Seminar PCF “ Lightscattering ”

Post on 23-Feb-2016

52 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Seminar PCF “ Lightscattering ”. 1. Light Scattering – Theoretical Background 1.1. Introduction Light-wave interacts with the charges constituting a given molecule in remodelling the spatial charge distribution:. Wave-equation of oscillating electic field of the incident light:. - PowerPoint PPT Presentation

Transcript

Seminar PCF

ldquoLightscatteringrdquo

02 2 cos x tE x t E

c

1 Light Scattering ndash Theoretical Background

11 Introduction

Light-wave interacts with the charges constituting a given molecule in remodelling the spatial charge distribution

Molecule constitutes the emitter of an electromagnetic wave of the same wavelength as the incident one (ldquoelastic scatteringrdquo)

E

m

sE

Wave-equation of oscillating electic fieldof the incident light

Particles larger than 20 nm (right picture) - several oscillating dipoles created simultaneously within one given particle- interference leads to a non-isotropic angular dependence of the scattered light

intensity - particle form factor characteristic for size and shape of the scattering particle- scattered intensity I ~ NiMi

2Pi(q) (scattering vector q see below)

Particles smaller than 20 (left picture) - scattered intensity independent of scattering angle I ~ NiMi

2

Particles in solution show Brownian motion (D = kT(6hR) and ltDr(t)2gt=6Dt)THORN Interference pattern and resulting scattered intensity fluctuate with time

THORN Change in respective particle positions leads to changes in interparticular () interference and therefore temporal fluctuations in the scattered intensity detected at given scattering angle (s Static Structurefactor ltS(q)gt Dynamic Lightscattering S(qt) (DLS))

2 22

02 2 2

41 exp 2 DsD D

EmE i t krt r c r c

2 Lichtstreuung ndash experimenteller Aufbau

Detector (photomultiplier photodiode) scattered intensity only 2

s s s sI E E E

detector

rDI

sampleI0

Scattered light wave emitted by one oscillating dipole

Light source I0 = laser focussed monochromatic coherent

Coherent the light has a defined oscillation phase over a certain distance (05 ndash 1 m) and time so it can show interference Note that only laser light is coherent in time soNo laser =gt no dynamic light scattering

Sample cell cylindrical quartz cuvette embedded in toluene bath (T nD)

Light Scattering Setup of the F-Practical Course PhysChem Mainz

Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

Important scattered intensity has to be normalized

Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

222 2

040

4 ( )DDL

nb n KcN

in cm2g-2Mol

22 ( ) D

solution solventrR b c M I IV

std abssolution solvent

std

IR I I

I

contrast factor

Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

Scattering from dilute solutions of larger particles

- scattered intensity dependent on scattering angle (interference)

0q k k

0k

k

4 sin( )2Dnq

0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

q

q = inverse observational length scale of the light scattering experiment

q-scale resolution information comment

qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

qR lt 1 topology cylinder sphere hellip

qR asymp 1 topology quantitative size of cylinder

qR gt 1 chain conformation helical stretched

qR gtgt 1 chain segments chain segment density

0 2 4 6 8 10 1210-5

10-4

10-3

10-2

10-1

100

P(q

)

qR

For large (ca 500 nm) homogeneous spheres

26

9( ) sin cosP q qR qR qRqR

Minimum bei qR = 449

Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

100E-05

100E-04

100E-03

100E-02

100E-01

100E+00P(q) 130 nm

P(q) 260 nm

Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

mean-squared displacement of the scattering particle

2 6 sR D D 6s

H

kT kTDf Rh

change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

Stokes-Einstein-Gl

2

2

( ) ( )( ) exp( ) ( ) ( ) 1

s s s sI q t I q tF q D q E q t E q t

I q t

ltI(t)

I(t+

)gtT

I(t)

t

1

2

The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

(note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

Siegert-Relation

2Basislinie I t

rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

2 31 2 3

1 1ln 2 3sF q

1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

22 2

2 1i i i iapp s gz z

i i i

n M P q DD q D K R q

n M P q

Data analysis for polydisperse (monomodal) samples

Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

2Pi(q)

log(

F s(q)

DyDx=-Dsq2

log(

F s(q)

DyDx=-Dsq2

larger slower particles

small fast particles

Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

0 1x1010 2x1010 3x1010 4x1010

00

50x10-15

10x10-14

15x10-14

20x10-14

Dm

2 s-1

q2cm-2

s zD

Explanation for q-dependence of Dapp for larger particles due to Pi(q)

2

2i i i i

appi i i

n M P q DD q

n M P q

Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

100E-05

100E-04

100E-03

100E-02

100E-01

100E+00P(q) 130 nm

P(q) 260 nm

Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

DLS of concentrated samples ndash influence of the static structure factor S(q)

From Gapinsky et al JChemPhys 126 104905 (2007)

S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

From Gapinsky et al JChemPhys 126 104905 (2007)

Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20

    02 2 cos x tE x t E

    c

    1 Light Scattering ndash Theoretical Background

    11 Introduction

    Light-wave interacts with the charges constituting a given molecule in remodelling the spatial charge distribution

    Molecule constitutes the emitter of an electromagnetic wave of the same wavelength as the incident one (ldquoelastic scatteringrdquo)

    E

    m

    sE

    Wave-equation of oscillating electic fieldof the incident light

    Particles larger than 20 nm (right picture) - several oscillating dipoles created simultaneously within one given particle- interference leads to a non-isotropic angular dependence of the scattered light

    intensity - particle form factor characteristic for size and shape of the scattering particle- scattered intensity I ~ NiMi

    2Pi(q) (scattering vector q see below)

    Particles smaller than 20 (left picture) - scattered intensity independent of scattering angle I ~ NiMi

    2

    Particles in solution show Brownian motion (D = kT(6hR) and ltDr(t)2gt=6Dt)THORN Interference pattern and resulting scattered intensity fluctuate with time

    THORN Change in respective particle positions leads to changes in interparticular () interference and therefore temporal fluctuations in the scattered intensity detected at given scattering angle (s Static Structurefactor ltS(q)gt Dynamic Lightscattering S(qt) (DLS))

    2 22

    02 2 2

    41 exp 2 DsD D

    EmE i t krt r c r c

    2 Lichtstreuung ndash experimenteller Aufbau

    Detector (photomultiplier photodiode) scattered intensity only 2

    s s s sI E E E

    detector

    rDI

    sampleI0

    Scattered light wave emitted by one oscillating dipole

    Light source I0 = laser focussed monochromatic coherent

    Coherent the light has a defined oscillation phase over a certain distance (05 ndash 1 m) and time so it can show interference Note that only laser light is coherent in time soNo laser =gt no dynamic light scattering

    Sample cell cylindrical quartz cuvette embedded in toluene bath (T nD)

    Light Scattering Setup of the F-Practical Course PhysChem Mainz

    Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

    Important scattered intensity has to be normalized

    Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

    222 2

    040

    4 ( )DDL

    nb n KcN

    in cm2g-2Mol

    22 ( ) D

    solution solventrR b c M I IV

    std abssolution solvent

    std

    IR I I

    I

    contrast factor

    Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

    For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

    Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

    Scattering from dilute solutions of larger particles

    - scattered intensity dependent on scattering angle (interference)

    0q k k

    0k

    k

    4 sin( )2Dnq

    0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

    q

    q = inverse observational length scale of the light scattering experiment

    q-scale resolution information comment

    qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

    qR lt 1 topology cylinder sphere hellip

    qR asymp 1 topology quantitative size of cylinder

    qR gt 1 chain conformation helical stretched

    qR gtgt 1 chain segments chain segment density

    0 2 4 6 8 10 1210-5

    10-4

    10-3

    10-2

    10-1

    100

    P(q

    )

    qR

    For large (ca 500 nm) homogeneous spheres

    26

    9( ) sin cosP q qR qR qRqR

    Minimum bei qR = 449

    Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

    0010

    0011

    0012

    0013

    0014

    0015

    0016

    0017

    0018

    0019

    0020

    0021

    0022

    0023

    0024

    0025

    0026

    0027

    0028

    0029

    0030

    100E-05

    100E-04

    100E-03

    100E-02

    100E-01

    100E+00P(q) 130 nm

    P(q) 260 nm

    Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

    ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

    mean-squared displacement of the scattering particle

    2 6 sR D D 6s

    H

    kT kTDf Rh

    change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

    Stokes-Einstein-Gl

    2

    2

    ( ) ( )( ) exp( ) ( ) ( ) 1

    s s s sI q t I q tF q D q E q t E q t

    I q t

    ltI(t)

