Robust Portfolio Selection via Utility Optimisation with smaller …people.maths.ox.ac.uk/howison/Oxford-Princeton07/Zuev.pdf · 2007-05-19 · Problem Modelling Exprimental results

Post on 22-Jul-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Problem ModellingExprimental results

Conclusion

Robust Portfolio Selection via Utility Optimisation

with smaller uncertainty sets

Denis Zuevdenis.zuev@maths.ox.ac.uk

OCIAM,

University of Oxford

May 18, 2007

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Main idea of the talk

Idea

Having got 1000 pounds we want to find an optimal way ofinvesting this money into a set of given shares in an optimal way asto maximise our expected returns and minimise risks after a fixedinvestment period.

This investment should be:

robust to estimation errors,

stable over time.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Main idea of the talk

Idea

Having got 1000 pounds we want to find an optimal way ofinvesting this money into a set of given shares in an optimal way asto maximise our expected returns and minimise risks after a fixedinvestment period.

This investment should be:

robust to estimation errors,

stable over time.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Main idea of the talk

Idea

Having got 1000 pounds we want to find an optimal way ofinvesting this money into a set of given shares in an optimal way asto maximise our expected returns and minimise risks after a fixedinvestment period.

This investment should be:

robust to estimation errors,

stable over time.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Definitions

Let Si be the closing price of n stocks on day i .

Let ri =Si−Si−1

Si−1be daily returns of stocks.

We assume that the period return r ∼ N(µ,Σ).

Let φ denote a share of our wealth in stocks.

Let R ∈ Rm×n - a matrix of observations, where m is the

number of stocks and n is the number of observations.

Let µ = 1n

ri = R1n

and Σ = 1nR

(

I − 1n11T

)

RT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Definitions

Let Si be the closing price of n stocks on day i .

Let ri =Si−Si−1

Si−1be daily returns of stocks.

We assume that the period return r ∼ N(µ,Σ).

Let φ denote a share of our wealth in stocks.

Let R ∈ Rm×n - a matrix of observations, where m is the

number of stocks and n is the number of observations.

Let µ = 1n

ri = R1n

and Σ = 1nR

(

I − 1n11T

)

RT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Definitions

Let Si be the closing price of n stocks on day i .

Let ri =Si−Si−1

Si−1be daily returns of stocks.

We assume that the period return r ∼ N(µ,Σ).

Let φ denote a share of our wealth in stocks.

Let R ∈ Rm×n - a matrix of observations, where m is the

number of stocks and n is the number of observations.

Let µ = 1n

ri = R1n

and Σ = 1nR

(

I − 1n11T

)

RT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Definitions

Let Si be the closing price of n stocks on day i .

Let ri =Si−Si−1

Si−1be daily returns of stocks.

We assume that the period return r ∼ N(µ,Σ).

Let φ denote a share of our wealth in stocks.

Let R ∈ Rm×n - a matrix of observations, where m is the

number of stocks and n is the number of observations.

Let µ = 1n

ri = R1n

and Σ = 1nR

(

I − 1n11T

)

RT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Definitions

Let Si be the closing price of n stocks on day i .

Let ri =Si−Si−1

Si−1be daily returns of stocks.

We assume that the period return r ∼ N(µ,Σ).

Let φ denote a share of our wealth in stocks.

Let R ∈ Rm×n - a matrix of observations, where m is the

number of stocks and n is the number of observations.

Let µ = 1n

ri = R1n

and Σ = 1nR

(

I − 1n11T

)

RT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Classical models

The investor will choose a portfolio as to maximise the expectedutility of the portfolio return.

maxφ

µTφ − γφTΣφ

s.t. φ ∈ C,

where C is some convex set.

maxφ

µTφ

s.t. φT Σφ ≤ Rrisk

φ ∈ C,

and

minφ

φTΣφ

s.t. µTφ ≥ Rreturn

φ ∈ C,

These are all equivalent formulations. Pioneering work [Mar52].

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Classical models

The investor will choose a portfolio as to maximise the expectedutility of the portfolio return.

maxφ

µTφ − γφTΣφ

s.t. φ ∈ C,

where C is some convex set.

maxφ

µTφ

s.t. φT Σφ ≤ Rrisk

φ ∈ C,

and

minφ

φTΣφ

s.t. µTφ ≥ Rreturn

φ ∈ C,

These are all equivalent formulations. Pioneering work [Mar52].

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of classical models

Optimal portfolio is very sensitive to input parameters.

Bad portfolio diversification.

Hardly intuitive portfolios.

Unstable over time. Large transaction costs.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of classical models

Optimal portfolio is very sensitive to input parameters.

Bad portfolio diversification.

Hardly intuitive portfolios.

Unstable over time. Large transaction costs.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of classical models

Optimal portfolio is very sensitive to input parameters.

Bad portfolio diversification.

Hardly intuitive portfolios.

Unstable over time. Large transaction costs.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of classical models

Optimal portfolio is very sensitive to input parameters.

Bad portfolio diversification.

Hardly intuitive portfolios.

Unstable over time. Large transaction costs.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Some solutions to drawbacks

Change model

Imposing extra constraintsAssuming different model for returns, e.g. CAPM

Account for uncertainty in parameter estimation

Loss function approaches. Shrinkage estimators.

Robust optimisation methodology

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Some solutions to drawbacks

Change model

Imposing extra constraintsAssuming different model for returns, e.g. CAPM

Account for uncertainty in parameter estimation

Loss function approaches. Shrinkage estimators.

Robust optimisation methodology

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Some solutions to drawbacks

Change model

Imposing extra constraintsAssuming different model for returns, e.g. CAPM

Account for uncertainty in parameter estimation

Loss function approaches. Shrinkage estimators.

