Standard Model of Particle Physics - Max Planck … · Schöning/Rodejohann 1 Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS

Post on 23-Aug-2018

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Schöning/Rodejohann 1 Standard Model of Particle Physics SS 2012

Lecture:

Standard Model of Particle Physics

Heidelberg SS 2012

W- and Z-Bosons

Schöning/Rodejohann 2 Standard Model of Particle Physics SS 2012

Schöning/Rodejohann 3 Standard Model of Particle Physics SS 2012

Contents

Discovery of “real” W- and Z-bosons

Intermezzo: QCD at Hadron Colliders

LEP + Detectors

W- and Z- Physics at LEP

W- and Z-Physics at Hadron Colliders (Tevatron+LHC)

Schöning/Rodejohann 4 Standard Model of Particle Physics SS 2012

Prediction of W and Z masses

e = g sinθW = g ' cosθW

SM predictions:

GF /√2= g2/8 MW

2

Low energy limits of W-propagator

Measurement of Weinberg angle:

sin2θW ≈ 0.25 → g ≈ 0.6

→ MW ≈ 80GeV

Relation from vector-boson mass matrix

MW2

M Z2

=g2

g2+g '2= cos2

θW→ M Z ≈ 90GeV

Schöning/Rodejohann 5 Standard Model of Particle Physics SS 2012

W,Z Physics at Hadron Colliders

q

q'_

W, Z

l

l'_

Schöning/Rodejohann 6 Standard Model of Particle Physics SS 2012

Intermezzo QCDQCD Lagrangian (physical fields)

Covariant derivative:

Gluon field: non-abelian coupling

self coupling

SU(3) group generators

SU(3) structure constants

vector coupling

Schöning/Rodejohann 7 Standard Model of Particle Physics SS 2012

SU(3) Group Representation

8 generators (N*N-1)

r=100 g= 010 b= 001

t1=(0 1 01 0 00 0 0) t2=(

0 −i 0i 0 00 0 0) t3=(

1 0 00 −1 00 0 0 )

t4=(0 0 10 0 01 0 0 ) t5=(

0 0 −i0 0 0i 0 0 ) t6=(

0 0 00 0 10 1 0 )

t7=(0 0 00 0 −i0 i 0 ) t8=

1

√3 (1 0 00 1 00 0 −2 )

color states

Schöning/Rodejohann 8 Standard Model of Particle Physics SS 2012

Quantum Chromodynamics

qq

qqq

Meson

Hadron

q

q q

q

q

qg7

g6 g5

g4

g2g1g3 g8

green

blue

red

anti-greenanti-red

anti-blue

Schöning/Rodejohann 9 Standard Model of Particle Physics SS 2012

Running of alphaS

Distance

Energy

„Confinement“„Asymptotic Freedom“

~ Λ QCD

Schöning/Rodejohann 10 Standard Model of Particle Physics SS 2012

„Asymptotic Freedom“

„Oh Brother, where art thou?“ (2000)

Schöning/Rodejohann 11 Standard Model of Particle Physics SS 2012

ConfinementThe force between two quarks is 50000 N !!!

consequence: free quarks or gluons are not observable

distance

binding energy

Schöning/Rodejohann 12 Standard Model of Particle Physics SS 2012

Three-Jet Event at PETRA

e+ e- → q q g_Reaction:

Hard gluon emissioncalculable in pQCDevent topology

Soft gluon emissionsparton showers (non-pQCD)high particle multiplicitiescollinear emissions leadto “jet” structure

Hadronisationlong distance scaleformation of hadronsfrom quarks and gluons

Schöning/Rodejohann 13 Standard Model of Particle Physics SS 2012

Parton Showers

Parton Shower in

Deep Inelastic Scattering

energy

Schöning/Rodejohann 14 Standard Model of Particle Physics SS 2012

Luminosity-Function

q q

Lq q =∫z

1q z / z2q z2dz2 / z2 z=z1 z2with

ss=z

Parton density function q = q(x,μ2) In Lepton-Nucleon Scattering parton splitting (factorisation)

scale μ = Q2

Question: Which scale determines parton splitting in hadron-colliders?

Answer: factorisation scale typically: μF= s

At Hadron Colliders: how to get from the proton to the parton?

Input from lepton-nucleon scattering needed!

s = total cms energy

s = cms energy ofhard parton interaction

^

Schöning/Rodejohann 15 Standard Model of Particle Physics SS 2012

Parton Dynamics● The x-dependence of q(x,μ) can not be calculated from first principles!

Parton densities have to bemeasured by experiments

Evolution of parton densities in Q2 is described by DGLAPequations (splitting functions)

Schöning/Rodejohann 16 Standard Model of Particle Physics SS 2012

W,Z Production in Hadron Collisions

MW,Z

~ 100 GeV

s1/2 ~ 500 GeV

MW,Z

~ s = x

1 x

2 s ^

x1 , x

2 ~ 0.2

→ valence-quark region

Collider energy:

Boson masses

parton momentum fractions:

PDFLIB 2000

Reaction:

p p → W (Z) X_

q q → W (Z) X_

need anti-protons!

Schöning/Rodejohann 17 Standard Model of Particle Physics SS 2012

W,Z Cross Section

x1 , x

2 ~ 0.4

Reasonable cross section of 0.1 nb at

s1/2/MW

~2

Typically:

need high luminosity!

Schöning/Rodejohann 18 Standard Model of Particle Physics SS 2012

Proton Parton Densities

SPS energy

multiply by 20!