    I(t+

    )gtT

    I(t)

    t

    1

    2

    The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

    (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

    Siegert-Relation

    2Basislinie I t

    rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

    2 31 2 3

    1 1ln 2 3sF q

    1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

    2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

    ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

    22 2

    2 1i i i iapp s gz z

    i i i

    n M P q DD q D K R q

    n M P q

    Data analysis for polydisperse (monomodal) samples

    Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

    qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

    Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

    linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

    2Pi(q)

    log(

    F s(q)

    DyDx=-Dsq2

    log(

    F s(q)

    DyDx=-Dsq2

    larger slower particles

    small fast particles

    Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

    0 1x1010 2x1010 3x1010 4x1010

    00

    50x10-15

    10x10-14

    15x10-14

    20x10-14

    Dm

    2 s-1

    q2cm-2

    s zD

    Explanation for q-dependence of Dapp for larger particles due to Pi(q)

    2

    2i i i i

    appi i i

    n M P q DD q

    n M P q

    Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

    0010

    0011

    0012

    0013

    0014

    0015

    0016

    0017

    0018

    0019

    0020

    0021

    0022

    0023

    0024

    0025

    0026

    0027

    0028

    0029

    0030

    100E-05

    100E-04

    100E-03

    100E-02

    100E-01

    100E+00P(q) 130 nm

    P(q) 260 nm

    Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

    DLS of concentrated samples ndash influence of the static structure factor S(q)

    From Gapinsky et al JChemPhys 126 104905 (2007)

    S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

    From Gapinsky et al JChemPhys 126 104905 (2007)

    Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

    D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

    • Slide 1
    • Slide 2
    • Slide 3
    • Slide 4
    • Slide 5
    • Slide 6
    • Slide 7
    • Slide 8
    • Slide 9
    • Slide 10
    • Slide 11
    • Slide 12
    • Slide 13
    • Slide 14
    • Slide 15
    • Slide 16
    • Slide 17
    • Slide 18
    • Slide 19
    • Slide 20

      Particles larger than 20 nm (right picture) - several oscillating dipoles created simultaneously within one given particle- interference leads to a non-isotropic angular dependence of the scattered light

      intensity - particle form factor characteristic for size and shape of the scattering particle- scattered intensity I ~ NiMi

      2Pi(q) (scattering vector q see below)

      Particles smaller than 20 (left picture) - scattered intensity independent of scattering angle I ~ NiMi

      2

      Particles in solution show Brownian motion (D = kT(6hR) and ltDr(t)2gt=6Dt)THORN Interference pattern and resulting scattered intensity fluctuate with time

      THORN Change in respective particle positions leads to changes in interparticular () interference and therefore temporal fluctuations in the scattered intensity detected at given scattering angle (s Static Structurefactor ltS(q)gt Dynamic Lightscattering S(qt) (DLS))

      2 22

      02 2 2

      41 exp 2 DsD D

      EmE i t krt r c r c

      2 Lichtstreuung ndash experimenteller Aufbau

      Detector (photomultiplier photodiode) scattered intensity only 2

      s s s sI E E E

      detector

      rDI

      sampleI0

      Scattered light wave emitted by one oscillating dipole

      Light source I0 = laser focussed monochromatic coherent

      Coherent the light has a defined oscillation phase over a certain distance (05 ndash 1 m) and time so it can show interference Note that only laser light is coherent in time soNo laser =gt no dynamic light scattering

      Sample cell cylindrical quartz cuvette embedded in toluene bath (T nD)

      Light Scattering Setup of the F-Practical Course PhysChem Mainz

      Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

      Important scattered intensity has to be normalized

      Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

      222 2

      040

      4 ( )DDL

      nb n KcN

      in cm2g-2Mol

      22 ( ) D

      solution solventrR b c M I IV

      std abssolution solvent

      std

      IR I I

      I

      contrast factor

      Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

      For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

      Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

      Scattering from dilute solutions of larger particles

      - scattered intensity dependent on scattering angle (interference)

      0q k k

      0k

      k

      4 sin( )2Dnq

      0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

      q

      q = inverse observational length scale of the light scattering experiment

      q-scale resolution information comment

      qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

      qR lt 1 topology cylinder sphere hellip

      qR asymp 1 topology quantitative size of cylinder

      qR gt 1 chain conformation helical stretched

      qR gtgt 1 chain segments chain segment density

      0 2 4 6 8 10 1210-5

      10-4

      10-3

      10-2

      10-1

      100

      P(q

      )

      qR

      For large (ca 500 nm) homogeneous spheres

      26

      9( ) sin cosP q qR qR qRqR

      Minimum bei qR = 449

      Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

      0010

      0011

      0012

      0013

      0014

      0015

      0016

      0017

      0018

      0019

      0020

      0021

      0022

      0023

      0024

      0025

      0026

      0027

      0028

      0029

      0030

      100E-05

      100E-04

      100E-03

      100E-02

      100E-01

      100E+00P(q) 130 nm

      P(q) 260 nm

      Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

      ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

      mean-squared displacement of the scattering particle

      2 6 sR D D 6s

      H

      kT kTDf Rh

      change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

      Stokes-Einstein-Gl

      2

      2

      ( ) ( )( ) exp( ) ( ) ( ) 1

      s s s sI q t I q tF q D q E q t E q t

      I q t

      ltI(t)

      I(t+

      )gtT

      I(t)

      t

      1

      2

      The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

      (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

      Siegert-Relation

      2Basislinie I t

      rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

      2 31 2 3

      1 1ln 2 3sF q

      1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

      2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

      ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

      22 2

      2 1i i i iapp s gz z

      i i i

      n M P q DD q D K R q

      n M P q

      Data analysis for polydisperse (monomodal) samples

      Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

      qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

      Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

      linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

      2Pi(q)

      log(

      F s(q)

      DyDx=-Dsq2

      log(

      F s(q)

      DyDx=-Dsq2

      larger slower particles

      small fast particles

      Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

      0 1x1010 2x1010 3x1010 4x1010

      00

      50x10-15

      10x10-14

      15x10-14

      20x10-14

      Dm

      2 s-1

      q2cm-2

      s zD

      Explanation for q-dependence of Dapp for larger particles due to Pi(q)

      2

      2i i i i

      appi i i

      n M P q DD q

      n M P q

      Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

      0010

      0011

      0012

      0013

      0014

      0015

      0016

      0017

      0018

      0019

      0020

      0021

      0022

      0023

      0024

      0025

      0026

      0027

      0028

      0029

      0030

      100E-05

      100E-04

      100E-03

      100E-02

      100E-01

      100E+00P(q) 130 nm

      P(q) 260 nm

      Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

      DLS of concentrated samples ndash influence of the static structure factor S(q)

      From Gapinsky et al JChemPhys 126 104905 (2007)

      S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

      From Gapinsky et al JChemPhys 126 104905 (2007)

      Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

      D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

      • Slide 1
      • Slide 2
      • Slide 3
      • Slide 4
      • Slide 5
      • Slide 6
      • Slide 7
      • Slide 8
      • Slide 9
      • Slide 10
      • Slide 11
      • Slide 12
      • Slide 13
      • Slide 14
      • Slide 15
      • Slide 16
      • Slide 17
      • Slide 18
      • Slide 19
      • Slide 20

        Particles in solution show Brownian motion (D = kT(6hR) and ltDr(t)2gt=6Dt)THORN Interference pattern and resulting scattered intensity fluctuate with time

        THORN Change in respective particle positions leads to changes in interparticular () interference and therefore temporal fluctuations in the scattered intensity detected at given scattering angle (s Static Structurefactor ltS(q)gt Dynamic Lightscattering S(qt) (DLS))

