Physics Remote Learning Packet

Post on 12-Apr-2022

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

 

Physics Remote Learning Packet Please submit scans of written work in Google Classroom at the end of the week.

Week 7: May 11-15, 2020 Course: 11 Physics Teacher: Miss Weisse natalie.weisse@greatheartsirving.org Resource: Miss Weisse’s Own Physics Textbook — new pages found at the end of this packet Weekly Plan: Monday, May 11 ⬜ Read Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook ⬜ Complete Worksheet 3 #1-5 ⬜ Email Miss Weisse with Questions and to Ask for Solutions Tuesday, May 12 ⬜ Read Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook ⬜ Complete Worksheet 3 #6-8 ⬜ Email Miss Weisse with Questions and to Ask for Solutions Wednesday, May 13 ⬜ Review Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook ⬜ Complete Worksheet 3 #9-10 ⬜ Complete Worksheet 4 #1-2 ⬜ Email Miss Weisse with Questions and to Ask for Solutions Thursday, May 14 ⬜ Review Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook ⬜ Complete Worksheet 4 #3-4 ⬜ Email Miss Weisse with Questions and to Ask for Solutions Friday, May 15 ⬜ Attend Office Hours at 9:30 AM! W ⬜ Turn in your assignments on Google Classroom by the end of the day Sunday May 17. Statement of Academic Honesty I affirm that the work completed from the packet is mine and that I completed it independently. _______________________________________Student Signature

I affirm that, to the best of my knowledge, my child completed this work independently _______________________________________ Parent Signature

Monday, May 11 ➔ Read Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook

➔ Complete Worksheet 3 #1-5 showing all your work.

➔ Email Miss Weisse with Questions and to Ask for Solutions

Energy Storage and Transfer Model Worksheet 3 #1-5: 

Quantitative Energy Calculations & Energy Conservation  

Be careful with units and unit conversions! 1. How much kinetic energy does a 2000 kg SUV traveling 70 mph have? (1 mile = 1600 meters)

2. Consider your 3 kg physics binder resting on the table in your bedroom. Determine the gravitational energy of the earth-book system if the zero reference level is chosen to be:

a. the table b. the floor, 0.68 meters below the book c. the ceiling, 2.5 meters above the book

3. A bungee cord stretches 25 meters and has a spring constant of 140

N/m. How much energy is stored in the bungee?

4. How fast does a 50 gram arrow need to travel to have 40 joules of kinetic energy?

5. How much energy is stored when a railroad car spring is compressed 10.0 cm? (The spring requires about 10,000 N to be compressed 3.0 cm.)

Tuesday, May 12 ➔ Read Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook

➔ Complete Worksheet 3 #6-8

➔ Email Miss Weisse with Questions and to Ask for Solutions

Energy Storage and Transfer Model Worksheet 3 #6-8: Quantitative Energy Calculations & Energy Conservation 

Directions: For each problem, → identify what is part of your system inside the circle → create bar graphs for the initial (A) and final (B) conditions of the object (don’t forget to label your axes!) → write an equation for the conservation of energy

6. A load of bricks rests on a tightly coiled spring and is then launched into the air. Assume a 

system that includes the spring, the bricks and the earth. Do this problem without friction. 

7. Repeat problem 7 with friction.  

8. Repeat problem 7 for a system that does not include the spring. 

Wednesday, May 13 ➔ Review Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook

➔ Complete Worksheet 3 #9-10

➔ Complete Worksheet 4 #1-2.

➔ Email Miss Weisse with Questions and to Ask for Solutions

Energy Storage and Transfer Model Worksheet 3 #6-8: Quantitative Energy Calculations & Energy Conservation 

Directions: For each problem,

→ identify what is part of your system inside the circle

→ create bar graphs for the initial (A) and final (B) conditions of the object (don’t forget to label your axes!)

→ write an equation for the conservation of energy  

9. A crate is propelled up a hill by a tightly coiled spring. Analyze this situation for a frictionless system that includes the spring, the hill, the crate, and the earth.  