Schöning/Rodejohann 19 Standard Model of Particle Physics SS 2012

Super Proton (Antiproton) Synchrotron

270 GeV protons

270 GeV anti-protons

1981-1984

Schöning/Rodejohann 20 Standard Model of Particle Physics SS 2012

Cooling of Anti-protonselectron cooling of anti-protons

Stochastic cooling of anti-protons

High luminosities are obtained for small beam emittances ! Antiprotons are hot after production!

Simon van de Meer

Schöning/Rodejohann 21 Standard Model of Particle Physics SS 2012

UA1 Experiment

“modern” high energycollider experiment ableto run at high collision rates(fast electronics)

Schöning/Rodejohann 22 Standard Model of Particle Physics SS 2012

UA2 experiment

Schöning/Rodejohann 23 Standard Model of Particle Physics SS 2012

Candidate Z → ee

Schöning/Rodejohann 24 Standard Model of Particle Physics SS 2012

Z-candidate Event Signature

U.Uwer

Schöning/Rodejohann 25 Standard Model of Particle Physics SS 2012

W-candidates

U.Uwer

Schöning/Rodejohann 26 Standard Model of Particle Physics SS 2012

W-candidates

U.Uwer

exploit momentum conservation!

Schöning/Rodejohann 27 Standard Model of Particle Physics SS 2012

Kinematic Reconstruction of W-bosons

U.Uwer

Schöning/Rodejohann 28 Standard Model of Particle Physics SS 2012

(MW

/ 2)2

U.Uwer

Schöning/Rodejohann 29 Standard Model of Particle Physics SS 2012

Final Result

Rho parameter consistent with 1 → confirmation of the SM

ρ=MW

2

M Z2 cos2

θW

Nobel Prize for Physics 1984: C.Rubbia and S van de Meer

Schöning/Rodejohann 30 Standard Model of Particle Physics SS 2012

Large Electron Positron Collider

e+e- collider

s1/2 = 90-200 GeV

Schöning/Rodejohann 31 Standard Model of Particle Physics SS 2012

Hadron Production in e+ e-

MZ = 91.1876 ± 0.0021 GeV

Schöning/Rodejohann 32 Standard Model of Particle Physics SS 2012

WW Pair Production at LEP

U.Uwer

Schöning/Rodejohann 33 Standard Model of Particle Physics SS 2012U.Uwer

Schöning/Rodejohann 34 Standard Model of Particle Physics SS 2012

W-Pair Production at LEP2

Schöning/Rodejohann 35 Standard Model of Particle Physics SS 2012

W leptonic branching fractions

Schöning/Rodejohann 36 Standard Model of Particle Physics SS 2012

Tevatron at Fermilab

Proton – Antiproton Collider at s1/2 = 2 TeV

Schöning/Rodejohann 37 Standard Model of Particle Physics SS 2012

Missing Transverse Momentum

electron

neutrino

pT

v = pT

miss

pT

v

pT

miss

W → e v

Jacobian peak at D0:

Schöning/Rodejohann 38 Standard Model of Particle Physics SS 2012

Latest Results W-mass

Tevatron Run 1

Tevatron Run 2

LEP2

}

}

World Average

W-mass measurement important for Top and Higgs Mass predictions

March 2012

Method: normalise W-mass measurement to Z-mass measurement and take input (precise Z-mass) from LEP

Schöning/Rodejohann 39 Standard Model of Particle Physics SS 2012

LHC2011: s1/2 = 7 TeV

2012: s1/2 = 8 TeV

>2014: s1/2 = 14 TeV

proton-proton collisions!

Schöning/Rodejohann 40 Standard Model of Particle Physics SS 2012

ATLAS Detector

Schöning/Rodejohann 41 Standard Model of Particle Physics SS 2012

LHC Kinematic Plane

W,Z region

W,Z productiondominated bysea quarks

low x-region verywell constrainedby HERA

W,Z productioncan be usedto measureproton-PDFs andLHC luminosity!

Schöning/Rodejohann 42 Standard Model of Particle Physics SS 2012

Proton Parton Densities

SPS energy

multiply by 20!

LHC energy

Schöning/Rodejohann 43 Standard Model of Particle Physics SS 2012

Quark Flavors in Z Production

q qbar → Z

yz = pseudorapidity of Z-boson: y =−ln tanθ/2

Schöning/Rodejohann 44 Standard Model of Particle Physics SS 2012

Z → ee candidate at ATLAS

Schöning/Rodejohann 45 Standard Model of Particle Physics SS 2012

Z-Peak at ATLAS

2011 data

LHC is a Vector-Boson factory!

Schöning/Rodejohann 46 Standard Model of Particle Physics SS 2012

W-Production at LHC

Charge Asymmetric! Handle to disentangle d and u valence quarks

Schöning/Rodejohann 47 Standard Model of Particle Physics SS 2012

W-boson Production at LHC

Schöning/Rodejohann 48 Standard Model of Particle Physics SS 2012

Schöning/Rodejohann 49 Standard Model of Particle Physics SS 2012

Lepton Universality Check at LHC

Schöning/Rodejohann 50 Standard Model of Particle Physics SS 2012

Summary

● W, Z boson discovered in 1983● W, Z masses consistent with SM predictions● Ratio of W and Z mass consistent with

Weinberg angle measured in Neutral Currents ● Lepton universality tested in W, Z Decays● W+ W- pair production cross section measured.

Confirmation of triple gauge couplings (WWZ)● W and Z mass relevant for Higgs mass

predictions

Schöning/Rodejohann 51 Standard Model of Particle Physics SS 2012

top related