        2 22

        02 2 2

        41 exp 2 DsD D

        EmE i t krt r c r c

        2 Lichtstreuung ndash experimenteller Aufbau

        Detector (photomultiplier photodiode) scattered intensity only 2

        s s s sI E E E

        detector

        rDI

        sampleI0

        Scattered light wave emitted by one oscillating dipole

        Light source I0 = laser focussed monochromatic coherent

        Coherent the light has a defined oscillation phase over a certain distance (05 ndash 1 m) and time so it can show interference Note that only laser light is coherent in time soNo laser =gt no dynamic light scattering

        Sample cell cylindrical quartz cuvette embedded in toluene bath (T nD)

        Light Scattering Setup of the F-Practical Course PhysChem Mainz

        Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

        Important scattered intensity has to be normalized

        Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

        222 2

        040

        4 ( )DDL

        nb n KcN

        in cm2g-2Mol

        22 ( ) D

        solution solventrR b c M I IV

        std abssolution solvent

        std

        IR I I

        I

        contrast factor

        Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

        For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

        Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

        Scattering from dilute solutions of larger particles

        - scattered intensity dependent on scattering angle (interference)

        0q k k

        0k

        k

        4 sin( )2Dnq

        0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

        q

        q = inverse observational length scale of the light scattering experiment

        q-scale resolution information comment

        qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

        qR lt 1 topology cylinder sphere hellip

        qR asymp 1 topology quantitative size of cylinder

        qR gt 1 chain conformation helical stretched

        qR gtgt 1 chain segments chain segment density

        0 2 4 6 8 10 1210-5

        10-4

        10-3

        10-2

        10-1

        100

        P(q

        )

        qR

        For large (ca 500 nm) homogeneous spheres

        26

        9( ) sin cosP q qR qR qRqR

        Minimum bei qR = 449

        Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

        0010

        0011

        0012

        0013

        0014

        0015

        0016

        0017

        0018

        0019

        0020

        0021

        0022

        0023

        0024

        0025

        0026

        0027

        0028

        0029

        0030

        100E-05

        100E-04

        100E-03

        100E-02

        100E-01

        100E+00P(q) 130 nm

        P(q) 260 nm

        Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

        ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

        mean-squared displacement of the scattering particle

        2 6 sR D D 6s

        H

        kT kTDf Rh

        change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

        Stokes-Einstein-Gl

        2

        2

        ( ) ( )( ) exp( ) ( ) ( ) 1

        s s s sI q t I q tF q D q E q t E q t

        I q t

        ltI(t)

        I(t+

        )gtT

        I(t)

        t

        1

        2

        The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

        (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

        Siegert-Relation

        2Basislinie I t

        rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

        2 31 2 3

        1 1ln 2 3sF q

        1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

        2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

        ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

        22 2

        2 1i i i iapp s gz z

        i i i

        n M P q DD q D K R q

        n M P q

        Data analysis for polydisperse (monomodal) samples

        Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

        qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

        Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

        linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

        2Pi(q)

        log(

        F s(q)

        DyDx=-Dsq2

        log(

        F s(q)

        DyDx=-Dsq2

        larger slower particles

        small fast particles

        Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

        0 1x1010 2x1010 3x1010 4x1010

        00

        50x10-15

        10x10-14

        15x10-14

        20x10-14

        Dm

        2 s-1

        q2cm-2

        s zD

        Explanation for q-dependence of Dapp for larger particles due to Pi(q)

        2

        2i i i i

        appi i i

        n M P q DD q

        n M P q

        Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

        0010

        0011

        0012

        0013

        0014

        0015

        0016

        0017

        0018

        0019

        0020

        0021

        0022

        0023

        0024

        0025

        0026

        0027

        0028

        0029

        0030

        100E-05

        100E-04

        100E-03

        100E-02

        100E-01

        100E+00P(q) 130 nm

        P(q) 260 nm

        Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

        DLS of concentrated samples ndash influence of the static structure factor S(q)

        From Gapinsky et al JChemPhys 126 104905 (2007)

        S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

        From Gapinsky et al JChemPhys 126 104905 (2007)

        Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

        D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

        • Slide 1
        • Slide 2
        • Slide 3
        • Slide 4
        • Slide 5
        • Slide 6
        • Slide 7
        • Slide 8
        • Slide 9
        • Slide 10
        • Slide 11
        • Slide 12
        • Slide 13
        • Slide 14
        • Slide 15
        • Slide 16
        • Slide 17
        • Slide 18
        • Slide 19
        • Slide 20

          2 22

          02 2 2

          41 exp 2 DsD D

          EmE i t krt r c r c

          2 Lichtstreuung ndash experimenteller Aufbau

          Detector (photomultiplier photodiode) scattered intensity only 2

          s s s sI E E E

          detector

          rDI

          sampleI0

          Scattered light wave emitted by one oscillating dipole

          Light source I0 = laser focussed monochromatic coherent

          Coherent the light has a defined oscillation phase over a certain distance (05 ndash 1 m) and time so it can show interference Note that only laser light is coherent in time soNo laser =gt no dynamic light scattering

          Sample cell cylindrical quartz cuvette embedded in toluene bath (T nD)

          Light Scattering Setup of the F-Practical Course PhysChem Mainz

          Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

          Important scattered intensity has to be normalized

          Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

          222 2

          040

          4 ( )DDL

          nb n KcN

          in cm2g-2Mol

          22 ( ) D

          solution solventrR b c M I IV

          std abssolution solvent

          std

          IR I I

          I

          contrast factor

          Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

          For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

          Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

          Scattering from dilute solutions of larger particles

          - scattered intensity dependent on scattering angle (interference)

          0q k k

          0k

          k

          4 sin( )2Dnq

          0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

          q

          q = inverse observational length scale of the light scattering experiment

          q-scale resolution information comment

          qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

          qR lt 1 topology cylinder sphere hellip

          qR asymp 1 topology quantitative size of cylinder

          qR gt 1 chain conformation helical stretched

          qR gtgt 1 chain segments chain segment density

          0 2 4 6 8 10 1210-5

          10-4

          10-3

          10-2

          10-1

          100

          P(q

          )

          qR

          For large (ca 500 nm) homogeneous spheres

          26

          9( ) sin cosP q qR qR qRqR

          Minimum bei qR = 449

          Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

          0010

          0011

          0012

          0013

          0014

          0015

          0016

          0017

          0018

          0019

          0020

          0021

          0022

          0023

          0024

          0025

          0026

          0027

          0028

          0029

          0030

          100E-05

          100E-04

          100E-03

          100E-02

          100E-01

          100E+00P(q) 130 nm

          P(q) 260 nm

          Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

          ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

          mean-squared displacement of the scattering particle

          2 6 sR D D 6s

          H

          kT kTDf Rh

          change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

          Stokes-Einstein-Gl

          2

          2

          ( ) ( )( ) exp( ) ( ) ( ) 1

          s s s sI q t I q tF q D q E q t E q t

          I q t

          ltI(t)

          I(t+

          )gtT

          I(t)

          t

          1

          2

          The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

          (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

          Siegert-Relation

          2Basislinie I t

          rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

          2 31 2 3

          1 1ln 2 3sF q

          1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

          2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

          ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

          22 2

          2 1i i i iapp s gz z

          i i i

          n M P q DD q D K R q

          n M P q

          Data analysis for polydisperse (monomodal) samples

          Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

          qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

          Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

          linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

          2Pi(q)

          log(

          F s(q)

          DyDx=-Dsq2

          log(

          F s(q)

          DyDx=-Dsq2

          larger slower particles

          small fast particles

          Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

          0 1x1010 2x1010 3x1010 4x1010

          00

          50x10-15

          10x10-14

          15x10-14

          20x10-14

          Dm

          2 s-1

          q2cm-2

          s zD

          Explanation for q-dependence of Dapp for larger particles due to Pi(q)

          2

          2i i i i

          appi i i

          n M P q DD q

          n M P q

          Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

          0010

          0011

          0012

          0013

          0014

          0015

          0016

          0017

          0018

          0019

          0020

          0021

          0022

          0023

          0024

          0025

          0026

          0027

          0028

          0029

          0030

          100E-05

          100E-04

          100E-03

          100E-02

          100E-01

          100E+00P(q) 130 nm

          P(q) 260 nm

          Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

          DLS of concentrated samples ndash influence of the static structure factor S(q)

