The Divergence Theorem - Millersville University of ...banach.millersville.edu/~bob/math311/Divergence/main.pdf · The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan

Post on 28-Aug-2018

243 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

Transcript

The Divergence TheoremMATH 311, Calculus III

J. Robert Buchanan

Department of Mathematics

Summer 2011

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Revisited

Green’s Theorem:∮C

M(x , y) dx + N(x , y) dy =

∫∫R

(∂N∂x− ∂M∂y

)dA

R

T

C

n

x

y

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Vector Form (1 of 3)

Simple closed curve C is described by the vector-valuedfunction

r(t) = 〈x(t), y(t)〉 for a ≤ t ≤ b.

The unit tangent vector and unit (outward) normal vector to Care respectively

T(t) =1

‖r′(t)‖〈x ′(t), y ′(t)〉 and n(t) =

1‖r′(t)‖

〈y ′(t),−x ′(t)〉.

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Vector Form (2 of 3)

If the vector field F(x , y) = M(x , y)i + N(x , y)j, then along thesimple closed curve C:

F · n = 〈M(x(t), y(t)),N(x(t), y(t))〉 · 1‖r′(t)‖

〈y ′(t),−x ′(t)〉

=(M(x(t), y(t))y ′(t)− N(x(t), y(t))x ′(t)

) 1‖r′(t)‖

.

Now consider the line integral∮C

F · n ds.

Note: this is a line integral with respect to arc length.

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Vector Form (2 of 3)

If the vector field F(x , y) = M(x , y)i + N(x , y)j, then along thesimple closed curve C:

F · n = 〈M(x(t), y(t)),N(x(t), y(t))〉 · 1‖r′(t)‖

〈y ′(t),−x ′(t)〉

=(M(x(t), y(t))y ′(t)− N(x(t), y(t))x ′(t)

) 1‖r′(t)‖

.

Now consider the line integral∮C

F · n ds.

Note: this is a line integral with respect to arc length.

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Vector Form (2 of 3)

If the vector field F(x , y) = M(x , y)i + N(x , y)j, then along thesimple closed curve C:

F · n = 〈M(x(t), y(t)),N(x(t), y(t))〉 · 1‖r′(t)‖

〈y ′(t),−x ′(t)〉

=(M(x(t), y(t))y ′(t)− N(x(t), y(t))x ′(t)

) 1‖r′(t)‖

.

Now consider the line integral∮C

F · n ds.

Note: this is a line integral with respect to arc length.

J. Robert Buchanan The Divergence Theorem

Green’s Theorem Vector Form (3 of 3)

∮C

F · n ds =

∫ b

a(F · n)(t) ‖r′(t)‖dt

=

∫ b

a

(M(x(t), y(t))y ′(t)− N(x(t), y(t))x ′(t)

) ‖r′(t)‖‖r′(t)‖

dt

=

∫ b

a

(M(x(t), y(t))y ′(t)− N(x(t), y(t))x ′(t)

)dt

=

∮C

M(x , y) dy − N(x , y) dx

=

∫∫R

(∂M∂x

+∂N∂y

)dA (by Green’s Theorem)

=

∫∫R∇ · F dA

J. Robert Buchanan The Divergence Theorem

Summary and Objective

Green’s Theorem in vector form states∮C

F · n ds =

∫∫R∇ · F(x , y) dA.

A double integral of the divergence of a two-dimensional vectorfield over a region R equals a line integral around the closedboundary C of R.

The Divergence Theorem (also called Gauss’s Theorem) willextend this result to three-dimensional vector fields.

J. Robert Buchanan The Divergence Theorem

Summary and Objective

Green’s Theorem in vector form states∮C

F · n ds =

∫∫R∇ · F(x , y) dA.

A double integral of the divergence of a two-dimensional vectorfield over a region R equals a line integral around the closedboundary C of R.

The Divergence Theorem (also called Gauss’s Theorem) willextend this result to three-dimensional vector fields.

J. Robert Buchanan The Divergence Theorem

Divergence Theorem

Remark: the Divergence Theorem equates surface integralsand volume integrals.

Theorem (Divergence Theorem)

Let Q ⊂ R3 be a region bounded by a closed surface ∂Q andlet n be the unit outward normal to ∂Q. If F is a vector functionthat has continuous first partial derivatives in Q, then∫∫

∂QF · n dS =

∫∫∫Q∇ · F dV .

