SIS 300 Magnet Design Options. Cos n magnets; cooling with supercritical Helium GSI 001 existing magnet built at BNG measured in our test facility 6.

Post on 18-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

SIS 300

Magnet Design Options

Cos n magnets; cooling with supercritical Helium

•GSI 001

existing magnet built at BNG

measured in our test facility

•6 T straight dipole

prototype is going to be built at IHEP

•4.5 T curved dipoles

actual design (change to FODO lattice)

prototype is going to be built at INFN

•Quadrupoles

no design yet

SIS 200 / SIS 300 main magnets

GSI 001: Dipole Parameters GSI 001: Dipole Parameters

RHIC dipole Superconducting wire:

– NbTi-Cu (1:2.25)

– filament diameter 6 m

– twist pitch 13 mm

– no coating

Rutherford cable

– no core

Coil

– phenolic spacer

– Cu wedges

Yoke

– Hc= 145 A/m

– 6.35 mm laminations

RHIC type dipole GSI 001Superconducting wire:

– NbTi-Cu (1:2.25)

– filament diameter 6 m

– twist pitch 4 mm

– Stabrite coating

Rutherford cable

– 2 x 25µm stain-

less steel core

– open insulation

Coil

– stainless steel collar (G11 keys)

– G11 wedges

Yoke

– Hc= 33 A/m, 3.5% Silicon

– 0.5 mm laminations, glued

GSI 001

Calorimetric Loss Measurements

-

quench34,0W ±3W

(9%)

40W by heater*

90,7 J/Cycle

17,0W ± 3W

(17%)

68 J/Cycle

7,1W ±3W

(42%)

56,8 J/cycle

4T

53,2W ±3W

(6%)

56W by heater*

79,8 J/Cycle

30,1W ±3W

(10%)

28W by heater*

60,2 J/Cycle

15,9W ± 3W

(19%)

47,7 J/Cycle

7,6W ±3W

(39%)

45,6 J/cycle

3T

52,1W ±3W

(6%)

57W by heater*

52,1 J/Cycle

30,8W ±3W

(10%)

38W by heater*

41 J/Cycle

16,3W ± 3W

(18%)

32,6 J/Cycle

7,6W ±3W

(40%)

30,4 J/cycle

2T

44,3W ±3W

(7%)

41W by heater*

22,2 J/Cycle

28,6W ±3W

(10%)

27W by heater*

19 J/Cycle

15,3W ± 3W

(19%)

15,3 J/Cycle

6,9W ±3W

(43%)

13,8 J/cycle

1T

4T/s3T/s2T/s1T/s

*by heater; means an inexact additional measurement using the heater power measurement

in the distribution box ( ± 10W)

(C.Schröder)

SIS 300 6 T Dipole SIS 300 6 T Dipole

•Central field: 6 T

•Ramp rate: 1 T/s

•Length: 1 m

•Inner coil diameter: 100 mm

•Two layers: inner: 4 blocks/outer: 3 blocks

•Cooling: supercritical helium

•Interlayer cooling channel

•No holes in Kapton

•Optimized end parts

•Appropriate Ra of about 300 µ

•Available in May 2008

Conductor for SIS 300

Same outer dimensions and number

of strands as the cable

for the outer layer of the LHC dipole

SIS 300 dipole: thermal analysis, margins

Wire and Cable R&D

Comparison QE vs. I/Ic for center heaters.

10

100

1000

10000

0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1

I/Ic (-)

QE (u

J)

Ra 60-70 μΩ

Ra 600-700 μΩ

Ra 8000-9000 μΩ

Iop/Ic

Comparison QE vs. I/Ic for center heaters.

10

100

1000

10000

0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1

I/Ic (-)

QE (u

J)

Ra 60-70 μΩ

Ra 600-700 μΩ

Ra 8000-9000 μΩ

Iop/IcIop/Ic

•Quench energy measurements for

different Ra in liquid helium (CERN)

•Development of wires with CuMn

interfilamentary matrix

(INTAS/INFN)

•Optimization of heat treatment to

adjust Ra (BNL)

•Time dependent magnetization

measurements (Twente)

Doublet Lattice based on Doublet Lattice based on short straight dipolesshort straight dipoles

FBTR SIS 300 Lattice

SIS300 Lattice Redefinition

New SIS 300 Lattice

Small ring circumference and matching to SIS100 geometry requires FODO lattice in SIS300 and

curved dipole magnets. Advantages a) chromaticity correction without significant DA reduction

b) slow extraction with reasonable s.c. septum strength

FODO Lattice based on long (and short)

curved dipoles

(P.Spiller, Fair Monthly, June 2007)

4.5 T curved dipole

4.5 T curved dipole

4.5 T curved dipole; Thermal analysis

4.5 T curved dipole; Thermal analysis

4.5 T curved dipole; Thermal analysis

4.5 T curved dipole; Thermal analysis

top related