          From Gapinsky et al JChemPhys 126 104905 (2007)

          S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

          From Gapinsky et al JChemPhys 126 104905 (2007)

          Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

          D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

          • Slide 1
          • Slide 2
          • Slide 3
          • Slide 4
          • Slide 5
          • Slide 6
          • Slide 7
          • Slide 8
          • Slide 9
          • Slide 10
          • Slide 11
          • Slide 12
          • Slide 13
          • Slide 14
          • Slide 15
          • Slide 16
          • Slide 17
          • Slide 18
          • Slide 19
          • Slide 20

            Light Scattering Setup of the F-Practical Course PhysChem Mainz

            Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

            Important scattered intensity has to be normalized

            Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

            222 2

            040

            4 ( )DDL

            nb n KcN

            in cm2g-2Mol

            22 ( ) D

            solution solventrR b c M I IV

            std abssolution solvent

            std

            IR I I

            I

            contrast factor

            Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

            For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

            Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

            Scattering from dilute solutions of larger particles

            - scattered intensity dependent on scattering angle (interference)

            0q k k

            0k

            k

            4 sin( )2Dnq

            0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

            q

            q = inverse observational length scale of the light scattering experiment

            q-scale resolution information comment

            qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

            qR lt 1 topology cylinder sphere hellip

            qR asymp 1 topology quantitative size of cylinder

            qR gt 1 chain conformation helical stretched

            qR gtgt 1 chain segments chain segment density

            0 2 4 6 8 10 1210-5

            10-4

            10-3

            10-2

            10-1

            100

            P(q

            )

            qR

            For large (ca 500 nm) homogeneous spheres

            26

            9( ) sin cosP q qR qR qRqR

            Minimum bei qR = 449

            Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

            0010

            0011

            0012

            0013

            0014

            0015

            0016

            0017

            0018

            0019

            0020

            0021

            0022

            0023

            0024

            0025

            0026

            0027

            0028

            0029

            0030

            100E-05

            100E-04

            100E-03

            100E-02

            100E-01

            100E+00P(q) 130 nm

            P(q) 260 nm

            Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

            ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

            mean-squared displacement of the scattering particle

            2 6 sR D D 6s

            H

            kT kTDf Rh

            change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

            Stokes-Einstein-Gl

            2

            2

            ( ) ( )( ) exp( ) ( ) ( ) 1

            s s s sI q t I q tF q D q E q t E q t

            I q t

            ltI(t)

            I(t+

            )gtT

            I(t)

            t

            1

            2

            The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

            (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

            Siegert-Relation

            2Basislinie I t

            rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

            2 31 2 3

            1 1ln 2 3sF q

            1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

            2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

            ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

            22 2

            2 1i i i iapp s gz z

            i i i

            n M P q DD q D K R q

            n M P q

            Data analysis for polydisperse (monomodal) samples

            Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

            qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

            Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

            linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

            2Pi(q)

            log(

            F s(q)

            DyDx=-Dsq2

            log(

            F s(q)

            DyDx=-Dsq2

            larger slower particles

            small fast particles

            Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

            0 1x1010 2x1010 3x1010 4x1010

            00

            50x10-15

            10x10-14

            15x10-14

            20x10-14

            Dm

            2 s-1

            q2cm-2

            s zD

            Explanation for q-dependence of Dapp for larger particles due to Pi(q)

            2

            2i i i i

            appi i i

            n M P q DD q

            n M P q

            Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

            0010

            0011

            0012

            0013

            0014

            0015

            0016

            0017

            0018

            0019

            0020

            0021

            0022

            0023

            0024

            0025

            0026

            0027

            0028

            0029

            0030

            100E-05

            100E-04

            100E-03

            100E-02

            100E-01

            100E+00P(q) 130 nm

            P(q) 260 nm

            Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

            DLS of concentrated samples ndash influence of the static structure factor S(q)

            From Gapinsky et al JChemPhys 126 104905 (2007)

            S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

            From Gapinsky et al JChemPhys 126 104905 (2007)

            Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

            D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

            • Slide 1
            • Slide 2
            • Slide 3
            • Slide 4
            • Slide 5
            • Slide 6
            • Slide 7
            • Slide 8
            • Slide 9
            • Slide 10
            • Slide 11
            • Slide 12
            • Slide 13
            • Slide 14
            • Slide 15
            • Slide 16
            • Slide 17
            • Slide 18
            • Slide 19
            • Slide 20

              Scattering volume defined by intersection of incident beam and optical aperture of the detection opticsvaries with scattering angle

              Important scattered intensity has to be normalized

              Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

              222 2

              040

              4 ( )DDL

              nb n KcN

              in cm2g-2Mol

              22 ( ) D

              solution solventrR b c M I IV

              std abssolution solvent

              std

              IR I I

              I

              contrast factor

              Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

              For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

              Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

              Scattering from dilute solutions of larger particles

              - scattered intensity dependent on scattering angle (interference)

              0q k k

              0k

              k

              4 sin( )2Dnq

              0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

              q

              q = inverse observational length scale of the light scattering experiment

              q-scale resolution information comment

              qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

              qR lt 1 topology cylinder sphere hellip

              qR asymp 1 topology quantitative size of cylinder

              qR gt 1 chain conformation helical stretched

              qR gtgt 1 chain segments chain segment density

              0 2 4 6 8 10 1210-5

              10-4

              10-3

              10-2

              10-1

              100

              P(q

              )

              qR

              For large (ca 500 nm) homogeneous spheres

              26

              9( ) sin cosP q qR qR qRqR

              Minimum bei qR = 449

              Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

              0010

              0011

              0012

              0013

              0014

              0015

              0016

              0017

              0018

              0019

              0020

              0021

              0022

              0023

              0024

              0025

              0026

              0027

              0028

              0029

              0030

              100E-05

              100E-04

              100E-03

              100E-02

              100E-01

              100E+00P(q) 130 nm

              P(q) 260 nm

              Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

              ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

              mean-squared displacement of the scattering particle

              2 6 sR D D 6s

              H

              kT kTDf Rh

              change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

              Stokes-Einstein-Gl

              2

              2

              ( ) ( )( ) exp( ) ( ) ( ) 1

              s s s sI q t I q tF q D q E q t E q t

              I q t

              ltI(t)

              I(t+

              )gtT

              I(t)

              t

              1

              2

              The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

              (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

              Siegert-Relation

              2Basislinie I t

              rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

              2 31 2 3

              1 1ln 2 3sF q

              1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

              2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

              ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

              22 2

              2 1i i i iapp s gz z

              i i i

              n M P q DD q D K R q

              n M P q

              Data analysis for polydisperse (monomodal) samples

              Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

              qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

              Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

              linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

              2Pi(q)

              log(

              F s(q)

              DyDx=-Dsq2

              log(

              F s(q)

              DyDx=-Dsq2

              larger slower particles

              small fast particles

              Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

              0 1x1010 2x1010 3x1010 4x1010

              00

              50x10-15

              10x10-14

              15x10-14

              20x10-14

              Dm

              2 s-1

              q2cm-2

              s zD

              Explanation for q-dependence of Dapp for larger particles due to Pi(q)

              2

              2i i i i

              appi i i

              n M P q DD q

              n M P q

              Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

              0010

              0011

              0012

              0013

              0014

              0015

              0016

              0017

              0018

              0019

              0020

              0021

              0022

              0023

              0024

              0025

              0026

              0027

              0028

              0029

              0030

              100E-05

              100E-04

              100E-03

              100E-02

              100E-01

              100E+00P(q) 130 nm

              P(q) 260 nm

              Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

              DLS of concentrated samples ndash influence of the static structure factor S(q)

              From Gapinsky et al JChemPhys 126 104905 (2007)

              S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

              From Gapinsky et al JChemPhys 126 104905 (2007)

              Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

              D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

              • Slide 1
              • Slide 2
              • Slide 3
              • Slide 4
              • Slide 5
              • Slide 6
              • Slide 7
              • Slide 8
              • Slide 9
              • Slide 10
              • Slide 11
              • Slide 12
              • Slide 13
              • Slide 14
              • Slide 15
              • Slide 16
              • Slide 17
              • Slide 18
              • Slide 19
              • Slide 20