10. Repeat problem 10 for a system that does not include the spring and does have friction.

Energy Storage and Transfer Model Worksheet 4 #1-2: Quantitative Energy Conservation 

 1. A cart moving at 5.0 m/s collides with a spring. At the instant the cart is motionless, what is the

largest amount that the spring could be compressed? Assume no friction.

a. Define the system with the energy flow diagram, then complete the energy bar graphs

qualitatively.

b. Quantitative Energy Conservation Equation:

c. Determine the maximum compression of the spring.

2. A rock is shot straight up into the air with a slingshot that had been stretched 0.30 m. Assume no air resistance.

a. Qualitatively complete the energy flow diagram and the energy bar graphs.

b. Quantitative Energy Conservation Equation:

c. Determine the greatest height the rock could reach.

Thursday, May 14 ➔ Review Unit 8 Part 6 of Miss Weisse’s Own Physics Textbook

➔ Complete Worksheet 4 #3-4

➔ Email Miss Weisse with Questions and to Ask for Solutions

Energy Storage and Transfer Model Worksheet 4 #3-4: 

Quantitative Energy Conservation  

3. Determine final velocity of the rollercoaster, assuming a 10% loss to friction.

4. The moon could be an ideal spaceport for exploring the solar system. A moon launching system could consist of a magnetic rail gun that shoots items into moon orbit. How much energy would be needed from the rail gun to get a 10,000 kg capsule into an orbit 100 km above the moon surface? The moon’s gravitational field strength is 1.6 N/kg and the orbital velocity for this altitude is 1700 m/s. Hint: Put the rail gun outside of the system.

 

"P~E: rZ I {' ,n,5 e.-va¾', o"' i;;;; ';JJ \ A:: -h' c.v --h' 1-'\-\-e s , V'Ul> w 1 ( o i--t s -e..v v ~--f-10 V'\.. c-f y /A~ .s

t01-V1e u-,::. - 1n +t,-,e. h,,--\c:J\IV'lt-""-t"VYV" ~1'-t, ,·V\. """'o....k.-t.'J e<A...,,...JJ T-' ie .. ~.ko,..v-+s 1 ,:u,-td . ,·.,., /~-R.J '"'J o u v Fi"• e.;.

()... 5 S U l-v"lp ··l-i o V1 1 V\. +1-,. K- t' c,,, ,e -H C E vt~ i \/ -e....v-S IA .S

v-eloc.i41 lo...b.

f:" n 1 {' Q...-VI. no+ b t' ~+d Dr des/-ro in. t>,.. cl os e.£1 s Vs+=,,-, , b IA-+- c ,u,, 'oe 0-t+ld frv IV1 on -e. fo-rrv1. +o o....Yl o+vt-e_.r:

Jt is ,~r>ov-+~+ -\-o l>ol'V\.t- ou+ -;--h-e ,d-e.o.. of- o. sis Tl? M cu..·V1. 'Ne ~e_.\-- ¾ de+, V\,e cuv- sis-\ e.NV\

h o\l\\e\fe...r Ne '/J().Y\.t to { or how-e.v-e..r 'rV'-e prd6l-e»vt ~Is o.s. to). ~-e e-n-e.-rj1 ,·n -f'vi-p s'-/ste...W'\. r~~Vl.5

l'.'ot-1s+O-V\- --t uvi l-es 5 i +- is o.-v, o-p-e.v1 &'f s+e-vY'I V'l Y-H C.V\

h'"\e.o,...v\$ ei~e,,,y

\) .s C> me. fu 1 D u.t,s i: de '"t\A.-e.. s 'i $~ d. o e. -s \N o l2.

