 28-Jan-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

The Use of NMR Spectroscopy for Chiral Discrimination

Thomas J. Wenzel

Department of Chemistry

Bates College

Lewiston, Maine

2007

“Using NMR Spectroscopic Methods to Determine Enantiomeric Purity and Assign Absolute Stereochemistry,” Wenzel, T.J.; Chisholm, C.D., Progress in NMR Spectroscopy, (DOI:10.1016/j.pnmrs.2010.07.003). “Assignment of Absolute Configuration Using Chiral Reagents and NMR Spectroscopy,” Wenzel, T.J.; Chisholm, C.D., Chirality, (DOI: 10.1002/chir.20889).

Categories of Reagents

• Chiral Derivatizing Agents

• Chiral Solvating Agents

• Metal Complexes

• Liquid Crystals

Chiral Derivatizing Agents Raban and Mislow (1965)

• Form a covalent bond between an optically pure reagent ((S)-CDA) and the compound of interest (Sub)

(S)-CDA + (R)-Sub = (S)-CDA-(R)-Sub (S)-CDA + (S)-Sub = (S)-CDA-(S)-Sub

• Resulting compounds are diastereomers

• Signals double in NMR spectrum (Chemical Shift Anisotropy) – areas proportional to percent of each enantiomer

Chiral Derivatizing Agents: Key Criteria if Using to Determine

Enantiomeric Excess

• No racemization

• No kinetic resolution

• Need 100% enantiomeric purity of the reagent

Chiral Solvating Agents (Pirkle – 1966) Metal Complexes (Whitesides and Lewis – 1970)

• Form non-covalent interactions between an optically pure reagent ((S)-CSA) and the compound of interest (Sub) (S)-CSA + (R)-Sub = (S)-CSA-(R)-Sub - KR (S)-CSA + (S)-Sub = (S)-CSA-(S)-Sub - KS

• Resulting compounds are diastereomers

• KR and KS are likely different – causes different

time-averaged solvation environments

Chiral Solvating Agents and Metal Complexes

• Mix directly in an NMR tube

• Preferable to have fast exchange – NMR spectrum is a time average of bound and unbound forms (CSA + Sub = CSA-Sub)

• High concentration of CSA usually leads to larger discrimination

• Often see enhanced enantiomeric discrimination at lower temperatures

• CSA does not need to be 100% enantiomerically pure

Assigning Absolute Stereochemistry

• Mechanism of discrimination is understood and characteristic changes in chemical shifts occur in the spectrum

– More common with certain families of chiral derivatizing agents

– Possible with some chiral solvating agents

• Empirical trend

– Best if use known model compounds as close as possible in structural features to the unknown

L2

O

CF3

L1

H O

Ph OMe

(OMe) (Ph) (R)-MTPA

(S)-MTPA

Mosher Method: -methoxy- -trifluoromethylphenylacetic acid - MTPA (Dale and Mosher – 1973) • Prepare derivatives with (R)- and (S)-forms of the reagent (esters of secondary alcohols) • Syn-periplanar arrangement of HC-O-C(O)-C atoms (secondary alcohols) • Calculate RS values – negative for L1, positive for L2

C COH

CH3O

F3C

O

10

RO

8 9

Me(10) Me(8) Me(9)

MTPA 0.07 -0.017 -0.04

MPA 0.05 -0.021 -0.26

RS

RS depends on: -Extent of conformational preference/how it influences the shielding -Degree of shielding (anthryl > naphthyl > phenyl)

2,2,2-Trifluoro-1-(9-anthryl)ethanol (TFAE) (Pirkle’s Alcohol)

HCF3C OH

Versatile chiral solvating agent -Can determine optical purity -Can assign absolute configurations for certain classes of compounds

Absolute Configurations - TFAE

O

H

C

O

Si-propyl

CH3

C6H5

CF3 H

O

H

C

O

SCH3

i-propyl

C6H5

CF3 H

(R, R) (R, S)

Sulfoxides

Metal Complexes: Expand Coordination Number or Displace

Ligand (Donor/Acceptor Association)

• Lanthanides – Hard Lewis bases

– Nitrogen- and Oxygen-containing compounds

• Platinum, Palladium, Rhodium and Silver – Soft Lewis bases

– Alkenes, alkynes, aromatics, phosphorus-containing, sulfur-containing, alkyl halides

Liquid Crystals Sackmann, Meiboom, Snyder (1968)

• Forms ordered material in a magnetic field

• Pair of enantiomers have different molecular orientations in the liquid crystal