                Scattering from dilute solutions of very small particles (ldquopoint scatterersrdquo)(eg nanoparticles or polymer chains smaller than 20)

                222 2

                040

                4 ( )DDL

                nb n KcN

                in cm2g-2Mol

                22 ( ) D

                solution solventrR b c M I IV

                std abssolution solvent

                std

                IR I I

                I

                contrast factor

                Absolute scattered intensity of ideal solutions Rayleigh ratio ([cm-1])

                For calibration of the setup one uses a scattering standard Istd Toluene ( Iabs = 14 e-5 cm-1 )

                Reason of ldquoSky Bluerdquo (scattering from gas molecules of atmosphere)

                Scattering from dilute solutions of larger particles

                - scattered intensity dependent on scattering angle (interference)

                0q k k

                0k

                k

                4 sin( )2Dnq

                0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

                q

                q = inverse observational length scale of the light scattering experiment

                q-scale resolution information comment

                qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

                qR lt 1 topology cylinder sphere hellip

                qR asymp 1 topology quantitative size of cylinder

                qR gt 1 chain conformation helical stretched

                qR gtgt 1 chain segments chain segment density

                0 2 4 6 8 10 1210-5

                10-4

                10-3

                10-2

                10-1

                100

                P(q

                )

                qR

                For large (ca 500 nm) homogeneous spheres

                26

                9( ) sin cosP q qR qR qRqR

                Minimum bei qR = 449

                Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

                0010

                0011

                0012

                0013

                0014

                0015

                0016

                0017

                0018

                0019

                0020

                0021

                0022

                0023

                0024

                0025

                0026

                0027

                0028

                0029

                0030

                100E-05

                100E-04

                100E-03

                100E-02

                100E-01

                100E+00P(q) 130 nm

                P(q) 260 nm

                Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                mean-squared displacement of the scattering particle

                2 6 sR D D 6s

                H

                kT kTDf Rh

                change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                Stokes-Einstein-Gl

                2

                2

                ( ) ( )( ) exp( ) ( ) ( ) 1

                s s s sI q t I q tF q D q E q t E q t

                I q t

                ltI(t)

                I(t+

                )gtT

                I(t)

                t

                1

                2

                The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                Siegert-Relation

                2Basislinie I t

                rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                2 31 2 3

                1 1ln 2 3sF q

                1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                22 2

                2 1i i i iapp s gz z

                i i i

                n M P q DD q D K R q

                n M P q

                Data analysis for polydisperse (monomodal) samples

                Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                2Pi(q)

                log(

                F s(q)

                DyDx=-Dsq2

                log(

                F s(q)

                DyDx=-Dsq2

                larger slower particles

                small fast particles

                Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                0 1x1010 2x1010 3x1010 4x1010

                00

                50x10-15

                10x10-14

                15x10-14

                20x10-14

                Dm

                2 s-1

                q2cm-2

                s zD

                Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                2

                2i i i i

                appi i i

                n M P q DD q

                n M P q

                Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                0010

                0011

                0012

                0013

                0014

                0015

                0016

                0017

                0018

                0019

                0020

                0021

                0022

                0023

                0024

                0025

                0026

                0027

                0028

                0029

                0030

                100E-05

                100E-04

                100E-03

                100E-02

                100E-01

                100E+00P(q) 130 nm

                P(q) 260 nm

                Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                DLS of concentrated samples ndash influence of the static structure factor S(q)

                From Gapinsky et al JChemPhys 126 104905 (2007)

                S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                From Gapinsky et al JChemPhys 126 104905 (2007)

                Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                • Slide 1
                • Slide 2
                • Slide 3
                • Slide 4
                • Slide 5
                • Slide 6
                • Slide 7
                • Slide 8
                • Slide 9
                • Slide 10
                • Slide 11
                • Slide 12
                • Slide 13
                • Slide 14
                • Slide 15
                • Slide 16
                • Slide 17
                • Slide 18
                • Slide 19
                • Slide 20

                  Scattering from dilute solutions of larger particles

                  - scattered intensity dependent on scattering angle (interference)

                  0q k k

                  0k

                  k

                  4 sin( )2Dnq

                  0k The scattering vector q (in [cm-1]) length scale of the light scattering experiment

                  q

                  q = inverse observational length scale of the light scattering experiment

                  q-scale resolution information comment

                  qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

                  qR lt 1 topology cylinder sphere hellip

                  qR asymp 1 topology quantitative size of cylinder

                  qR gt 1 chain conformation helical stretched

                  qR gtgt 1 chain segments chain segment density

                  0 2 4 6 8 10 1210-5

                  10-4

                  10-3

                  10-2

                  10-1

                  100

                  P(q

                  )

                  qR

                  For large (ca 500 nm) homogeneous spheres

                  26

                  9( ) sin cosP q qR qR qRqR

                  Minimum bei qR = 449

                  Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

                  0010

                  0011

                  0012

                  0013

                  0014

                  0015

                  0016

                  0017

                  0018

                  0019

                  0020

                  0021

                  0022

                  0023

                  0024

                  0025

                  0026

                  0027

                  0028

                  0029

                  0030

                  100E-05

                  100E-04

                  100E-03

                  100E-02

                  100E-01

                  100E+00P(q) 130 nm

                  P(q) 260 nm

                  Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                  ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                  mean-squared displacement of the scattering particle

                  2 6 sR D D 6s

                  H

                  kT kTDf Rh

                  change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                  Stokes-Einstein-Gl

                  2

                  2

                  ( ) ( )( ) exp( ) ( ) ( ) 1

                  s s s sI q t I q tF q D q E q t E q t

                  I q t

                  ltI(t)

                  I(t+

                  )gtT

                  I(t)

                  t

                  1

                  2

                  The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                  (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                  Siegert-Relation

                  2Basislinie I t

                  rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                  2 31 2 3

                  1 1ln 2 3sF q

                  1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                  2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                  ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                  22 2

                  2 1i i i iapp s gz z

                  i i i

                  n M P q DD q D K R q

                  n M P q

                  Data analysis for polydisperse (monomodal) samples

                  Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                  qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                  Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                  linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                  2Pi(q)

                  log(

                  F s(q)

                  DyDx=-Dsq2

                  log(

                  F s(q)

                  DyDx=-Dsq2

                  larger slower particles

                  small fast particles

                  Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                  0 1x1010 2x1010 3x1010 4x1010

                  00

                  50x10-15

                  10x10-14

                  15x10-14

                  20x10-14

                  Dm

                  2 s-1

                  q2cm-2

                  s zD

                  Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                  2

                  2i i i i

                  appi i i

                  n M P q DD q

                  n M P q

                  Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                  0010

                  0011

                  0012

                  0013

                  0014

                  0015

                  0016

                  0017

                  0018

                  0019

                  0020

                  0021

                  0022

                  0023

                  0024

                  0025

                  0026

                  0027

                  0028

                  0029

                  0030

                  100E-05

                  100E-04

                  100E-03

                  100E-02

                  100E-01

                  100E+00P(q) 130 nm

                  P(q) 260 nm

                  Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                  DLS of concentrated samples ndash influence of the static structure factor S(q)

                  From Gapinsky et al JChemPhys 126 104905 (2007)

                  S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                  From Gapinsky et al JChemPhys 126 104905 (2007)

                  Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                  D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                  • Slide 1
                  • Slide 2
                  • Slide 3
                  • Slide 4
                  • Slide 5
                  • Slide 6
                  • Slide 7
                  • Slide 8
                  • Slide 9
                  • Slide 10
                  • Slide 11
                  • Slide 12
                  • Slide 13
                  • Slide 14
                  • Slide 15
                  • Slide 16
                  • Slide 17
                  • Slide 18
                  • Slide 19
                  • Slide 20

                    q

                    q = inverse observational length scale of the light scattering experiment

                    q-scale resolution information comment

                    qR ltlt 1 whole coil mass radius of gyration eg Zimm plot

                    qR lt 1 topology cylinder sphere hellip

                    qR asymp 1 topology quantitative size of cylinder

                    qR gt 1 chain conformation helical stretched

                    qR gtgt 1 chain segments chain segment density

                    0 2 4 6 8 10 1210-5

                    10-4

                    10-3

                    10-2

                    10-1

                    100

                    P(q

                    )

                    qR

                    For large (ca 500 nm) homogeneous spheres

                    26

                    9( ) sin cosP q qR qR qRqR

                    Minimum bei qR = 449

                    Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

                    0010

                    0011

                    0012

                    0013

                    0014

                    0015

                    0016

                    0017

                    0018

                    0019

                    0020

                    0021

                    0022

                    0023

                    0024

                    0025

                    0026

                    0027

                    0028

                    0029

                    0030

                    100E-05

                    100E-04

                    100E-03

                    100E-02

                    100E-01

                    100E+00P(q) 130 nm

                    P(q) 260 nm

                    Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                    ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                    mean-squared displacement of the scattering particle