C>Y) t 'ne ... Sis~ -0~:

2.) th-e. 6 'f- d c e .s \N o Rl<. on Sa \'V"\. -e.+h \' 11'-q

e>1..d-s, d-e '\¼ e. s '£>-\- eM J IV'\ b o-th o-f- --M-\-ese c o-.ses , i-f- 't'1-e o-d-e o uy-.s~5+~ more \Y'\ciusive, ,-f- r-AO-d-e. i'+ bi ~~ex-,

e-n ex-5i Y'1 du \d be C0h sex--v ed. 13u,, lo~ thi 5 ox- \.A.-VV\ en-t W -e. YY\ \~ht i n d o o r- s el v e s , n th. -e

I t .r:?".n so,X""" I'.: c:er jh \AS -f-o-r '-"I ,e h 0.. V -e. lA~ -e_g -p j -e C o..-r+s ,--0 -f-r o.-.c.. K..

e.v,.~i iV'I (). sys-/ <!NV\. Now we. a.r-e jo i"'j to IA.St' b o-.r j r o.=p ns b-eco.,.4.A.S e b o..x- ~o,...:pk.s be Y\f"\o Y",o ·+ • cl • (J,16p?) ,-.,,_~ ea.s_il'f I I) a .. n-/, I r:.. • Let u .s J ~ : ,._ V, I" >'-"'-""-l'I!" t,v l'M-1 ouv old -41-H€,t'\.d -th-e w,n.d-up b,uv,vi~ +o~-

Tn-e. IJ..)\nJ-u-p 't,unn.~ to~ \ S fw.\~ w ov~\ vp 0-,V\d 'oe-'. h-e.Ld od-- v--es-\:. o..+ l>ot:V'-+ A . \n{'

-\-<>~ i:; J ~o (ov, 0-~c.+-ioV\\ess sur~c es) o..n d o..-+- 1' o t V\ + '3 we se.e. it i s \'V) o v 1' o..t rt- cc, IA:; + o..M--+-- s -ped . L)v-o.v..5 'o o-r"" "Ir~ h. 5

¼ u ~ -frt·c-..--h v -e Ii .sh. o w -t'\'l f Lo Vt~~ "'--+to i.-,

of- ~vvex-'j i • \T \5 )Mt'OY- ""t o-X\""t" tv,c,...t 'N-E' defirre cur

S~ ~J·-eM . C)uv S t&tt.w\ .S-h'll i 'Sv-1--

\No o n.d U-p

A b. r·-1· .. ..... ' l:: • ' r • • • • • •

• I • •· • • • • • • • • t) I -

, • - , • • 6 • • • •

.. C ·1 · · · .. · ·

el

i~\\)d-e~ '1'V'~ t>\) V\V\~

0-¥' q ty\ ~\ c,--\-1. 0'('\ \.es s -r\.~or. We co..Y\ o..\so hc"'1 'NY-~W

OJ() \) o...-ri Q V"\ : ( - \ - \ 1 t: t> l J A -=- ( {:- l~ / 8

P'ft<:te'° =,4 Le+ o :; cYI '"""-"' s ce.., .,..rl o .5 o th od- +n.e

bu\'\!"'\ is s"MI I ivicv-eo.Sivi~ .S1>-eed t\.-+- 1' oi n+ E. If- fv\-e-v-e. , ~.s-peed 1 'th.-e.-rt! is ~l'.c~ l-e.,y-o--h· o-'V\ ,

j F --the.A""€ 15 0-cc.e. l-e.Y-~-l--·i oVl 1 '"fh-e.-Ye ,s tJA,... n e + Force. It- tvla...k.ff'..S sens-e -fo t:t.ssu m-e. -th~+ ne+ +c ree <"av,1-es

-Protvi ,-n~ elo.sb'c force. ¥,- 13 . .. . .

" . ....

. . . . . .. . - . . .

