Signal Generators and Waveform-Shaping Circuits

Post on 02-Jan-2016

35 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Signal Generators and Waveform-Shaping Circuits. 1. - PowerPoint PPT Presentation

Transcript

1

Signal Generators andWaveform-Shaping Circuits

Microelectronic Circuits - Fifth Edition Sedra/Smith 2Copyright 2004 by Oxford University Press, Inc.

Figure 13.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network. In an actual oscillator circuit, no input signal will be present; here an input signal xs is employed to help explain the principle of operation.

Microelectronic Circuits - Fifth Edition Sedra/Smith 3Copyright 2004 by Oxford University Press, Inc.

Figure 13.2 Dependence of the oscillator-frequency stability on the slope of the phase response. A steep phase response (i.e., large d/d) results in a samll 0 for a given change in phase (resulting from a change (due, for example, to temperature) in a circuit component).

Microelectronic Circuits - Fifth Edition Sedra/Smith 4Copyright 2004 by Oxford University Press, Inc.

Figure 13.3 (a) A popular limiter circuit. (b) Transfer characteristic of the limiter circuit; L- and L+ are given by Eqs. (13.8) and (13.9), respectively. (c) When Rf is removed, the limiter turns into a comparator with the characteristic shown.

Microelectronic Circuits - Fifth Edition Sedra/Smith 5Copyright 2004 by Oxford University Press, Inc.

Figure 13.4 A Wien-bridge oscillator without amplitude stabilization.

Microelectronic Circuits - Fifth Edition Sedra/Smith 6Copyright 2004 by Oxford University Press, Inc.

Figure 13.5 A Wien-bridge oscillator with a limiter used for amplitude control.

Microelectronic Circuits - Fifth Edition Sedra/Smith 7Copyright 2004 by Oxford University Press, Inc.

Figure 13.6 A Wien-bridge oscillator with an alternative method for amplitude stabilization.

Microelectronic Circuits - Fifth Edition Sedra/Smith 8Copyright 2004 by Oxford University Press, Inc.

Figure 13.7 A phase-shift oscillator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 9Copyright 2004 by Oxford University Press, Inc.

Figure 13.8 A practical phase-shift oscillator with a limiter for amplitude stabilization.

Microelectronic Circuits - Fifth Edition Sedra/Smith 10Copyright 2004 by Oxford University Press, Inc.

Figure 13.9 (a) A quadrature-oscillator circuit. (b) Equivalent circuit at the input of op amp 2.

Microelectronic Circuits - Fifth Edition Sedra/Smith 11Copyright 2004 by Oxford University Press, Inc.

Figure 13.10 Block diagram of the active-filter-tuned oscillator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 12Copyright 2004 by Oxford University Press, Inc.

Figure 13.11 A practical implementation of the active-filter-tuned oscillator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 13Copyright 2004 by Oxford University Press, Inc.

Figure 13.12 Two commonly used configurations of LC-tuned oscillators: (a) Colpitts and (b) Hartley.

Microelectronic Circuits - Fifth Edition Sedra/Smith 14Copyright 2004 by Oxford University Press, Inc.

Figure 13.13 Equivalent circuit of the Colpitts oscillator of Fig. 13.12(a). To simplify the analysis, C and r are neglected. We can consider C to be part of C2, and we can include ro in R.

Microelectronic Circuits - Fifth Edition Sedra/Smith 15Copyright 2004 by Oxford University Press, Inc.

Figure 13.14 Complete circuit for a Colpitts oscillator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 16Copyright 2004 by Oxford University Press, Inc.

Figure 13.15 A piezoelectric crystal. (a) Circuit symbol. (b) Equivalent circuit. (c) Crystal reactance versus frequency [note that, neglecting the small resistance r, Zcrystal = jX()].

Microelectronic Circuits - Fifth Edition Sedra/Smith 17Copyright 2004 by Oxford University Press, Inc.

Figure 13.16 A Pierce crystal oscillator utilizing a CMOS inverter as an amplifier.

Microelectronic Circuits - Fifth Edition Sedra/Smith 18Copyright 2004 by Oxford University Press, Inc.

Figure 13.17 A positive-feedback loop capable of bistable operation.

Microelectronic Circuits - Fifth Edition Sedra/Smith 19Copyright 2004 by Oxford University Press, Inc.

Figure 13.18 A physical analogy for the operation of the bistable circuit. The ball cannot remain at the top of the hill for any length of time (a state of unstable equilibrium or metastability); the inevitably present disturbance will cause the ball to fall to one side or the other, where it can remain indefinitely (the two stable states).

Microelectronic Circuits - Fifth Edition Sedra/Smith 20Copyright 2004 by Oxford University Press, Inc.

Figure 13.19 (a) The bistable circuit of Fig. 13.17 with the negative input terminal of the op amp disconnected from ground and connected to an input signal vI. (b) The transfer characteristic of the circuit in (a) for increasing vI. (c) The transfer characteristic for decreasing vI. (d) The complete transfer characteristics.

Microelectronic Circuits - Fifth Edition Sedra/Smith 21Copyright 2004 by Oxford University Press, Inc.