                    2 6 sR D D 6s

                    H

                    kT kTDf Rh

                    change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                    Stokes-Einstein-Gl

                    2

                    2

                    ( ) ( )( ) exp( ) ( ) ( ) 1

                    s s s sI q t I q tF q D q E q t E q t

                    I q t

                    ltI(t)

                    I(t+

                    )gtT

                    I(t)

                    t

                    1

                    2

                    The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                    (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                    Siegert-Relation

                    2Basislinie I t

                    rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                    2 31 2 3

                    1 1ln 2 3sF q

                    1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                    2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                    ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                    22 2

                    2 1i i i iapp s gz z

                    i i i

                    n M P q DD q D K R q

                    n M P q

                    Data analysis for polydisperse (monomodal) samples

                    Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                    qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                    Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                    linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                    2Pi(q)

                    log(

                    F s(q)

                    DyDx=-Dsq2

                    log(

                    F s(q)

                    DyDx=-Dsq2

                    larger slower particles

                    small fast particles

                    Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                    0 1x1010 2x1010 3x1010 4x1010

                    00

                    50x10-15

                    10x10-14

                    15x10-14

                    20x10-14

                    Dm

                    2 s-1

                    q2cm-2

                    s zD

                    Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                    2

                    2i i i i

                    appi i i

                    n M P q DD q

                    n M P q

                    Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                    0010

                    0011

                    0012

                    0013

                    0014

                    0015

                    0016

                    0017

                    0018

                    0019

                    0020

                    0021

                    0022

                    0023

                    0024

                    0025

                    0026

                    0027

                    0028

                    0029

                    0030

                    100E-05

                    100E-04

                    100E-03

                    100E-02

                    100E-01

                    100E+00P(q) 130 nm

                    P(q) 260 nm

                    Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                    DLS of concentrated samples ndash influence of the static structure factor S(q)

                    From Gapinsky et al JChemPhys 126 104905 (2007)

                    S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                    From Gapinsky et al JChemPhys 126 104905 (2007)

                    Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                    D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                    • Slide 1
                    • Slide 2
                    • Slide 3
                    • Slide 4
                    • Slide 5
                    • Slide 6
                    • Slide 7
                    • Slide 8
                    • Slide 9
                    • Slide 10
                    • Slide 11
                    • Slide 12
                    • Slide 13
                    • Slide 14
                    • Slide 15
                    • Slide 16
                    • Slide 17
                    • Slide 18
                    • Slide 19
                    • Slide 20

                      0 2 4 6 8 10 1210-5

                      10-4

                      10-3

                      10-2

                      10-1

                      100

                      P(q

                      )

                      qR

                      For large (ca 500 nm) homogeneous spheres

                      26

                      9( ) sin cosP q qR qR qRqR

                      Minimum bei qR = 449

                      Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

                      0010

                      0011

                      0012

                      0013

                      0014

                      0015

                      0016

                      0017

                      0018

                      0019

                      0020

                      0021

                      0022

                      0023

                      0024

                      0025

                      0026

                      0027

                      0028

                      0029

                      0030

                      100E-05

                      100E-04

                      100E-03

                      100E-02

                      100E-01

                      100E+00P(q) 130 nm

                      P(q) 260 nm

                      Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                      ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                      mean-squared displacement of the scattering particle

                      2 6 sR D D 6s

                      H

                      kT kTDf Rh

                      change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                      Stokes-Einstein-Gl

                      2

                      2

                      ( ) ( )( ) exp( ) ( ) ( ) 1

                      s s s sI q t I q tF q D q E q t E q t

                      I q t

                      ltI(t)

                      I(t+

                      )gtT

                      I(t)

                      t

                      1

                      2

                      The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                      (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                      Siegert-Relation

                      2Basislinie I t

                      rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                      2 31 2 3

                      1 1ln 2 3sF q

                      1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                      2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                      ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                      22 2

                      2 1i i i iapp s gz z

                      i i i

                      n M P q DD q D K R q

                      n M P q

                      Data analysis for polydisperse (monomodal) samples

                      Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                      qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                      Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                      linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                      2Pi(q)

                      log(

                      F s(q)

                      DyDx=-Dsq2

                      log(

                      F s(q)

                      DyDx=-Dsq2

                      larger slower particles

                      small fast particles

                      Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                      0 1x1010 2x1010 3x1010 4x1010

                      00

                      50x10-15

                      10x10-14

                      15x10-14

                      20x10-14

                      Dm

                      2 s-1

                      q2cm-2

                      s zD

                      Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                      2

                      2i i i i

                      appi i i

                      n M P q DD q

                      n M P q

                      Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                      0010

                      0011

                      0012

                      0013

                      0014

                      0015

                      0016

                      0017

                      0018

                      0019

                      0020

                      0021

                      0022

                      0023

                      0024

                      0025

                      0026

                      0027

                      0028

                      0029

                      0030

                      100E-05

                      100E-04

                      100E-03

                      100E-02

                      100E-01

                      100E+00P(q) 130 nm

                      P(q) 260 nm

                      Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                      DLS of concentrated samples ndash influence of the static structure factor S(q)

                      From Gapinsky et al JChemPhys 126 104905 (2007)

                      S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                      From Gapinsky et al JChemPhys 126 104905 (2007)

                      Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                      D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                      • Slide 1
                      • Slide 2
                      • Slide 3
                      • Slide 4
                      • Slide 5
                      • Slide 6
                      • Slide 7
                      • Slide 8
                      • Slide 9
                      • Slide 10
                      • Slide 11
                      • Slide 12
                      • Slide 13
                      • Slide 14
                      • Slide 15
                      • Slide 16
                      • Slide 17
                      • Slide 18
                      • Slide 19
                      • Slide 20

                        Two different types of Polystyrene nanospheres (R = 130 nm und R gt 260 nm) are investigated in the practical course

                        0010

                        0011

                        0012

                        0013

                        0014

                        0015

                        0016

                        0017

                        0018

                        0019

                        0020

                        0021

                        0022

                        0023

                        0024

                        0025

                        0026

                        0027

                        0028

                        0029

                        0030

                        100E-05

                        100E-04

                        100E-03

                        100E-02

                        100E-01

                        100E+00P(q) 130 nm

                        P(q) 260 nm

                        Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                        ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                        mean-squared displacement of the scattering particle

                        2 6 sR D D 6s

                        H

                        kT kTDf Rh

                        change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                        Stokes-Einstein-Gl

                        2

                        2

                        ( ) ( )( ) exp( ) ( ) ( ) 1

                        s s s sI q t I q tF q D q E q t E q t

                        I q t

                        ltI(t)

                        I(t+

                        )gtT

                        I(t)

                        t

                        1

                        2

                        The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                        (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                        Siegert-Relation

                        2Basislinie I t

                        rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                        2 31 2 3

                        1 1ln 2 3sF q

                        1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                        2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                        ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                        22 2

                        2 1i i i iapp s gz z

                        i i i

                        n M P q DD q D K R q

                        n M P q

                        Data analysis for polydisperse (monomodal) samples

                        Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                        qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                        Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                        linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                        2Pi(q)

                        log(

                        F s(q)

                        DyDx=-Dsq2

                        log(

                        F s(q)

                        DyDx=-Dsq2

                        larger slower particles

                        small fast particles

                        Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                        0 1x1010 2x1010 3x1010 4x1010

                        00

                        50x10-15

                        10x10-14

                        15x10-14

                        20x10-14

                        Dm

                        2 s-1

                        q2cm-2

                        s zD

                        Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                        2

                        2i i i i

                        appi i i

                        n M P q DD q

                        n M P q

                        Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                        0010