J. Robert Buchanan The Divergence Theorem

Proof (1 of 7)

Suppose F(x , y , z) = M(x , y , z)i + N(x , y , z)j + P(x , y , z)k,then the Divergence Theorem can be stated as∫∫

∂QF · n dS

=

∫∫∂Q

M(x , y , z)i · n dS +

∫∫∂Q

N(x , y , z)j · n dS

+

∫∫∂Q

P(x , y , z)k · n dS

=

∫∫∫Q

∂M∂x

dV +

∫∫∫Q

∂N∂y

dV +

∫∫∫Q

∂P∂z

dV

=

∫∫∫Q∇ · F(x , y , z) dV .

J. Robert Buchanan The Divergence Theorem

Proof (2 of 7)

Thus the theorem will be proved if we can show that∫∫∂Q

M(x , y , z)i · n dS =

∫∫∫Q

∂M∂x

dV∫∫∂Q

N(x , y , z)j · n dS =

∫∫∫Q

∂N∂y

dV∫∫∂Q

P(x , y , z)k · n dS =

∫∫∫Q

∂P∂z

dV .

All of the proofs are similar so we will focus only on the third.

J. Robert Buchanan The Divergence Theorem

Proof (3 of 7)

Suppose region Q can be described as

Q = {(x , y , z) |g(x , y) ≤ z ≤ h(x , y), for (x , y) ∈ R}

where R is a region in the xy -plane.

Think of Q as being bounded by three surfaces S1 (top), S2(bottom), and S3 (side).

J. Robert Buchanan The Divergence Theorem

Proof (4 of 7)

S1: z=hHx,yL

S2: z=gHx,yL S3

x

y

z

On surface S3 the the unit outward normal is parallel to thexy -plane and thus∫∫

∂QP(x , y , z) k · n︸︷︷︸

=0

dS =

∫∫∂Q

0 dS = 0.

J. Robert Buchanan The Divergence Theorem

Proof (5 of 7)

Now we calculate the surface integral over S1.

S1 = {(x , y , z) | z − h(x , y) = 0, for (x , y) ∈ R}

Unit outward normal:

n =∇(z − h(x , y))

‖∇(z − h(x , y))‖=

−hx(x , y)i− hy (x , y)j + k√[−hx(x , y)]2 + [−hy (x , y)]2 + 1

andk · n =

1√[hx(x , y)]2 + [hy (x , y)]2 + 1

J. Robert Buchanan The Divergence Theorem

Proof (6 of 7)

∫∫S1

P(x , y , z)k · n dS =

∫∫S1

P(x , y , z)√[hx(x , y)]2 + [hy (x , y)]2 + 1

dS

=

∫∫R

P(x , y ,h(x , y)) dA

In a similar way we can show the surface integral over S2 is∫∫S2

P(x , y , z)k · n dS = −∫∫

RP(x , y ,g(x , y)) dA.

J. Robert Buchanan The Divergence Theorem

Proof (7 of 7)

Finally,∫∫∂Q

P(x , y , z)k · n dS

=

∫∫S1

P(x , y , z)k · n dS +

∫∫S2

P(x , y , z)k · n dS

+

∫∫S3

P(x , y , z)k · n dS

=

∫∫R

P(x , y ,h(x , y)) dA−∫∫

RP(x , y ,g(x , y)) dA

=

∫∫R[P(x , y ,h(x , y))− P(x , y ,g(x , y))] dA

=

∫∫R

P(x , y , z)

∣∣∣∣z=h(x ,y)

z=g(x ,y)

dA

=

∫∫R

∫ h(x ,y)

g(x ,y)

∂P∂z

dz dA =

∫∫∫Q

∂P∂z

dV .

J. Robert Buchanan The Divergence Theorem

Example (1 of 2)

Let Q be the solid unit sphere centered at the origin. Use theDivergence Theorem to calculate the flux of the vector fieldF(x , y , z) = 〈z, y , x〉 over the surface of the unit sphere.

J. Robert Buchanan The Divergence Theorem

Example (2 of 2)

F(x , y , z) = 〈z, y , x〉∇ · F = 1

S = {(x , y , z) | x2 + y2 + z2 = 1}Q = {(x , y , z) | x2 + y2 + z2 ≤ 1}

According to the Divergence Theorem,∫∫S

F · n dS =

∫∫∫Q∇ · F dV =

∫∫∫Q

1 dV =4π3.

J. Robert Buchanan The Divergence Theorem

Example (1 of 3)

Let Q be the solid region bounded by the parabolic cylinderz = 1− x2 and the planes z = 0, y = 0, and y + z = 2.Calculate the flux of the vector field

F(x , y , z) = xy i + (y2 + exz2)j + sin(xy)k

over the boundary of Q.

