Review of Advanced Accelerator Concepts R & D in Japan · PDF fileReview of Advanced Accelerator Concepts R & D in Japan with Asian activities ... R. Kodama, K. A. Tanaka, T....

Post on 25-Feb-2018

215 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

Transcript

The 11th Advanced Accelerator Concepts Workshop Stony Brooks, New York, June 21, 2004

Review of Advanced Accelerator Concepts R & D in Japan

with Asian activities

Yoneyoshi KitagawaInstitute of Laser Engineering,

Osaka University

(1) ILE, Osaka Univ.Y. Kitagawa, K. Kondo

LACPW Laser Accelerator

(2)Utsunomiya Univ. �N. Yugami, Nishida

(12) Hiroshima Univ. A. Ogata

(14) Himeji Inst.Tech.��S. Miyamoto

(11) Ehime Univ.���R. Sugaya

Laser cooling

(5) AIST K. Koyama

VxB Acceleration &THz Generation

Photonic Crystal AcceleratorLaser Cooling

HIB source

RF Photocathode

(6) U.Tokyo M.Uesaka

(9) AETJapan/ Tokyo Inst.Tech. Hiraoka and Horioka

(10) JAERI APRTajima, Daido

(15) Kyoto Univ.H.Tanaka

Medical compact Accelerator

Magnetized Plasma Accelerator

LAC Electron & Ion sources

(7) NIRSS. Yamada

Ion Accelerator, Ultrahigh Field Science

(4) KEK Urakawa(13) Spring-8�Nakamura et al.

(3) KEK Nakajima

(8) CRIEPI K. Menoto

(16) Kyoto Univ.A. Noda, Sakabe

Advanced Accelerator Facilities in Japan

Outline of Talk

[1] Activities of Japanese laboratories• Electron and Ion acceleration:

Kitagawa group, Osaka UniversityUesaka group, University of TokyoKoyama group, National Inst. of Advanced Industrial Science andTechnologyNakajima group, Japan Atomic Energy Research Inst. APR

• Ion acceleration:Tajima and Daido group, Japan Atomic Energy Research Inst. APROgata group, Hiroshima UniversityNemoto group, Central Research Inst. of Electric Power Industry

• LAC and THz Generation:Nishida and Yugami group, Utsunomiya University

• RF photo cathode:Miyamoto group, Himeji Inst. of Technology

• Radiology Application:Uesaka, U. Tokyo and Dobashi, National Institute of Radiology

Science[2] Advanced Compact Accelerator Project (NIRS)[3] Asian AAC activities

Electron and Ion acceleration:Y. Kitagawa,Y. Sentoku,

R. Kodama, K. A. Tanaka, T. Norimatsu, Institute of Laser Engineering, Osaka University,

University of Nevada, Rino

Electron Acceleration to 100 MeV in an Ultra-Intense Laser

Illuminated Capillary

Electron Acceleration to 100 MeV in an Ultra-Intense Laser Illuminated Capillary

10 mm

A

B

Electron Spectra from 1.2 mm and 10 mm-long Capillaries

Elec

tron

s/M

eV/s

tr

108

109

1010

1011

1012

1013

1014

1 10 100

Energy [MeV]

10 mm long

1.2 mm

Detection limit

Bump

Field = 10 GV/m

1

10

100

1000

20 40 60 80100M

axim

um E

nerg

y [M

eV]

Capillary diameter D (µm)

200

PIC EXP

Optimum diameter

PRL Vol.92, No.20 (2004)

Laser Wakefield Excitation in Capillary Plasma

Electrostatic waves at 4.6 psecLongitudinal E-field

Transverse E-field

Div

erge

nce

(rad

)

2-D PIC

5 πmm mrad5.9x1016 cm-3

Ionization shift of laser Spectrum

Resonant to 500 fs pulse width! PRL Vol.92, No.20 (2004)

Medical Application of Capillary Accelerator

External (Far field) Illumination

Capillary (Near field)Injection

Beam Species,Emittance and Spectrum are not required

morTumor

Skin surface

����������

Beam Species,Emittance and Spectrum are required

Proton(HIB)

X-ray

Fast neutron

Electrons

Depth

Tumor

Electron and Ion acceleration:

M. Uesaka,T. Hosakai, K. Kinoshita, A. ZihidkovNERL University of Tokyo

Plasma Cathode Experimentto be presented to the

Workshop

0 20 40 60Electron Energy [MeV]

PIC simulation

Experiment

10-2

10-3

10-4

10-5

e-Spectrum

Ref.T.Hosokai,et al.,Phys Rev.E 67,036407 (2003)

T.Hosokai et al., Phys. Plasmas (In press 2004)

Electron acceleration:K. Koyama and E. Miura,

National Institute of Advanced Industrial Science and Technology

Quasi-mono-energetic electron beam at AIST / Tsukubato be presented to the

Workshop

Quasi-monoenergetic electron beam was obtained at AIST / Tsukuba

Quasi-monoenergetic electron beam was obtained at AIST / Tsukuba

AIST

by focusing a 2-TW laser pulse on a dense-gas jet of ne≈1020cm-3.