                        0011

                        0012

                        0013

                        0014

                        0015

                        0016

                        0017

                        0018

                        0019

                        0020

                        0021

                        0022

                        0023

                        0024

                        0025

                        0026

                        0027

                        0028

                        0029

                        0030

                        100E-05

                        100E-04

                        100E-03

                        100E-02

                        100E-01

                        100E+00P(q) 130 nm

                        P(q) 260 nm

                        Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                        DLS of concentrated samples ndash influence of the static structure factor S(q)

                        From Gapinsky et al JChemPhys 126 104905 (2007)

                        S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                        From Gapinsky et al JChemPhys 126 104905 (2007)

                        Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                        D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                        • Slide 1
                        • Slide 2
                        • Slide 3
                        • Slide 4
                        • Slide 5
                        • Slide 6
                        • Slide 7
                        • Slide 8
                        • Slide 9
                        • Slide 10
                        • Slide 11
                        • Slide 12
                        • Slide 13
                        • Slide 14
                        • Slide 15
                        • Slide 16
                        • Slide 17
                        • Slide 18
                        • Slide 19
                        • Slide 20

                          Dynamic Light ScatteringBrownian motion of the solute particles leads to fluctuations of the scattered intensity

                          ( ) (0 ) ( ) ( ) ( ) exp( )s V T s sG r n t n r t F q G r iqr dr

                          mean-squared displacement of the scattering particle

                          2 6 sR D D 6s

                          H

                          kT kTDf Rh

                          change of particle position with time is expressed by van Hove selfcorrelation functionDLS-signal is the corresponding Fourier transform (dynamic structure factor)

                          Stokes-Einstein-Gl

                          2

                          2

                          ( ) ( )( ) exp( ) ( ) ( ) 1

                          s s s sI q t I q tF q D q E q t E q t

                          I q t

                          ltI(t)

                          I(t+

                          )gtT

                          I(t)

                          t

                          1

                          2

                          The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                          (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                          Siegert-Relation

                          2Basislinie I t

                          rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                          2 31 2 3

                          1 1ln 2 3sF q

                          1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                          2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                          ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                          22 2

                          2 1i i i iapp s gz z

                          i i i

                          n M P q DD q D K R q

                          n M P q

                          Data analysis for polydisperse (monomodal) samples

                          Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                          qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                          Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                          linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                          2Pi(q)

                          log(

                          F s(q)

                          DyDx=-Dsq2

                          log(

                          F s(q)

                          DyDx=-Dsq2

                          larger slower particles

                          small fast particles

                          Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                          0 1x1010 2x1010 3x1010 4x1010

                          00

                          50x10-15

                          10x10-14

                          15x10-14

                          20x10-14

                          Dm

                          2 s-1

                          q2cm-2

                          s zD

                          Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                          2

                          2i i i i

                          appi i i

                          n M P q DD q

                          n M P q

                          Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                          0010

                          0011

                          0012

                          0013

                          0014

                          0015

                          0016

                          0017

                          0018

                          0019

                          0020

                          0021

                          0022

                          0023

                          0024

                          0025

                          0026

                          0027

                          0028

                          0029

                          0030

                          100E-05

                          100E-04

                          100E-03

                          100E-02

                          100E-01

                          100E+00P(q) 130 nm

                          P(q) 260 nm

                          Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                          DLS of concentrated samples ndash influence of the static structure factor S(q)

                          From Gapinsky et al JChemPhys 126 104905 (2007)

                          S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                          From Gapinsky et al JChemPhys 126 104905 (2007)

                          Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                          D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                          • Slide 1
                          • Slide 2
                          • Slide 3
                          • Slide 4
                          • Slide 5
                          • Slide 6
                          • Slide 7
                          • Slide 8
                          • Slide 9
                          • Slide 10
                          • Slide 11
                          • Slide 12
                          • Slide 13
                          • Slide 14
                          • Slide 15
                          • Slide 16
                          • Slide 17
                          • Slide 18
                          • Slide 19
                          • Slide 20

                            2

                            2

                            ( ) ( )( ) exp( ) ( ) ( ) 1

                            s s s sI q t I q tF q D q E q t E q t

                            I q t

                            ltI(t)

                            I(t+

                            )gtT

                            I(t)

                            t

                            1

                            2

                            The Dynamic Light Scattering Experiment - photon correlation spectroscopy ( in DLS one measures the intensity correlation ltI(t) I(t+)gt )

                            (note in static light scattering you measure the average scattered intensity ltI(qt)gt (see dashed line left graph))

                            Siegert-Relation

                            2Basislinie I t

                            rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                            2 31 2 3

                            1 1ln 2 3sF q

                            1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                            2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                            ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                            22 2

                            2 1i i i iapp s gz z

                            i i i

                            n M P q DD q D K R q

                            n M P q

                            Data analysis for polydisperse (monomodal) samples

                            Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                            qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                            Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                            linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                            2Pi(q)

                            log(

                            F s(q)

                            DyDx=-Dsq2

                            log(

                            F s(q)

                            DyDx=-Dsq2

                            larger slower particles

                            small fast particles

                            Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                            0 1x1010 2x1010 3x1010 4x1010

                            00

                            50x10-15

                            10x10-14

                            15x10-14

                            20x10-14

                            Dm

                            2 s-1

                            q2cm-2

                            s zD

                            Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                            2

                            2i i i i

                            appi i i

                            n M P q DD q

                            n M P q

                            Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                            0010

                            0011

                            0012

                            0013

                            0014

                            0015

                            0016

                            0017

                            0018

                            0019

                            0020

                            0021

                            0022

                            0023

                            0024

                            0025

                            0026

                            0027

                            0028

                            0029

                            0030

                            100E-05

                            100E-04

                            100E-03

                            100E-02

                            100E-01

                            100E+00P(q) 130 nm

                            P(q) 260 nm

                            Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                            DLS of concentrated samples ndash influence of the static structure factor S(q)

                            From Gapinsky et al JChemPhys 126 104905 (2007)

                            S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                            From Gapinsky et al JChemPhys 126 104905 (2007)

                            Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                            D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                            • Slide 1
                            • Slide 2
                            • Slide 3
                            • Slide 4
                            • Slide 5
                            • Slide 6
                            • Slide 7
                            • Slide 8
                            • Slide 9
                            • Slide 10
                            • Slide 11
                            • Slide 12
                            • Slide 13
                            • Slide 14
                            • Slide 15
                            • Slide 16
                            • Slide 17
                            • Slide 18
                            • Slide 19
                            • Slide 20

                              rdquoCumulant-Methodldquo for polydisperse samples Fs(q) is a superposition of various exponentials

                              2 31 2 3

                              1 1ln 2 3sF q

                              1st cumulant 1 sup2sD q yields the average apparent diffusion coefficient

                              2nd cumulant 22 42 s sD D q is a measure for sample polydispersity

                              ImportantFor polydisperse samples of particles gt 10 nm the apparent diffusion coefficientIs q-dependent due to the weighting-factor P(q)

                              22 2

                              2 1i i i iapp s gz z

                              i i i

                              n M P q DD q D K R q

                              n M P q

                              Data analysis for polydisperse (monomodal) samples

                              Note the weighting factor ldquoNi Mi2 Pi(q)ldquo which is the average static scattered intensity per sample faction Taylor series expansion of this superposition leads to

                              qrarr0 Dapp is the z-average diffusion coefficient since all Pi(q) = 1

                              Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                              linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                              2Pi(q)

                              log(

                              F s(q)

                              DyDx=-Dsq2

                              log(

                              F s(q)

                              DyDx=-Dsq2

                              larger slower particles

                              small fast particles

                              Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                              0 1x1010 2x1010 3x1010 4x1010

                              00

                              50x10-15

                              10x10-14

                              15x10-14

                              20x10-14

                              Dm

                              2 s-1

                              q2cm-2

                              s zD

                              Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                              2

                              2i i i i

                              appi i i

                              n M P q DD q

                              n M P q

                              Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                              0010