J. Robert Buchanan The Divergence Theorem

Example (2 of 3)

Region Q:

−1 ≤ x ≤ 10 ≤ y ≤ 2− z0 ≤ z ≤ 1− x2

-1.0

-0.5

0.0

0.5

1.0

x

0.0

0.5

1.0

1.5

2.0y

0.0

0.5

1.0

z

J. Robert Buchanan The Divergence Theorem

Example (3 of 3)

F(x , y , z) = 〈xy , y2 + exz2, sin(xy)〉

∇ · F = 3yS = {(x , y , z) | z = 1− x2, z = 0, y = 0, y + z = 2}Q = {(x , y , z) |0 ≤ z ≤ 1− x2, 0 ≤ y ≤ 2− z}

According to the Divergence Theorem,∫∫S

F · n dS =

∫∫∫Q∇ · F dV =

∫∫∫Q

3y dV

=

∫ 1

−1

∫ 1−x2

0

∫ 2−z

03y dy dz dx

=18435

J. Robert Buchanan The Divergence Theorem

Example (3 of 3)

F(x , y , z) = 〈xy , y2 + exz2, sin(xy)〉

∇ · F = 3yS = {(x , y , z) | z = 1− x2, z = 0, y = 0, y + z = 2}Q = {(x , y , z) |0 ≤ z ≤ 1− x2, 0 ≤ y ≤ 2− z}

According to the Divergence Theorem,∫∫S

F · n dS =

∫∫∫Q∇ · F dV =

∫∫∫Q

3y dV

=

∫ 1

−1

∫ 1−x2

0

∫ 2−z

03y dy dz dx

=18435

J. Robert Buchanan The Divergence Theorem

Example (3 of 3)

F(x , y , z) = 〈xy , y2 + exz2, sin(xy)〉

∇ · F = 3yS = {(x , y , z) | z = 1− x2, z = 0, y = 0, y + z = 2}Q = {(x , y , z) |0 ≤ z ≤ 1− x2, 0 ≤ y ≤ 2− z}

According to the Divergence Theorem,∫∫S

F · n dS =

∫∫∫Q∇ · F dV =

∫∫∫Q

3y dV

=

∫ 1

−1

∫ 1−x2

0

∫ 2−z

03y dy dz dx

=18435

J. Robert Buchanan The Divergence Theorem

Identities (1 of 2)

Show that∫∫

S(∇× F) · n dS = 0.

By the Divergence Theorem∫∫S

(∇× F) · n dS =

∫∫∫Q∇ · (∇× F) dV

=

∫∫∫Q

0 dV

= 0

J. Robert Buchanan The Divergence Theorem

Identities (1 of 2)

Show that∫∫

S(∇× F) · n dS = 0.

By the Divergence Theorem∫∫S

(∇× F) · n dS =

∫∫∫Q∇ · (∇× F) dV

=

∫∫∫Q

0 dV

= 0

J. Robert Buchanan The Divergence Theorem

Identities (2 of 2)

Show that∫∫

SDnf (x , y , z) dS =

∫∫∫Q∇2f (x , y , z) dV .

∫∫S

Dnf (x , y , z) dS =

∫∫S∇f (x , y , z) · n dS

=

∫∫∫Q∇ · ∇f (x , y , z) dV (Divergence Th.)

=

∫∫∫Q∇2f (x , y , z) dV

J. Robert Buchanan The Divergence Theorem

Identities (2 of 2)

Show that∫∫

SDnf (x , y , z) dS =

∫∫∫Q∇2f (x , y , z) dV .

∫∫S

Dnf (x , y , z) dS =

∫∫S∇f (x , y , z) · n dS

=

∫∫∫Q∇ · ∇f (x , y , z) dV (Divergence Th.)

=

∫∫∫Q∇2f (x , y , z) dV

J. Robert Buchanan The Divergence Theorem

Average Value of a Function

During Calculus I you learned the Integral Mean ValueTheorem for a continuous f (x) defined on [a,b] as

f (c) =1

b − a

∫ b

af (x) dx = favg ,

for some a ≤ c ≤ b.

The analogous result for triple integrals is

f (A) =1V

∫∫∫Q

f (x , y , z) dV

where A is a point in Q and V is the volume of region Q.

J. Robert Buchanan The Divergence Theorem

Average Value of a Function

During Calculus I you learned the Integral Mean ValueTheorem for a continuous f (x) defined on [a,b] as

f (c) =1

b − a

∫ b

af (x) dx = favg ,

for some a ≤ c ≤ b.

The analogous result for triple integrals is

f (A) =1V

∫∫∫Q

f (x , y , z) dV

where A is a point in Q and V is the volume of region Q.