Figure 13.20 (a) A bistable circuit derived from the positive-feedback loop of Fig. 13.17 by applying vI through R1. (b) The transfer characteristic of the circuit in (a) is noninverting. (Compare it to the inverting characteristic in Fig. 13.19d.)

Microelectronic Circuits - Fifth Edition Sedra/Smith 22Copyright 2004 by Oxford University Press, Inc.

Figure 13.21 (a) Block diagram representation and transfer characteristic for a comparator having a reference, or threshold, voltage VR. (b) Comparator characteristic with hysteresis.

Microelectronic Circuits - Fifth Edition Sedra/Smith 23Copyright 2004 by Oxford University Press, Inc.

Figure 13.22 Illustrating the use of hysteresis in the comparator characteristics as a means of rejecting interference.

Microelectronic Circuits - Fifth Edition Sedra/Smith 24Copyright 2004 by Oxford University Press, Inc.

Figure 13.23 Limiter circuits are used to obtain more precise output levels for the bistable circuit. In both circuits the value of R should be chosen to yield the current required for the proper operation of the zener diodes. (a) For this circuit L+ = VZ1

+ VD and L– = –(VZ2 + VD), where VD

is the forward diode drop. (b) For this circuit L+ = VZ + VD1 + VD2

and L– = –(VZ + VD3 + VD4

).

Microelectronic Circuits - Fifth Edition Sedra/Smith 25Copyright 2004 by Oxford University Press, Inc.

Figure 13.24 (a) Connecting a bistable multivibrator with inverting transfer characteristics in a feedback loop with an RC circuit results in a square-wave generator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 26Copyright 2004 by Oxford University Press, Inc.

Figure 13.24 (Continued) (b) The circuit obtained when the bistable multivibrator is implemented with the circuit of Fig. 13.19(a). (c) Waveforms at various nodes of the circuit in (b). This circuit is called an astable multivibrator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 27Copyright 2004 by Oxford University Press, Inc.

Figure 13.25 A general scheme for generating triangular and square waveforms.

Microelectronic Circuits - Fifth Edition Sedra/Smith 28Copyright 2004 by Oxford University Press, Inc.

Figure 13.26 (a) An op-amp monostable circuit. (b) Signal waveforms in the circuit of (a).

Microelectronic Circuits - Fifth Edition Sedra/Smith 29Copyright 2004 by Oxford University Press, Inc.

Figure 13.27 A block diagram representation of the internal circuit of the 555 integrated-circuit timer.

Microelectronic Circuits - Fifth Edition Sedra/Smith 30Copyright 2004 by Oxford University Press, Inc.

Figure 13.28 (a) The 555 timer connected to implement a monostable multivibrator. (b) Waveforms of the circuit in (a).

Microelectronic Circuits - Fifth Edition Sedra/Smith 31Copyright 2004 by Oxford University Press, Inc.

Figure 13.29 (a) The 555 timer connected to implement an astable multivibrator. (b) Waveforms of the circuit in (a).

Microelectronic Circuits - Fifth Edition Sedra/Smith 32Copyright 2004 by Oxford University Press, Inc.

Figure 13.30 Using a nonlinear (sinusoidal) transfer characteristic to shape a triangular waveform into a sinusoid.

Microelectronic Circuits - Fifth Edition Sedra/Smith 33Copyright 2004 by Oxford University Press, Inc.

Figure 13.31 (a) A three-segment sine-wave shaper. (b) The input triangular waveform and the output approximately sinusoidal waveform.

Microelectronic Circuits - Fifth Edition Sedra/Smith 34Copyright 2004 by Oxford University Press, Inc.

Figure 13.32 A differential pair with an emitter degeneration resistance used to implement a triangular-wave to sine-wave converter. Operation of the circuit can be graphically described by Fig. 13.30.

Microelectronic Circuits - Fifth Edition Sedra/Smith 35Copyright 2004 by Oxford University Press, Inc.

Figure 13.33 (a) The “superdiode” precision half-wave rectifier and (b) its almost ideal transfer characteristic. Note that when vI 0 and the diode conducts, the op amp supplies the load current, and the source is conveniently buffered, an added advantage.

Microelectronic Circuits - Fifth Edition Sedra/Smith 36Copyright 2004 by Oxford University Press, Inc.

Figure 13.34 (a) An improved version of the precision half-wave rectifier: Diode D2 is included to keep the feedback loop closed around the op amp during the off times of the rectifier diode D1, thus preventing the op amp from saturating. (b) The transfer characteristic for R2 = R1.

Microelectronic Circuits - Fifth Edition Sedra/Smith 37Copyright 2004 by Oxford University Press, Inc.

Figure 13.35 A simple ac voltmeter consisting of a precision half-wave rectifier followed by a first-order low-pass filter.

Microelectronic Circuits - Fifth Edition Sedra/Smith 38Copyright 2004 by Oxford University Press, Inc.

Figure 13.36 Principle of full-wave rectification.

Microelectronic Circuits - Fifth Edition Sedra/Smith 39Copyright 2004 by Oxford University Press, Inc.

