Riemannian wavefield extrapolation of seismic data

Post on 31-Dec-2015

28 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Riemannian wavefield extrapolation of seismic data. J. Shragge, P. Sava, G. Shan, and B. Biondi Stanford Exploration Project S. Fomel UT Austin. Overview. Prelude Remote sensing/Echo sounding Seismic wavefield extrapolation Fugue Riemannian wavefield extrapolation Example. - PowerPoint PPT Presentation

Transcript

jeff@sep.stanford.edu

Riemannian wavefield extrapolationof seismic data

J. Shragge, P. Sava, G. Shan, and B. Biondi

Stanford Exploration Project

S. Fomel

UT Austin

jeff@sep.stanford.edu

Overview

• Prelude– Remote sensing/Echo sounding– Seismic wavefield extrapolation

• Fugue – Riemannian wavefield extrapolation– Example

jeff@sep.stanford.edu

Why seismic imaging?• Applied seismology

– Hydrocarbon exploration – “Easy” targets already located– remaining large fields located in

regions of complex geology

• 3-D seismic imaging– Delineate earth structure – property estimation and prediction– improve probability of finding oil

jeff@sep.stanford.edu

Echo soundings of the earth

Transmit sound-waves

into earth

Record echoesfrom earthstructure

Determine earthstructure that

created echoes

jeff@sep.stanford.edu

Seismic imaging - Similarities

• Related methods– Acoustic wave methods

• Ultrasound

• Sonar

– EM wave methods• Radar

• X-ray

• Related applications– Medical imaging– Non-destructive testing– Marine navigation– Archaeology site assessment

jeff@sep.stanford.edu

Seismic imaging - Differences

• Complex earth structure – Velocity

• V(x,y,z) – 1.5 – 4.5 km/s

• Strong gradients

– Material properties• heterogeneity

• anisotropy

• Wave-phenomena– Multi-arrivals, band-limited– Frequency-dependent illumination– Overturning waves

• Ray theory cannot capture complexity

jeff@sep.stanford.edu

Wavefield Extrapolation

Wave phenomena Wave-equationWavefield

extrapolation

Uz)y,v(x,

ωΔU

2

2

Monochromatic frequency-domain: Helmholtz equation

Recorded wavefield U(x,y,z=0) Want U(x,y,z)

jeff@sep.stanford.edu

One-way wavefield extrapolation

Want solution to Helmholtz equation

2x2

2

z k- z)y,v(x,

ω±=k

Wave-equation dispersion relation

zikxx

ze ω)z,,U(k=ω)z,z,U(k

Wavefield propagates by advection - with solution

Uz)y,v(x,

ωΔU

2

2

jeff@sep.stanford.edu

Migration by wavefield extrapolation

• Robust, Accurate, Efficient• Current Limitations

– steep dip imaging– no overturning waves

jeff@sep.stanford.edu

One-way wavefield extrapolation

2x2

2

z k- z)v(x,

ω±=k

Wave-equation dispersion relation

zikxx

ze ω)z,,U(k=ω)z,z,U(k +

Advection solution on Cartesian grid

Steep Diplimitation

Overturningwave limitation

jeff@sep.stanford.edu

Migration by wavefield extrapolation

• Robust, Accurate, Efficient• Current Limitations

– steep dip imaging– no overturning waves

• Our solution– Change coordinate system to be

more conformal with wavefield– Riemannian spaces

jeff@sep.stanford.edu

Riemannian wavefield extrapolation

x

z

jeff@sep.stanford.edu

Overview

• Prelude– Remote sensing/Echo sounding– Seismic wavefield extrapolation

• Fugue – Riemannian wavefield extrapolation– Examples

jeff@sep.stanford.edu

Helmholtz equation

UsU 22

Laplacian

i j j

ij

i

UgU

g

g

1

(associated) metric tensor

)( kii x

Coordinate system

jeff@sep.stanford.edu

(Semi)orthogonal coordinates

i j j

ij

i

UgU

g

g

1

200

0

0

GF

FE

gij

2

2

0

0

J

gij

jeff@sep.stanford.edu

1st order 2nd order2nd order 1st order

Helmholtz equation

UsU

JJ

UJ

J2211

UsU

J

U

JJ

UJ

J

U 222

2

22

2

2

1111

UsU

cU

cU

cU

c 222

2

2

2

jeff@sep.stanford.edu

Dispersion relationR

iem

anni

anC

arte

sian

2222 skckickickc

2222 skk xz 1

0

cc

cc

jeff@sep.stanford.edu

Dispersion relationR

iem

anni

anC

arte

sian

sk

cc

cc

o

1

0

22

2

k

c

ck

c

cik

c

cik o

222xz ksk

jeff@sep.stanford.edu

Wavefield extrapolationR

iem

anni

anC

arte

sian

sk

cc

cc

o

1

0

zikxx

ze ω)z,,U(k=ω)z,z,U(k

τΔγγ

τττΔτ ike ω),,U(k=ω),,U(k

jeff@sep.stanford.edu

interpolate

interpolate

jeff@sep.stanford.edu

Summary

• Riemannian wavefield extrapolation– General coordinate system

• Semi-orthogonal (3-D)

– Incorporate propagation in coordinates– Applications

• Overturning waves• Steeply dipping reflectors

jeff@sep.stanford.edu

Collaboration?

• Numerical development• Wave-based imaging

– Ultrasound– Sonar– Radar

• Applications– Medical imaging– Non-destructive testing– Marine navigation– Archaeology site assessment

jeff@sep.stanford.edu

distancede

pth

jeff@sep.stanford.edu

distance

dept

hRWE vs. time-domain finite differences

jeff@sep.stanford.edu

angletim

e

jeff@sep.stanford.edu

angletim

e

jeff@sep.stanford.edu

distancede

pth

top related