                              0011

                              0012

                              0013

                              0014

                              0015

                              0016

                              0017

                              0018

                              0019

                              0020

                              0021

                              0022

                              0023

                              0024

                              0025

                              0026

                              0027

                              0028

                              0029

                              0030

                              100E-05

                              100E-04

                              100E-03

                              100E-02

                              100E-01

                              100E+00P(q) 130 nm

                              P(q) 260 nm

                              Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                              DLS of concentrated samples ndash influence of the static structure factor S(q)

                              From Gapinsky et al JChemPhys 126 104905 (2007)

                              S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                              From Gapinsky et al JChemPhys 126 104905 (2007)

                              Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                              D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                              • Slide 1
                              • Slide 2
                              • Slide 3
                              • Slide 4
                              • Slide 5
                              • Slide 6
                              • Slide 7
                              • Slide 8
                              • Slide 9
                              • Slide 10
                              • Slide 11
                              • Slide 12
                              • Slide 13
                              • Slide 14
                              • Slide 15
                              • Slide 16
                              • Slide 17
                              • Slide 18
                              • Slide 19
                              • Slide 20

                                Cumulant analysis ndash graphic explanationMonodisperse sample Polydisperse sample

                                linear slope yields diffusion coefficient slope at =0 yields apparent diffusioncoefficient which is an average weightedwith NiMi

                                2Pi(q)

                                log(

                                F s(q)

                                DyDx=-Dsq2

                                log(

                                F s(q)

                                DyDx=-Dsq2

                                larger slower particles

                                small fast particles

                                Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                                0 1x1010 2x1010 3x1010 4x1010

                                00

                                50x10-15

                                10x10-14

                                15x10-14

                                20x10-14

                                Dm

                                2 s-1

                                q2cm-2

                                s zD

                                Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                                2

                                2i i i i

                                appi i i

                                n M P q DD q

                                n M P q

                                Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                                0010

                                0011

                                0012

                                0013

                                0014

                                0015

                                0016

                                0017

                                0018

                                0019

                                0020

                                0021

                                0022

                                0023

                                0024

                                0025

                                0026

                                0027

                                0028

                                0029

                                0030

                                100E-05

                                100E-04

                                100E-03

                                100E-02

                                100E-01

                                100E+00P(q) 130 nm

                                P(q) 260 nm

                                Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                                DLS of concentrated samples ndash influence of the static structure factor S(q)

                                From Gapinsky et al JChemPhys 126 104905 (2007)

                                S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                From Gapinsky et al JChemPhys 126 104905 (2007)

                                Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                                D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                • Slide 1
                                • Slide 2
                                • Slide 3
                                • Slide 4
                                • Slide 5
                                • Slide 6
                                • Slide 7
                                • Slide 8
                                • Slide 9
                                • Slide 10
                                • Slide 11
                                • Slide 12
                                • Slide 13
                                • Slide 14
                                • Slide 15
                                • Slide 16
                                • Slide 17
                                • Slide 18
                                • Slide 19
                                • Slide 20

                                  Z-average diffusion coefficient is determined by interpolation of Dapp vs q2 -gt 0 (straight line only for particles lt 100 nm )

                                  0 1x1010 2x1010 3x1010 4x1010

                                  00

                                  50x10-15

                                  10x10-14

                                  15x10-14

                                  20x10-14

                                  Dm

                                  2 s-1

                                  q2cm-2

                                  s zD

                                  Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                                  2

                                  2i i i i

                                  appi i i

                                  n M P q DD q

                                  n M P q

                                  Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                                  0010

                                  0011

                                  0012

                                  0013

                                  0014

                                  0015

                                  0016

                                  0017

                                  0018

                                  0019

                                  0020

                                  0021

                                  0022

                                  0023

                                  0024

                                  0025

                                  0026

                                  0027

                                  0028

                                  0029

                                  0030

                                  100E-05

                                  100E-04

                                  100E-03

                                  100E-02

                                  100E-01

                                  100E+00P(q) 130 nm

                                  P(q) 260 nm

                                  Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                                  DLS of concentrated samples ndash influence of the static structure factor S(q)

                                  From Gapinsky et al JChemPhys 126 104905 (2007)

                                  S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                  From Gapinsky et al JChemPhys 126 104905 (2007)

                                  Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                                  D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                  • Slide 1
                                  • Slide 2
                                  • Slide 3
                                  • Slide 4
                                  • Slide 5
                                  • Slide 6
                                  • Slide 7
                                  • Slide 8
                                  • Slide 9
                                  • Slide 10
                                  • Slide 11
                                  • Slide 12
                                  • Slide 13
                                  • Slide 14
                                  • Slide 15
                                  • Slide 16
                                  • Slide 17
                                  • Slide 18
                                  • Slide 19
                                  • Slide 20

                                    Explanation for q-dependence of Dapp for larger particles due to Pi(q)

                                    2

                                    2i i i i

                                    appi i i

                                    n M P q DD q

                                    n M P q

                                    Note the minimum in P(q) for the larger particleswhere the average diffusion coefficient will reacha maximum

                                    0010

                                    0011

                                    0012

                                    0013

                                    0014

                                    0015

                                    0016

                                    0017

                                    0018

                                    0019

                                    0020

                                    0021

                                    0022

                                    0023

                                    0024

                                    0025

                                    0026

                                    0027

                                    0028

                                    0029

                                    0030

                                    100E-05

                                    100E-04

                                    100E-03

                                    100E-02

                                    100E-01

                                    100E+00P(q) 130 nm

                                    P(q) 260 nm

                                    Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                                    DLS of concentrated samples ndash influence of the static structure factor S(q)

                                    From Gapinsky et al JChemPhys 126 104905 (2007)

                                    S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                    From Gapinsky et al JChemPhys 126 104905 (2007)

                                    Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                                    D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                    • Slide 1
                                    • Slide 2
                                    • Slide 3
                                    • Slide 4
                                    • Slide 5
                                    • Slide 6
                                    • Slide 7
                                    • Slide 8
                                    • Slide 9
                                    • Slide 10
                                    • Slide 11
                                    • Slide 12
                                    • Slide 13
                                    • Slide 14
                                    • Slide 15
                                    • Slide 16
                                    • Slide 17
                                    • Slide 18
                                    • Slide 19
                                    • Slide 20

                                      Due to interparticle interactions the particles not any longer move independentlyby Brownian motion only Therefore DLS in this case measures no self-diffusioncoefficient but a collective diffusion coefficient defined as Dc(q) = DsS(q)

                                      DLS of concentrated samples ndash influence of the static structure factor S(q)

                                      From Gapinsky et al JChemPhys 126 104905 (2007)

                                      S(q) from SAXS particle radius ca 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                      From Gapinsky et al JChemPhys 126 104905 (2007)

                                      Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                                      D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                      • Slide 1
                                      • Slide 2
                                      • Slide 3
                                      • Slide 4
                                      • Slide 5
                                      • Slide 6
                                      • Slide 7
                                      • Slide 8
                                      • Slide 9
                                      • Slide 10
                                      • Slide 11
                                      • Slide 12
                                      • Slide 13
                                      • Slide 14
                                      • Slide 15
                                      • Slide 16
                                      • Slide 17
                                      • Slide 18
                                      • Slide 19
                                      • Slide 20

                                        From Gapinsky et al JChemPhys 126 104905 (2007)

                                        Note 1 The q-regime of SAXSXPCS is much larger than in light scattering dueto the shorter wave length of Xrays (lab course 0013 nm-1 lt q lt 0026 nm-1 )2 The investigated Ludox particles R = 25 nm are much smaller therefore themaximum in S(q) is located at larger q (q(S(q)_max) gt 01 nm-1 )

                                        D(q) from XPCS (Xray-correlation) particle radius 80 nm c = 200 97 und 75 gL in waterleft c(salt) = 05 mM right c(salt) = 50 mM)

                                        • Slide 1
                                        • Slide 2
                                        • Slide 3
                                        • Slide 4
                                        • Slide 5
                                        • Slide 6
                                        • Slide 7
                                        • Slide 8
                                        • Slide 9
                                        • Slide 10
                                        • Slide 11
                                        • Slide 12
                                        • Slide 13
                                        • Slide 14
                                        • Slide 15
                                        • Slide 16
                                        • Slide 17
                                        • Slide 18
                                        • Slide 19
                                        • Slide 20

                                          top related