K.KOYAMA

AIST

Electron Energy Spectrum including quasi-monoenergetic beam

Electron Energy Spectrum including quasi-monoenergetic beam

104

105

106

107

108

0 5 10 15 20 25 30Ele

ctro

n N

umbe

rs (/

MeV

/sr/

shot

)

Electron Energy (MeV)

100

101

102

103

104

600 700 800 900 1000 1100 1200 1300

Inte

nsity

(arb

.uni

t)

Wavelength (nm)

1st-Stokes

Laser Wavelength

Monoenergetic beam was emitted in an narrow divergence angle.

Electron acceleration:K. Nakajima, M. Kando and group

Japan Atomic Energy Research Institute APR

High current electron beam generated

with a short (23fs) laser at a high density regime

to be presented to the Workshop

High current electron beam generatedwith a short (23fs) laser

1.4x1020cm-3

Full powerTeff~2.5 MeV

Teff~7.8 MeV

2.3 x1019 W/cm2 (a0=3.3)

20 TW23 fs

1

2

3

4

5

6

300 320 340 360 380 400 420 440

fc29.out5

Cha

rge

[nC

]

Laser energy [mJ]

Divergence Angle ~ 10deg

Charge ~5 nC/shot

Ion acceleration:Daido, A. Fukumi, K. Matsukado et al.

Japan Atomic Energy Research Institute APR

Ion Generation Experiments @JAERI APR

to be presented to the Workshop

Ion Generation Experiments @JAERI APR

Laser pulse800 nm,50 fs, 200 mJ

Thomsonparabola

CR-39 trackdetectors

0o

θ

Electronspectrometer

Ions

2×1018 W/cm2

Target : Ta 1,3,5 um

Angular distribution of protons

Energy spectra of protons

Prediction of Underdense Plasma Model

6×1018 W/cm2

2×1018 W/cm25×1019 W/cm2

a~5, σ=11~13Emax=10~12 MeVEeff~2 MeVN~108 protons/shot (2 MeV ± 100 keV)

Main pulse

Prepulse

Preformedplasma

Target

Emax (Maximum energy of protons [MeV])χ (Conversion efficiency)

)]m([)]W/cm([1085.0 2/1292 µλI

cmeAae

−×==

λσ cr

L

s ndxn∫= 0

a : Dimensionless amplitude of laser pulse

σ : Normalized density integratedalong the channel axis

xns

ns : Electron densityalong plasmachannel

ncr : Critical densityλ : Laser wavelength

L

Ion acceleration:Ogata group

AdSMAdSM Hiroshima University

Ion production enhancement by rear-focusing and prepulse with foil target.

talk by A. Ogata at High Energy Density Physics and Exotic Acceleration Schemes SUBGROUP

13:25-13:50 Tuesday

In fs-lasers the energies should be scaled byfluence.

Y. Oishi et al., Rev. Laser Engineering,31 (2003) 742.

1017Wcm-2(1TW10µmφ) for 50fs makes only 5x103Jcm-2

out of this figure

0.1

1

10

100

104 105 106 107 108 109

y = 0.00050413 * x^(0.62093) R= 0.90863

Max

Pro

ton

Ener

gy[M

eV]

I λ2t[J cm -2 µm2]

In our experimentT3 laser with a 10-3 prepulse

shift the film target positionfrom the laser waist

energetic ionson both sides

AdSMAdSMHiroshima U.Hiroshima U.

0.1

1

10

100

100 1000 104 105 106 107 108 109

Max

Pro

ton

Ener

gy[M

eV]

I λ2t[J cm -2 µm2]

this work

positioning the target ~1mm before the laser waistunder the existence of prepulses.

50mJ, 50fs, 800nm Ti-sapphire laser. Contrast 10-3.