Robust optimisation methodology

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Robust optimisation in finance

An example of the robust portfolio selection models would be

minφ

maxΣ∈UΣ

φTΣφ

s.t. minµ∈Uµ

µTφ ≥ Rreturn

φ ∈ C,

whereUµ = {µ : µ ≤ µ ≤ µ}

andUΣ = {Σ : Σ ≤ Σ ≤ Σ, Σ � 0}.

This model was studied by B.V. Halldorsson, M. Koenig and R. H.Tutuncu [TK04].

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of robust models

There is no dependence between returns and risks in theuncertainty sets.

Cautious investments. Sometimes performance suffers.

Uncertainty sets considered in the literature are sometimestoo large than what they should be.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of robust models

There is no dependence between returns and risks in theuncertainty sets.

Cautious investments. Sometimes performance suffers.

Uncertainty sets considered in the literature are sometimestoo large than what they should be.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Drawbacks of robust models

There is no dependence between returns and risks in theuncertainty sets.

Cautious investments. Sometimes performance suffers.

Uncertainty sets considered in the literature are sometimestoo large than what they should be.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Modelling dependence between risks and returns

Given that r ∼ N(µ,Σ) the uncertainty set (1 − α confidenceinterval) for µ is an elliptic set

Uµ ={

µ = µ + u : ‖u‖2S−1 ≤ 1

}

,

where S−1 = n

ρ Σ−1 and ρ is a 1 − α p-value of the Hotelling Tdistribution. We model risks as a maximum likelihood estimatorgiven µ:

Σ(µ) =1

nRRT − µµT − µµT + µµT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Modelling dependence between risks and returns

Given that r ∼ N(µ,Σ) the uncertainty set (1 − α confidenceinterval) for µ is an elliptic set

Uµ ={

µ = µ + u : ‖u‖2S−1 ≤ 1

}

,

where S−1 = n

ρ Σ−1 and ρ is a 1 − α p-value of the Hotelling Tdistribution. We model risks as a maximum likelihood estimatorgiven µ:

Σ(µ) =1

nRRT − µµT − µµT + µµT .

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Model formulation: Problem to solve

The problem to solve is

minφ

maxµ∈Uµ

φT Σ(µ)φ − ΓµTφ

s.t. φ ∈ C,

where

Σ(µ) =1

nRRT − µµT − µµT + µµT

andUµ =

{

µ = µ + u : ‖u‖2S−1 ≤ 1

}

.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Reformulating the objective function

Proof is related to [DG02]. Consider the objective function.

φT Σ(µ)φ − Γ(µTφ) =[

1n

∥RTφ∥

2

2− (µTφ)2 − Γ(µT φ)

]

− Γ(uT φ) + (uT φ)2 =

A − Γx + x2,

where A =∥

∥Σ1/2φ∥

2

2− Γ(µTφ) and x := uTφ.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Important lemma

Lemma

The optimal values for the following two problems are in fact the

same.

maxu

A − Γ(uTφ) + (uTφ)2

s.t. ‖u‖2G≤ 1,

maxu

A − Γ(uTφ) + (uTφ)2

s.t. (uTφ)2 ≤ ‖φ‖2G−1,

where G ≻ 0.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Solution outline

Proof.

1 Using S-lemma, transform the original problem into anonlinear matrix inequality problem.

2 Find an equivalent tractable convex formulation of thenonlinear matrix inequality problem.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Solution outline

Proof.

1 Using S-lemma, transform the original problem into anonlinear matrix inequality problem.

2 Find an equivalent tractable convex formulation of thenonlinear matrix inequality problem.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Problem Solution

minφ,ν,τ,α,β,δ,ζ

ν

s.t. φ ∈ C,ν ≥ α + β + δ

0 ≤ τ ≤ 0

4αΓ2 ≥ ζ − 1∥

2S1/2φ

τ − δ

≤ τ + δ

2Σ1/2φ

1 − ΓµTφ − β

≤ 1 + ΓµTφ + β

2ζ + τ − 1

≤ ζ − τ + 1

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

IntroductionInvestment ModelsUncertainty ModellingSolution

Optimisation Software

1 SeDuMi, http://sedumi.mcmaster.ca/, [Stu99].

2 SDPT3, http://www.math.nus.edu.sg/mattohkc/sdpt3.html,[RHTT01].

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

Experiments on NASDAQ data from 1999 to 2006

0 2 4 6 8 10 12500

1000

1500

2000

2500

3000

3500

TIme periods n*130 days

Pou

nds

Real portfolio performance over NASDAQ data (1999−2006)

Equal weighted portfolioRobust−risk adjusted modelGoldfarb & Iyengar robust model

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

Final remarks

Developed a new robust portfolio selection model and showedthat it can be reformulated as a conic programming problem.

Uncertainty is described more accurately, therefore making therobust model more accurate.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

References I

A. Nemirovski A. Ben-Tal.Robust optimization - methodology and applications.Math. Program., 92:453–480, 2002.

G. Iyengar D. Goldfarb.Robust portfolio selection problems.Technical report, 2002.

H. M. Markowitz.Portfolio selection.Journal of Finance, 1(7):77–91, 1952.

K. C. Toh R. H. Tutuncu and M. J. Todd.SDPT3 - a Matlab software package for

semidefinite-quadratic-linear programming, version 3.0, 2001.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

Problem ModellingExprimental results

Conclusion

References II

J. Sturm.Using sedumi 1.02, a matlab toolbox for optimization oversymmetric cones.Optimization Methods and Software, 11–12:625–653, 1999.

R. H. Tutuncu and M. Koenig.Robust asset allocation.Annals of Operations Research, 132(157-187), 2004.

Denis Zuev denis.zuev@maths.ox.ac.uk Worst Case Utility in Portfolio Selection

top related