J. Robert Buchanan The Divergence Theorem

Interpretation of Divergence of a Vector Field (1 of 3)

[∇ · F]|A =1V

∫∫∫Q∇ · F dV

=1V

∫∫∂Q

F · n dS︸ ︷︷ ︸flux per unit volume

J. Robert Buchanan The Divergence Theorem

Interpretation of Divergence of a Vector Field (2 of 3)

Let P be an arbitrary point in the interior of Q (not on ∂Q) thenwe may center a sphere Qa of radius a > 0 at P so that thesphere lies entirely in the interior of Q.

[∇ · F]|A =1

Va

∫∫∂Qa

F · n dS

=1

43πa3

∫∫∂Qa

F · n dS

lima→0+

[∇ · F]|A = lima→0+

143πa3

∫∫∂Qa

F · n dS

J. Robert Buchanan The Divergence Theorem

Interpretation of Divergence of a Vector Field (2 of 3)

Let P be an arbitrary point in the interior of Q (not on ∂Q) thenwe may center a sphere Qa of radius a > 0 at P so that thesphere lies entirely in the interior of Q.

[∇ · F]|A =1

Va

∫∫∂Qa

F · n dS

=1

43πa3

∫∫∂Qa

F · n dS

lima→0+

[∇ · F]|A = lima→0+

143πa3

∫∫∂Qa

F · n dS

J. Robert Buchanan The Divergence Theorem

Interpretation of Divergence of a Vector Field (3 of 3)

Conclusion: the divergence of a vector field at a point is thelimiting value of the flux per unit volume over a sphere centeredat the point as the radius of the sphere approaches zero.

Suppose F represents the flow of a fluid in three dimensions.If ∇ · F < 0 then the divergence represents a net loss offluid (a sink).If ∇ · F > 0 then the divergence represents a net gain offluid (a source).

J. Robert Buchanan The Divergence Theorem

Interpretation of Divergence of a Vector Field (3 of 3)

Conclusion: the divergence of a vector field at a point is thelimiting value of the flux per unit volume over a sphere centeredat the point as the radius of the sphere approaches zero.

Suppose F represents the flow of a fluid in three dimensions.If ∇ · F < 0 then the divergence represents a net loss offluid (a sink).If ∇ · F > 0 then the divergence represents a net gain offluid (a source).

J. Robert Buchanan The Divergence Theorem

Application (1 of 5)

Suppose a point charge q is located at the origin. ByCoulomb’s Law

F(x , y , z) =c q

‖〈x , y , z〉‖3〈x , y , z〉

where c is constant. Show the electric flux of F over any closedsurface containing the origin is 4πc q.

J. Robert Buchanan The Divergence Theorem

Application (2 of 5)

F is not continuous on any region containing the origin. Think ofQ as the region between two surfaces: (1) Sa a spherecentered at the origin of radius a > 0, and (2) S any surfacecontaining the origin inside it.∫∫∫

Q∇ · F dV =

∫∫Sa

F · n dS +

∫∫S

F · n dS

J. Robert Buchanan The Divergence Theorem

Application (3 of 5)

S

Sa

-2-1

01

2

x

-2

0

2y

-4

-2

0

2

4

z

J. Robert Buchanan The Divergence Theorem

Application (4 of 5)

F(x , y , z) =c q

‖〈x , y , z〉‖3〈x , y , z〉

∇ · F = 0

According to the Divergence Theorem

0 =

∫∫∫Q∇ · F dV =

∫∫Sa

F · n dS +

∫∫S

F · n dS∫∫S

F · n dS = −∫∫

Sa

F · n dS

J. Robert Buchanan The Divergence Theorem

Application (5 of 5)

On surface Sa the unit outward normal points toward the origin.

Sa = {(x , y , z) | x2 + y2 + z2 = a2}

n = −1a〈x , y , z〉

According to the Divergence Theorem∫∫S

F · n dS = −∫∫

Sa

F · n dS

= −∫∫

Sa

c q‖〈x , y , z〉‖3

〈x , y , z〉 ·(−1

a

)〈x , y , z〉dS

=c qa

∫∫Sa

1‖〈x , y , z〉‖3

‖〈x , y , z〉‖2 dS

=c qa

∫∫Sa

1‖〈x , y , z〉‖

dS =c qa

∫∫Sa

1a

dS

=c qa2

∫∫Sa

1 dS = 4πc q

J. Robert Buchanan The Divergence Theorem

Homework

Read Section 14.7.Exercises: 1–35 odd

J. Robert Buchanan The Divergence Theorem

top related