• Three discrimination mechanisms

– Chemical shift anisotropy (least useful)

– Different dipolar coupling constants (1H-13C)

– Differences in quadrupolar splitting (2H) (most useful)

Quadrupolar Splitting • Not observed in solution because of rapid

tumbling

• Observed in ordered media and extent of splitting depends on orientation relative to the applied magnetic field

2-2H-Propionic Acid Proton-decoupled deuterium NMR spectrum

Poly( -benzyl-L-glutamate) – (PBLG) Incredible Versatility

• Only need different packing orders

• Do not need specific interactions between the substrate and the liquid crystal

• Effective for virtually any class of compound – Includes aliphatic hydrocarbons

• Especially effective for resonances of nuclei remote to the chiral center

Deuterium Labeling

• Only need deuterium as a signal – better to use achiral reagents so no concern about kinetic resolution or racemization

– Convert -CO2H to -CO2CD3

– Add perdeutero benzoyl group (have o-, m- and p-protons as potential probes)

• Provides a single, strong signal (or a few easily assigned signals) for the analysis

Crown Ethers

(18-crown-6)-2,3,11,12-tetracarboxylic acid

O

O

O

OO

O

HOOC

COOHHOOC

COOH

(1)

Commercially Available

Association of Primary Amines

Wenzel, T. J.; Freeman, B. E.; Sek, D. C.; Zopf, J. J.; Nakamura, T.; Yongzhu, J.; Hirose, K.; Tobe, Y, Analytical and Bioanalytical Chemistry, 2004, 378, 1536-1547. Wenzel, T. J.; Thurston, J. E., Tetrahedron Letters, 2000, 41, 3769-3772. Wenzel, T. J.; Thurston, J. E., Journal of Organic Chemistry, 2000, 65, 1243-1248.

N

HH

O

O

O

O

COOH

COOHO

O

HOOC

HOOC

R

H

Wenzel, T.J.; Bourne, C.E.; Clark, R.L., Tetrahedron: Asymmetry, 2009, 20, 2052-2060. Chisholm, C.D.; Fülöp, F.; Forró, E.; Wenzel, T.J., Tetrehedron: Asymmetry, 2010, 21, 2289-2294.

Association of Secondary Amines

O

O

O

OO

O

H H

N

HOOC

HOOC COOH

O

O

R R'

In methanol

The C-methyl and N-methyl resonances (400 MHz) of (a) 3 (10 mM) with increasing concentrations of 1 (0, 5, and 10 mM), (b) the hydrochloride salt of 3 (10 mM) with increasing concentrations of 1 (0, 20, and 40 mM), and (c) 3 (10 mM) with increasing concentrations of L-tartaric acid (0,5, and 10 mM)

Lovely, A.E.; Wenzel, T.J., Organic Letters, 2006, 8, 2823-2826.

NH

Dimethylbenzylamine

NH

COOH

1H NMR spectrum (400 MHz) of the methine resonance of 8 (10 mM) in methanol-d4 with 1 at (b) 5 mM, (c) 10 mM, (d) 15 mM, (e) 20 mM, (f) 30 mM, (g) 40 mM.

Lovely, A.E.; Wenzel, T.J., Organic Letters, 2006, 8, 2823-2826.

Pyrrolidines

NH

NH

NH

NH2

O

(11)(10) (12)

NH HO

NH

HO

NH

(2) (3) (4)

NH

HN

OH

NH

NH

NH2

(5) (6)

(7)

NH

O

NH

OH

(8) (9)

1 2

3

4

5

6

1 2

34

5

6

7

89

1

2 3

45

6 7

8

9

10

11

12 13

14

1

2 3

4

5

6

7

8

12

3

4

5

6

Lovely, A.E.; Wenzel, T.J., Tetrahedron Asymmetry, 2006, 17, 2642-48

NH

HO

0.068

0.025

0.041

(2) (3)

(4) (5)

(6)

NH

0.052 NH

0.015

0.2040.215

NH

OH

0.1910.253 NH

0.208

NH

N

0.1490.149

0.053

0.0330.062

NH

O

O

0.37

0.44

0.59

0.65

0.35

0.15

0.14

0.21

0.12

0.31

0.55

0.20

0.14

0.43

0.36 0.08

0.03

0.33

0.11

0.42

0.29

0.62

0.340.18

0.59

0.11

0.03

0.04

0.09

0.04

NH

OH

NH

OHNH

NH2

O

NH

OH

O

NH

OH

O

(7) (8)

(9) (10)

(11) (12)

NH

HN

(13) (14)

(15) (16)

0.048(0.120)

0.298 0.055

0.116

0.054

0.058

0.108

NH

N

NH

HN

NH

N

Piperidines and Piperazines

Lovely, A.E.; Wenzel, T.J., Journal of Organic Chemistry, 2006, 71, 9178-82.

