Stack and Queues using Linked Structures Kruse and Ryba Ch 4.

Post on 30-Mar-2015

220 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

Transcript

Stack and Queues using Linked Structures

Kruse and Ryba Ch 4

Implementing stacks using arrays

• Simple implementation

• The size of the stack must be determined when a stack object is declared

• Space is wasted if we use less elements

• We cannot "push" more elements than the array can hold

Dynamic allocation of eachstack element

• Allocate memory for each new element dynamically

ItemType* itemPtr;

...

itemPtr = new ItemType;

*itemPtr = newItem;

Dynamic allocation of eachstack element (cont.)

• How should we preserve the order of the stack elements?

Chaining the stack elements together

Chaining the stack elements together (cont.)

• Each node in the stack should contain two parts:– info: the user's data– next: the address of the next element in the

stack

Node Type

template<class ItemType>struct NodeType { ItemType info; NodeType* next;};

First and last stack elements • We need a data member to store the pointer

to the top of the stack

• The next element of the last node should contain the value NULL

Stack class specification// forward declaration of NodeType (like function prototype)template<class ItemType>struct NodeType; template<class ItemType>class StackType { public: StackType(); ~StackType(); void MakeEmpty(); bool IsEmpty() const; bool IsFull() const; void Push(ItemType); void Pop(ItemType&); private: NodeType<ItemType>* topPtr;};

Pushing on a non-empty stack

Pushing on a non-empty stack (cont.)

• The order of changing the pointers is very important !!

Pushing on an empty stack

Function Push template <class ItemType>void StackType<ItemType>::Push(ItemType

item){

NodeType<ItemType>* location; 

location = new NodeType<ItemType>; location->info = newItem; location->next = topPtr; topPtr = location;}

Popping the top element

Popping the top element(cont.)

Need to use a temporary pointer

Function Poptemplate <class ItemType>void StackType<ItemType>::Pop(ItemType& item){ NodeType<ItemType>* tempPtr;  item = topPtr->info; tempPtr = topPtr; topPtr = topPtr->next; delete tempPtr;}

Popping the last element on the stack

Other Stack functionstemplate<class ItemType>StackType<ItemType>::StackType()StackType(){

topPtr = NULL;} 

template<class ItemType>void StackType<ItemType>::MakeEmpty()MakeEmpty(){

NodeType<ItemType>* tempPtr; 

while(topPtr != NULL) { tempPtr = topPtr; topPtr = topPtr->next; delete tempPtr; }}

Other Stack functions (cont.)template<class ItemType>bool StackType<ItemType>::IsEmpty()IsEmpty() const{ return(topPtr == NULL);} 

template<class ItemType>bool StackType<ItemType>::IsFull()IsFull() const{ NodeType<ItemType>* location; 

location = new NodeType<ItemType>; if(location == NULL) return true; else { delete location; return false; }}

template<class ItemType>StackType<ItemType>::~StackType()StackType(){ MakeEmpty();}

Copy Constructors for stacks

• Suppose we want to make a copy of a stack, will the following work?

template<class ItemType>void StackType(StackType<ItemType> oldStack, StackType<ItemType>& copy){ StackType<ItemType> tempStack; ItemType item;  while(!oldStack.IsEmpty()) { oldStack.Pop(item); tempStack.Push(item); }

while(!tempStack.IsEmpty()) { tempStack.Pop(item); copy.Push(item); }}

Copy Constructors (cont.)• Shallow Copy: an object is copied to another

object without copying any pointed-to data

• Deep Copy: makes copies of any pointed-to data

When do you need a copy constructor?(1) When parameters are passed by value(2) Return the value of a function  

(return thisStack;)(3) Initializing a variable in a declaration  

(StackType<int> myStack=yourStack;)

Copy constructor for stacks template<class ItemType>Stack Type<ItemType>::StackType(const StackType<ItemType>& anotherStack){

NodeType<ItemType>* ptr1; NodeType<ItemType>* ptr2; 

if(anotherStack.topPtr == NULL) topPtr = NULL; else { topPtr = new NodeType<ItemType>; topPtr->info = anotherStack.topPtr->info; ptr1 = anotherStack.topPtr->next; ptr2 = topPtr; while(ptr1 !=NULL) { ptr2->next = new NodeType<ItemType>; ptr2 = ptr2->next; ptr2->info = ptr1->info; ptr1 = ptr1->next; }

ptr2->next = NULL; }}

Alternatively, copy one stack to another using the assignment operator (you need to overload it though!!)

