Raindrop impact on saturated sediment

Post on 11-Jan-2017

86 Views

Category:

Engineering

5 Downloads

Preview:

Click to see full reader

Transcript

Raindrop Impact on Saturated Soil

Mohsen Cheraghi, D. A. Barry

Ecole polytechnique fédérale de Lausanne, Faculté de l’environnement naturel, architectural et construit, Institut d’ingénierie de l’environnement, Lausanne, Switzerland

 mohsen.cheraghi@epfl.ch

andrew.barry@epfl.ch

9th OpenFOAM® Workshop23-26 June 2014 in Zagreb, Croatia

Contents

IntroductionProblem DefinitionNumerical ParametersSimulation ResultsConclusions

1/14

Introduction

Water Erosion

http://www.montcalm.org/media/planningeduc/tn_raindrp.jpg http://intechweb.wordpress.com/2011/11/30/soil-erosion-raising-awareness-on-current-environmental-issues/

http://www.geo.uu.nl/landdegradation/Fieldwork.htm

Splash Erosion Rill Erosion Gully Erosion

2/14

Problem Definition

Dd = 2 mm

Dd = 4 mm

Vt = 2.36 ms-1

Terminal Velocity of Raindrop (Vt)

Vt = 7.65 ms-1

3/14

D. Andrew Barry
Use of italics should be consistent

Numerical Parameters

Discrete phase methodParticle size: 1 mmCohesion force: 0youngsModulus 40e6;poissonsRatio 0.35;

Drag model: ErgunWenYuDrag

Collesion Model: pairSpringSliderDashpotCoeffs { useEquivalentSize no; alpha 0.02; b 1.5; mu 0.10; cohesionEnergyDensity 0.0; collisionResolutionSteps 12; };

Wall Model:wallSpringSliderDashpotCoeffs { useEquivalentSize no; collisionResolutionSteps 12; youngsModulus 1e8; poissonsRatio 0.23; alpha 0.01; b 1.5; mu 0.09; cohesionEnergyDensity 0; };

4/14

Numerical Parameters

Volume of Fluid methodphases( water { transportModel Newtonian; nu nu [ 0 2 -1 0 0 0 0 ] 1e-06; rho rho [ 1 -3 0 0 0 0 0 ] 1000; }

air { transportModel Newtonian; nu nu [ 0 2 -1 0 0 0 0 ] 1.48e-05; rho rho [ 1 -3 0 0 0 0 0 ] 1; });

Sigma ( surface tension)( (air water) 0.07197);

5/14

Simulation: outline

+

Velocity profile of section A is implemented as a boundary condition on surface B

A B

VOF DPM

6/14

Velocity profile along cross section A

A

3.5 cm

Simulation: VOF

7/14

Simulation: VOF

V(x, t) = V0(x) f(t)

V0 (x) = Velocity Profile at the moment of collision

-0.00999999999999999 0.01 0.03 0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

V0 (x)

x (m)

V0

8/14

Simulation: VOF

V(x, t) = V0(x) f(t)

V0 (x): Velocity Profile at collision instant-0.00999999999999999 0.01 0.03 0.05

-0.15

-0.1

-0.05

0

0.05

0.1

x (m)

V (m

s-1)

V0 (x)

V (x)

V0max (x)

Vmax (x)

0 0.01 0.02 0.03 0.04 0.05 0.06

-10

0

10

20

30

40

50

t (s)

Vmax

/ V0

max

9/14

Simulation: VOF

V(x,t) = f(t)V0(x)

0 0.01 0.02 0.03 0.04 0.05 0.06

-10

0

10

20

30

40

50

t (s)

Vmax

/ V0

max

f(t) = -366443498336t6 + 63529957792t5 - 4342637831t4 + 150446928t3 -2829761t2 + 25048t – 23

R² = 0.999

f(t) = -305662395148t6 + 52347905525t5 3496475928t4 + 114043721t3 - 1846164t2 + 12209t + 13

R² = 0.986

0 0.01 0.02 0.03 0.04 0.05 0.06

-60

-40

-20

0

20

40

60

80

t (s)

Vmax

/ V0

max

2-mm Droplet:

4-mm Droplet:

10/14

Results

Droplet size: 2 mm (Vt = 2.36 ms-1) Particle size: 1 mm

*Simulation for 50 ms splash

11/14

t = 0.00

t = 50 ms

Results

Droplet size: 4 mm (Vt = 7.65 ms-1) Particle size: 1 mm

*Simulation is for 50 ms splash

12/14

t = 0.00

t = 50 ms

Conclusions:

DPM method is able to simulate dense particles with the ErgunWenYu drag model

Simulation of random droplets (as in rainfall) demands coupling of the DPM and VOF solvers

This simulation was not verified or validated and a more precise VOF and LES simulation is needed in the future

13/14

Thank You

Questions?

top related