N

N

NHO

OH

N

O

N

OH

NOH

NO

ON

O

O

1514

19

16 17

18 2120

1

2

3

4

5

6 7

8

9

1

2

34

56 7 8

12

3

4

4

1

2 3

3

12

34

5

6

7

8

8

12

3

4

56

6 12

3

4

412

3

4

4

Tertiary Amines

1H – Discrimination usually small 13C – Baseline discrimination

Lovely, A.E.; Wenzel, T.J., Chirality, 2008, 20, 370-378

Cyclodextrins

• Cyclic oligosaccharides

• Glucose units

– 6 –

– 7 –

– 8 –

• Water-soluble

Carboxymethylated Cyclodextrins Synthetic Schemes

Dignam, C.F.; Randall, L.A.; Blacken, R.D.; Cunningham, P.R.; Lester, S.-K.G.; Brown, M.J.; French, S.C.; Aniagyei, S.E.; Wenzel, T.J., Tetrahedron Asymmetry, 2006, 17, 1199-1208. Wenzel, T. J.; Amonoo, E. P.; Shariff, S. S.; Aniagyei, S. E., Tetrahedron: Asymmetry, 2003, 14, 3099-3104. Smith, K. J.; Wilcox, J. D.; Mirick, G. E.; Wacker, L. S.; Ryan, N. S.; Vensel, D. A.; Readling, R.; Domush, H. L.; Amonoo, E. P.; Shariff, S. S.; Wenzel, T. J., Chirality, 2003, 15, S150-S158.

Degree of CM Substitution

2-position 6-position Indiscriminate

-CD 3 2 7

-CD 4 1 9

-CD 4.5 2 8

1H NMR (400 MHz, D2O) of (a) 10 mM chlorpheniramine with 10 mM (b) -CD, (c) -CDCM-Ind, (d) -CDCM-2 and (e) -CDCM-6.

7.47.67.88.08.28.4 ppm

H4’ H6’ H3’

H5’

(e)

(d)

(c)

(b)

(a)

N

CCH2CH2NH(CH3)2H

Cl

2

3

3'

4'

5'

6'

+

Native

Indiscriminate

2-position

6-position -CDCM

1H NMR (400 MHz, D2O) of (a) 10 mM chlorpheniramine with 10 mM (b) β -CD, (c) β -CDCM-Ind, (d) β -CDCM-2 and (e) β -CDCM-6. Impurities marked by “x”

7.47.67.88.08.28.48.6 ppm

H6’

X

X

H4’ H3’

(e)

(d)

(c)

(b)

(a)

N

CCH2CH2NH(CH3)2H

Cl

2

3

3'

4'

5'

6'

+

Native

Indiscriminate

2-position

6-position β -CDCM

-methylphenethyl- amine HCl (10 mM)

-CM-CD-Ind (20 mM) Yb(III) – (2-8 mM)

K.A. Provencher, T.J. Wenzel, Tetrahedron Asymmetry, 2008, 19, 1797-1803 Provencher, K.A.; Weber, M.A.; Randall, L.A.; Cunningham, P.R.; Dignam, C.F.; Wenzel, T.J., Chirality, 2010, 22, 336-346.

Cationic Cyclodextrins

C.D. Chisholm, T.J. Wenzel, Tetrahedron Asymmetry, in press

DS = 0.7, 1.1, 1.5, 3.0 DS = 1.5 the best

6.456.506.556.606.656.706.756.806.856.906.957.007.05 ppm2.62.72.82.93.03.13.23.33.4 ppm

Tyrosine with -CD-GTAC

1H NMR (400 MHz, D2O) (a) 10 mM tyrosine (L>D), with (b) 10 mM native α-CD, (c) 20 mM native α-CD, (d) 10 mM α-CD GTAC (DS = 1.5), and (e) 20 mM α-CD GTAC (DS = 1.5).