Ion Acceleration:Nemoto group

Central Research Institute of Electric Power Industry

Energetic particle generation using Ultra-short pulse laser

Energetic particle generation using Ultra-short pulse laser

Laser beam

Tape target ~ µ

Accelerated Proton beam

Proton beam pattern(Half angle)

Energetic Ion acceleration

0

1000

2000

3000

4000

0 50 100 150 200 250 300PET 70um (<100keV)

Al 30um

Cu 5umPolyimido 7.5um

Cu 30um

Polyimido 7.5um

Zr 5um

Cu 5um

Cu 30um

100fs, 1.1e19W/cm270fs, 8.3-8.7e18W/cm2

Max

imum

Pro

ton

Ene

rgy

(keV

)

Terget thickness density

T-cube laser system20TW, 1J, 50fs, 10Hz

Maximum proton energy

Simple iso-thermal plasma expansion model well describes the experimental results

( )2

2max 1ln2

++≈− efpiefpipp ttZUE ωω

Eq.(1)

RF Generation:

N. Yugami, Y.Nishida et al., Utsunomiya University

51 GHz radiations from magnetized short-pulse laser

plasmasto be presented to the

Workshop

Experimental Setup

Observed radiation Pulse

1st Peak

Cut-off freq.fc = 31.4 GHz

B0 = 5.44 kGN2 4.5 Torr Laser power 0.5TW

Pulse width(FWHM)1st Peak 185 ps

Radiology Application:M. Uesaka, A. Fukasawa et al., U. Tokyo

K. Dobashi, NIRS J. Urakawa, KEK

Compact Laser-Compton Hard X-ray source based on X-band linac

Compact Hard X-ray source based on X-band linac

Final target for medical useX-band accelerating structure

X-band Klystron

X-band pow

er supply

Patient

Monochromatic hard X-ray

Moving arm2D X-ray detector

Laser system

Dynamic imageof coronary artery

Moving stage(bed)

<5 m

<3m

Intravenous injection of contrast agent

Lasercirculation

system

1010-1011photons/s

Thermionic cathodeX-band RF-gun(2.6cell)

Compact Hard X-ray source�based on X-band linac (under constructing)

Alpha Magnet

Thermionic cathode X-band RF-gun

X-band Accelerating Structure

X-bandPower Source

Q-Sw

itch N

d:YA

G L

aser

Hard X-ray(33keV)

Q-Magnet

Bending MagnetLaser Dump

Collision Point

Lens

Thin mirror(in vaccume)

TimingSystem

Multi-bunch Electron Beam

Laser light(1064 nm)

Beam Dump

Mirror

Polarized beam splitter

PockelscellX-ray yield:1.7x108photons/s

-500

-400

-300

-200

-100

0

100

-2 0 2 4 6 8

Vk(

kV)

Time(µs)

X-band RF source50MW 50pps

RF photo cathode:Miyamoto group

Himeji Inst. of Technology

Plane and Needle Photocathode

Plane and Needle Photocathode

10µm

(b)

(d)

(c)

Tungsten needle

substrate (tungsten tip)

(a)

introduce

carbon heater

manipulation arm (Molybdenum)

Laser and CCD monitor

LaserInjection

Tuner

RFGunAcc.

Needle Cathode(W)

QuickTimeý Dz TIFFÅià�èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄ Ç™Ç±ÇÃÉsÉNÉ`ÉÉǾå©ÇÈǞǽDžÇÕïKóvÇ-Ç�ÅB

Plane Cathode(LaB6)

3mm

Field emission current vs. RF Power

[2] National Institute of Radiological Sciences Project

Advanced and Compact Accelerator

Development PROJECT

PROJECT organization

I. Compact Synchroton for proton and heavy Ion

• Laser ion sourceJAERI APR, U. Tokyo, Hiroshima U.• Beam storage and coolingKyoto U.• Synchrotron ringKEK• FFAG acceleratorNIRS

II. Compact hard X-ray radiation source

• Intense and short pulse radiation source:Laser electron source

U. Tokyo, Osaka U., AIST• X-band electron beam linacU. Tokyo• High flux radiation sourceKEK

[3] Asian AAC activities

to be presented by Kazuhisa Nakajima, KEK

Asian Advanced Accelerator Community

is organized at APAC2004

Asian Advanced Accelerator Community

is organized at APAC2004

The largest number of labs are involved in Advanced Accelerator R&D in Asia.

JapanKoreaChinaTaiwanIndiaIsraelUkraine

Chair: Kazuhisa NAKAJIMA

Acknowledgment

We acknowledge the organizing committee, Japanese community member and all the the workshop participants for the given chance of presentation.

Thank you very much for listening to my talk.

top related