Progress ELDAS “Point” Validation (ELDAS Progress Meeting, 10-11 December 2003, Madrid) Cor Jacobs, Herbert Ter Maat, Eddy Moors.

Post on 14-Jan-2016

230 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Progress ELDAS “Point” Validation(ELDAS Progress Meeting, 10-11 December 2003, Madrid)Cor Jacobs, Herbert Ter Maat, Eddy Moors

Contents

Tasks Data collection Preliminary validation DWD results (TERRA, 2

months) CarboEurope Sites Scinty Sites Flevopolder

ELDORADO and SAFFRAN To be solved

“Point” Validation: Tasks

WP4100: Check validity of ELDAS product is there a relation between model output and

reality? Extra (agreed during 1st progress meeting):

radiation ELDORADO versus SAFFRAN radiation

Validation sites and data collection progress

CarboEurope

Autonomous experiments

PLAPScintillometerExperiments, WUBALTEX

Model data production for validation

Flux Sites 1: CarboEurope Sites

• Forest sites

• On tall towers

• Various fluxes, hardly any soil moisture observations need moisture indicators (, ,…)

Net Radiation: CarboEurope Sites / DWD model

-20

0

20

40

60

80

122 142 162 182

DOY

R

n (

kJ

cm

-2)

Hyytiala

Hesse

Loobos

Tharandt

CarboEurope Data

-20

0

20

40

60

80

122 142 162 182

DOY

Rn (

kJ

cm

-2)

Hyytiala

Hesse

Loobos

Tharandt

DWD model

Albedo?!

Evapotransration: CarboEurope Sites / DWD model

-20

0

20

40

60

80

122 142 162 182

DOYE

(k

J c

m-2

)

Hyytiala

Hesse

Loobos

Tharandt

DWD model-20

0

20

40

60

80

122 142 162 182

DOY

E (

kJ

cm

-2)

Hyytiala

Hesse

Loobos

Tharandt

CarboEurope

Albedo, rs, zo, soil, … ?

P-E: CarboEurope Sites / DWD model

-200

-150

-100

-50

0

50

100

150

200

122 142 162 182

DOY

(P-E

) (m

m)

Hyytiala

Hesse

Loobos

Tharandt CarboEurope Data

-200

-150

-100

-50

0

50

100

150

200

122 142 162 182

DOYP

- E

) (m

m)

Hyytiala

Hesse

Loobos

Tharandt

DWD model

Soil Moisture Increments and P-E (Normalized)

-0.10

-0.05

0.00

0.05

0.10

122 132 142 152 162 172 182

DOY

So

il M

ois

ture

In

cre

me

nt

Upper Layer (10 cm)

Lower Layer (90 cm)

-0.20-0.15-0.10-0.050.000.050.100.150.20

122 132 142 152 162 172 182

DOY

Ne

t P

rec

ipit

ati

on DWD Model

Hyttiala Data

Soil Moisture Increments and Evaporative Fraction

0.00

0.20

0.40

0.60

0.80

1.00

122 132 142 152 162 172 182

DOY

Ev

ap

ora

tiv

e F

rac

tio

n DWD model

Hyytiala Data

-40

-20

0

20

40

122 132 142 152 162 172 182

DOY

So

il M

ois

ture

In

cre

me

nt

(2)

-8

-4

0

4

8S

oil M

ois

ture

In

cre

me

nt (1

)Lower Layer (90 cm)

Upper Layer (10 cm)

Further Actions (1): CarboEurope Sites

Complete data collection Databases 1 ELDAS year Comparison: timeseries, trends, quality

indicators Normalized fluxes (and gridbox adjustment?) Moisture indicators (,) Temperature / humidity Soil moisture increments

Flux Sites 2: Scintillometer Sites (WAU)

• Sensible heat flux

• Heterogeneous area, average over 1-5 km

• Latent heat flux: indirect (from surface energy balance)

Scinty’s Flux Sites: H and G (noon)

050

100150200250300350

122 132 142 152 162 172 182

DOY

H (W

m-2

)

DWD model

Scinty's data

-100

0

100

200

300

400

122 132 142 152 162 172 182

DOY

G (W

m-2

)

DWD model

Data in Scinty's path

Large Scale Irrigation!