Synthesis of Calix[4]resorcinarenes

Yanagihara, R.; Tominaga, M.; Aoyama, Y. J. Org. Chem., 1994, 59, 6865-6867. Dignam, C. F.; Zopf, J. J.; Richards, C. J.; Wenzel, T. J., Journal of Organic Chemistry, 2005, 70, 8071-8078. Dignam, C. F.; Richards, C. J.; Zopf, J. J.; Wacker, L. S.; Wenzel, T. J., Organic Letters, 2005, 7, 1773-1776.

SCR-Pro

OH

OH

OHHO

HO

HO

HO OH

RR

R R

H H

HH

N

CO

O

NC

O

O

N

C O

O

NC

O

O

H

H

H

H

R =

H2

CCH2

SO3-

Water-soluble

10 mM substrate with 2, 4, 6, 8, and 10 mM SCR-Pro

Geometries of Complexes

Association Constants

(R)-

enantiomer

(S)-enantiomer

1-Phenylethylamine HCl 68 97

1-(1-naphthyl)ethylamine HCl

361 595

Propranolol HCl 258 482

Tryptophan methyl ester HCl 59 113

Sodium tryptophan 67 40

1H NMR spectra (400 MHz, D2O) of doxylamine (10 mM), (a) at 23° C, (b) with SCR-Pro (2 mM) at 23° C, (c) with SCR-Pro (40 mM) at 23° C and (d) with SCR-Pro (40 mM) at 50° C.

6.57.07.58.08.5 ppm

Other Calix[4]resorcinarene Derivatives

NH

S-MOP

OCH3

NH

CH2OH

PyrMOH

NH

bis-MOP

OCH3CH3O

C.M. O’Farrell, J.M. Chudomel, J.M. Collins, D.F. Dignam, T.J. Wenzel, Journal of Organic Chemistry, 2008, 73, 2843-2851. C.M. O’Farrell, T.J. Wenzel, Tetrahedron Asymmetry, 2008, 19, 1790-1796. C.M. O’Farrell, K.A. Hagan, T.J. Wenzel, Chirality, 2009, 21, 911-921. Hagan,K.A.; O’Farrell, C.M.; Wenzel, T.J., European Journal of Organic Chemistry, 2009, 4825-4832.

OH

NH

2-tert-butylamino-1-phenylethanol (10 mM) with 6, 8, and 10 mM of SCR-t4L

Our Latest Calix[4]resorcinarene Systems

-methyl-L-proline ( MP)

L-pipecolinic acid (LPA)

6.87.07.27.4 ppm

(c)

(b)

(a)

(a) 2/3-(S), 1/3-(R) (10 mM) (b) t3L (30 mM) (c) MP (30 mM)

6.66.87.07.27.4 ppm

(c)

(b)

(a)

(a) 2/3-L, 1/3-D (10 mM) (b) c4L (10 mM) (c) MP (8 mM)

N.H. Pham, T.J. Wenzel, Journal of Organic Chemistry, submitted.

1.21.41.6 ppm

(d)

(c)

(b)

(a)

(a) N-benzyl-α-methylbenzylamine (10 mM) – CH3 (b) 20 mM t3L (c) 20 mM MP (d) 15 mM LPA

5.86.06.26.46.66.87.07.27.47.67.8 ppm

(a) 20 mM LPA (b) 2/3-D, 1/3-L (10 mM)

Special Thanks To: • Catherine Dignam • Kayla Zomlefer • Jan Collins • Alice Brechting • Celeste Morin • Rebecca Miles • Daphney Frederique • Melissa Roan • Jeff Troughton • Beth Pond • Amanda Colby • Matt Bogyo • Estelle Lebeau • Lauren Randall • Renee Blacken • Patrick Cunningham • Shawna-Kaye Lester • Monique Brown • Susie French • Stella Aniagyei • Edwin Amonoo • Sonia Shariff • Ngoc Pham • Cora Chisholm

• Kristin Smith • James Wilcox • Gudrun Mirick • Lee Wacker • Nicole Ryan • David Vensel • Ginger Readling • Hilary Domush • Jason Zopf • Chris Richards • Bailey Freeman • David Sek • Jolene Thurston • Ann Lovely • Courtney O’Farrell • Katelyn Provencher • Madeline Weber • Brad Wenzel • Katie Hagan • Thao Nguyen • Chloe Bourne • Rebecca Clark • Ryan Rollo

And To:

• National Science Foundation

• Research Corporation

• Camille and Henry Dreyfus Foundation

• Howard Hughes Medical Institute/Bates College

• Pfizer Pharmaceutical

THREE YEARS OF s

Pens and pencils are chiral (right-handed) because of the writing

Be careful what you put on a pencil!

top related