Comparing stack implementations Big-O Comparison of Stack Operations

Operation Array Implementation

Linked Implementation

Class constructor O(1) O(1)

MakeEmpty O(1) O(N)

IsFull O(1) O(1)

IsEmpty O(1) O(1)

Push O(1) O(1)

Pop O(1) O(1)

Destructor O(1) O(N)

Implementing queues using arrays

• Simple implementation

• The size of the queue must be determined when a stack object is declared

• Space is wasted if we use less elements

• We cannot "enqueue" more elements than the array can hold

Implementing queues using linked lists

• Allocate memory for each new element dynamically

• Link the queue elements together

• Use two pointers, qFront and qRear, to mark the front and rear of the queue

Queue class specification// forward declaration of NodeType (like function prototype)template<class ItemType>struct NodeType; template<class ItemType>class QueueType { public: QueueType(); ~QueueType(); void MakeEmpty(); bool IsEmpty() const; bool IsFull() const; void Enqueue(ItemType); void Dequeue(ItemType&); private: NodeType<ItemType>* qFront; NodeType<ItemType>* qRear;};

Enqueuing (non-empty queue)

Enqueuing (empty queue)

• We need to make qFront point to the new node also

New Node

newNode

qFront = NULL

qRear = NULL

Function Enqueuetemplate <class ItemType>void QueueType<ItemType>::Enqueue(ItemType

newItem){ NodeType<ItemType>* newNode; 

newNode = new NodeType<ItemType>; newNode->info = newItem; newNode->next = NULL; if(qRear == NULL) qFront = newNode; else qRear->next = newNode; qRear = newNode;}

Dequeueing (the queue contains more than one element)

Dequeueing (the queue contains only one element)

• We need to reset qRear to NULL also

Node

qFront

qRear

After dequeue:

qFront = NULL

qRear = NULL

Function Dequeuetemplate <class ItemType>void QueueType<ItemType>::Dequeue(ItemType& item){ NodeType<ItemType>* tempPtr;  tempPtr = qFront; item = qFront->info; qFront = qFront->next; if(qFront == NULL) qRear = NULL; delete tempPtr;}

qRear, qFront revisited

• The relative positions of qFront and qRear are important!

Other Queue functions  

template<class ItemType>void QueueType<ItemType>::MakeEmpty()MakeEmpty(){

NodeType<ItemType>* tempPtr; 

while(qFront != NULL) { tempPtr = qFront; qFront = qFront->next; delete tempPtr; }

qRear=NULL;}

Other Queue functions (cont.)template<class ItemType>bool QueueType<ItemType>::IsEmpty()IsEmpty() const{

return(qFront == NULL);} 

template<class ItemType>bool QueueType<ItemType>::IsFull()IsFull() const{

NodeType<ItemType>* ptr; 

ptr = new NodeType<ItemType>; if(ptr == NULL) return true; else { delete ptr; return false; }}

Other Queue functions (cont.)

template<class ItemType>

QueueType<ItemType>::~QueueType()QueueType()

{

MakeEmpty();

}

A circular linked queue design

Comparing queue implementations

• Memory requirements– Array-based implementation

• Assume a queue (size: 100) of strings (80 bytes each)

• Assume indices take 2 bytes • Total memory: (80 bytes x 101 slots) + (2 bytes x 2

indexes) = 8084 bytes

– Linked-list-based implementation• Assume pointers take 4 bytes • Total memory per node: 80 bytes + 4 bytes = 84

bytes

Comparing queue implementations(cont.)

Comparing queue implementations

• Memory requirements – Array-based implementation

• Assume a queue (size: 100) of short integers (2 bytes each)

• Assume indices take 2 bytes

• Total memory: (2 bytes x 101 slots) + (2 bytes x 2 indexes) = 206 bytes

– Linked-list-based implementation• Assume pointers take 4 bytes

• Total memory per node: 2 bytes + 4 bytes = 6 bytes

(cont.)

Comparing queue implementations(cont.)

Comparing queue implementationsBig-O Comparison of Queue Operations

Operation Array Implementation

Linked Implementation

Class constructor O(1) O(1)

MakeEmpty O(1) O(N)

IsFull O(1) O(1)

IsEmpty O(1) O(1)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Destructor O(1) O(N)

top related