Scinty’s Flux Sites: Soil Moisture Increment (noon)

0

0.2

0.4

0.6

0.8

1

122 132 142 152 162 172 182

DOY

DWD model

Data in Scinty's path

0

25

50

75

100

125

122 132 142 152 162 172 182

DOY

Cu

mu

lati

ve

So

il

Mo

istu

re In

cre

me

nt

(mm

)

Cu

mu

lati

eve

Soil

Mois

ture

In

cre

men

t(m

m)

Further Actions (2): Scinty Sites

Re-format data Explore alternatives to compute E Comparison: timeseries, trends, quality

indicators Normalized fluxes (and gridbox adjustment?) Moisture indicators (,) Temperature / humidity Irrigation data Soil moisture increments

Soil Moisture Sites: PLAP (Geus), Flevopolder (ESA)

• Agricultural Area

• Soil moisture measurements

• Many details in space and/or time, but hardly any additional data

Soil moisture (-5cm): Flevopolder / DWD model (1)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

122 132 142 152 162 172 182DOY

So

il M

ois

ture

Co

nte

nt

(mm

)

-10.0

0.0

10.0

20.0

30.0

40.0

So

il Mo

istu

re In

cre

me

nt

Data, averageDWD modelIncrement

Soil moisture (-5cm): Flevopolder / DWD model (2)

0.5

0.6

0.7

0.8

0.9

1.0

122 132 142 152 162 172 182DOY

No

rma

lize

d S

oil

Mo

istu

re

Co

nte

nt

-0.1

0.0

0.1

0.2

0.3

0.4

No

rma

lized

So

il Mo

istu

re

Inc

rem

en

tData, averageDWD modelIncrement

Soil moisture (-5cm): Flevopolder / DWD model (3)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

145 147 149 151 153 155DOY

No

rma

lize

d S

oil

Mo

istu

re

Co

nte

nt

-0.1

0.0

0.1

0.2

0.3

0.4

No

rma

lized

So

il Mo

istu

re

Inc

rem

en

tData, averageDWD modelIncrement

Further Actions (3): Soil Moisture Sites

Re-format data Include BALTEX data Comparison: timeseries, trends, quality

indicators Normalized soil moisture (and gridbox adjustment?) Effect of soil type Soil moisture in well-defined layers Soil moisture increments Effect of drainage? Estimate P-E?

Radiation schemes comparison

Radiation schemes comparison

Radiation schemes comparison

Correlation diagram between radiation models

A simple correlation diagram between ELDORADO and SAFFRAN for 10 July 2003 6:00 GMT

Correlation and slope ELDORADO/SAFFRAN

0.0

0.2

0.4

0.6

0.8

1.0

28/08/1999 06/12/1999 15/03/2000 23/06/2000 01/10/2000 09/01/2001

Date

Co

rre

lati

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

28/08/1999 06/12/1999 15/03/2000 23/06/2000 01/10/2000 09/01/2001

Date

Slo

pe

E

LD

OR

AD

O/S

AF

FR

AN

(l

ine

ar

reg

res

sio

n)

Validation ELDORADO (Carpentras)

longwave shortwave

y = 1.1464x

r 2 = 0.9263

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200W m-2

W m

-2

y = 1.0349x

r 2 = 0.7316

100

200

300

400

500

100 200 300 400 500W m-2

W m

-2

•x axis: model, y-axis: observations

Validation SAFFRAN (Carpentras)

longwave shortwave

y = 1.0869x

r 2 = 0.9145

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200W m-2

W m

-2

y = 1.0761x

r 2 = 0.6398

100

200

300

400

500

100 200 300 400 500W m-2

W m

-2

•x axis: model, y-axis: observations

Further Actions (4): Radiation Schemes

Include Hesse (Sarrebourgh CarboEurope site; shortewave only)

Further analyses radiation fields Think about conclusions

To be solved: defining “reality”

Model surface versus observation space(Gridpoint Adjustment?) Land cover and characteristics Soil Type Irrigation, drainage

Trivial Matters(Define your data!) Synchronisation Height/Depth/Layers

top related