Figure 13.37 (a) Precision full-wave rectifier based on the conceptual circuit of Fig. 13.36. (b) Transfer characteristic of the circuit in (a).

Microelectronic Circuits - Fifth Edition Sedra/Smith 40Copyright 2004 by Oxford University Press, Inc.

Figure 13.38 Use of the diode bridge in the design of an ac voltmeter.

Microelectronic Circuits - Fifth Edition Sedra/Smith 41Copyright 2004 by Oxford University Press, Inc.

Figure 13.39 A precision peak rectifier obtained by placing the diode in the feedback loop of an op amp.

Microelectronic Circuits - Fifth Edition Sedra/Smith 42Copyright 2004 by Oxford University Press, Inc.

Figure 13.40 A buffered precision peak rectifier.

Microelectronic Circuits - Fifth Edition Sedra/Smith 43Copyright 2004 by Oxford University Press, Inc.

Figure 13.41 A precision clamping circuit.

Microelectronic Circuits - Fifth Edition Sedra/Smith 44Copyright 2004 by Oxford University Press, Inc.

Figure 13.42 Example 13.1: Capture schematic of a Wien-bridge oscillator.

Microelectronic Circuits - Fifth Edition Sedra/Smith 45Copyright 2004 by Oxford University Press, Inc.

Figure 13.43 Start-up transient behavior of the Wien-bridge oscillator shown in Fig. 13.42 for various values of loop gain.

Microelectronic Circuits - Fifth Edition Sedra/Smith 46Copyright 2004 by Oxford University Press, Inc.

Figure 13.43 (Continued)

Microelectronic Circuits - Fifth Edition Sedra/Smith 47Copyright 2004 by Oxford University Press, Inc.

Figure 13.43 (Continued)

Microelectronic Circuits - Fifth Edition Sedra/Smith 48Copyright 2004 by Oxford University Press, Inc.

Figure 13.44 Example 13.2: Capture schematic of an active-filter-tuned oscillator for which the Q of the filter is adjustable by changing R1.

Microelectronic Circuits - Fifth Edition Sedra/Smith 49Copyright 2004 by Oxford University Press, Inc.

Figure 13.45 Output waveforms of the active-filter-tuned oscillator shown in Fig. 13.44 for Q = 5 (R1 = 50 k).

Microelectronic Circuits - Fifth Edition Sedra/Smith 50Copyright 2004 by Oxford University Press, Inc.

Figure E13.22

Microelectronic Circuits - Fifth Edition Sedra/Smith 51Copyright 2004 by Oxford University Press, Inc.

Figure E13.28

Microelectronic Circuits - Fifth Edition Sedra/Smith 52Copyright 2004 by Oxford University Press, Inc.

Figure E13.30

Microelectronic Circuits - Fifth Edition Sedra/Smith 53Copyright 2004 by Oxford University Press, Inc.

Figure P13.8

Microelectronic Circuits - Fifth Edition Sedra/Smith 54Copyright 2004 by Oxford University Press, Inc.

Figure P13.13

Microelectronic Circuits - Fifth Edition Sedra/Smith 55Copyright 2004 by Oxford University Press, Inc.

Figure P13.14

Microelectronic Circuits - Fifth Edition Sedra/Smith 56Copyright 2004 by Oxford University Press, Inc.

Figure P13.18

Microelectronic Circuits - Fifth Edition Sedra/Smith 57Copyright 2004 by Oxford University Press, Inc.

Figure P13.21

Microelectronic Circuits - Fifth Edition Sedra/Smith 58Copyright 2004 by Oxford University Press, Inc.

Figure P13.21 (Continued)

Microelectronic Circuits - Fifth Edition Sedra/Smith 59Copyright 2004 by Oxford University Press, Inc.

Figure P13.22

Microelectronic Circuits - Fifth Edition Sedra/Smith 60Copyright 2004 by Oxford University Press, Inc.

Figure P13.26

Microelectronic Circuits - Fifth Edition Sedra/Smith 61Copyright 2004 by Oxford University Press, Inc.

Figure P13.33

Microelectronic Circuits - Fifth Edition Sedra/Smith 62Copyright 2004 by Oxford University Press, Inc.

Figure P13.34

Microelectronic Circuits - Fifth Edition Sedra/Smith 63Copyright 2004 by Oxford University Press, Inc.

Figure P13.41

Microelectronic Circuits - Fifth Edition Sedra/Smith 64Copyright 2004 by Oxford University Press, Inc.

Figure P13.43

Microelectronic Circuits - Fifth Edition Sedra/Smith 65Copyright 2004 by Oxford University Press, Inc.

Figure P13.44

Microelectronic Circuits - Fifth Edition Sedra/Smith 66Copyright 2004 by Oxford University Press, Inc.

Figure P13.50

Microelectronic Circuits - Fifth Edition Sedra/Smith 67Copyright 2004 by Oxford University Press, Inc.

Figure P13.51

Microelectronic Circuits - Fifth Edition Sedra/Smith 68Copyright 2004 by Oxford University Press, Inc.

Figure P13.52

top related