. . . . . . . p) . . . . .. • • • • • • I

Ii · · · - · - . el K-

no-h c-e th-e suw, of o..l I bo..rs c.c::1-

15 e4uoJ ftA-e.._!?~ A

I:::. ~I, "e,y- j vi -th i .5 sec+, ·o n ,+ lN t).~ Wt e...n -h" y, -e d ~+ ener:Ji 1:S conseirve..d in "' s'/.sf-e.M UtJLE".S.S \NOJ2.i<-

js done -fo or d on-e hj tne sysfern • W'rtt.d- i.s w o12-~

_Jn non-p½5{cs +~rvi5, you tA,,re clei,:~ work_ r,,qh r1ow Af yov ( CJ m-ple+e 'jouY p~sfcs JI ss 'J Y\. \'V\ e.JA.,-1:., lN <" c o..Y\ th i' n t. t>.bo "'-+-- fl,,. f' N a r IL. you

(>..Ye cl o i~ 1 n i,...J o INtuj S. /-i,.. s+, i c, u t:)-N' +'ocusi youY e ri 'Ji I u.s1Y1Cf you ir ene.rj'-/ J -J-o th I "'-k... t>-Povf

ft,est1 co:cepfs. Srlo~, iou o..ff CLrcoM;>liski'~ s o l'Y' e-n:i , :'l' v:,i he. n o u .f,',.. I .s I? the o..s s 'j n ""' e. vi+- .J

0 cmeth 1 ~ 11--)1I\ rt()...~f ch~e.d fro'(Y\ b~fcv-e. \J s +e-r-+ tlrl e "'-s s I y, VV\ e~4-. t

O \l

"P~E'" "15 The S tUV1e is fy-t.,(.e

Ls e.vle>r~ -tr-~ f e-rre d

As ()..Y7 e 1 u ~-h .. o-vL

-.------\N == b b W = F·d

y~sic5 ~or-ce.

fGr.-vtS. Wo~K.

S ~ S-\--e)Y) FioN 1)\~ Y-OJY'I .$ show Nor\<. be.I~ dohf +o ~r d~e lo~ o-- ,;~ te_M '9-j s'nov->l~o, e.-~~ c oMm'.) l'A-\-0 or ou-\-- o~ CA. si s-\-e.lV'l. J

\Ne dv-o..w -4- r-._ OU(' Si6 I ~\'Yl ,\ow dt~ y-~5 o,..S civ-c.16 CJLind of lik.~ our pie cJ.,-,o-r+s) o..nd r.Je -pu-1- in

i"" b-eJw-eei,-, ft,v o .b o-r j ir 4>h .s show i j -1-1'1(" CoVtserv~+,-on o-F ene¥""f3Y· lvis,·de --W,e circl-e Nf

/i'si e v ev i -f1,, i1 tl-i .,._,+ iYI cl u cleJ ivi --Ji-t-e s '-I s+e/VJ . / .{: enercN is C O yv, i~ '"' ft, fl,, € sy .sTT, W> b ,e-/-t,0-e ~,,, p oivt-b A i3, t,,.Jt' Show -/-1,tiS t.Nr'tf,,.

l)Jl" Y--/J v-.J r O j "- h '""" ,' n-/-6 ft,,e C j r-cl-e ( 1/J e_ ,,,._/.s O l,<.J a..><f--fo rv-t o,.A"" k:. b0 h ife ~i" e v, er-3 y i.s c o n,1 'J' -Pre, \'V\ /

IN AA+- is oJo 'J fh e (,<)or Kj.

"PA-<:te- 7V L~+ u5 th~ rro.b\e""" .so e.-,ork is dc,ne.

~e ~,t"'d-u-p bot,,\.~'-\ f-o'j ,~ .s.-+h'n~, UY\"1Alovn.d o~ t?-- ..J:-y- ,-e-h 'o Vl l't""S S S u Y -P-~c e · y O \) th-e.Vl W \ 'C\ u-p -+t-tr

b 11 n l""i IU"-. d o-..+ 1' o l "'- +- B /Ju e ':-J o ... < n .S<t:'f' ti,, E. burw-.1 -h-1,.Ne.lij o-+ o-. c <>Y'S~+ sp"'eJ. Bu+ ou a..\'-e N dT

pou+- <'+ ~-e s~.s+ew1. . t u ti. e,ne.r:~-\-

,r "~-· -. ·s~"--e. \ k W or-~ is. do\1\-f e \ k.

~ OU

\N = (~L}B C Ve-v\ fnouj~ -tn-e P~S 0~ th.., b~ J r~hs

Je>i,1 ·-1- ~dJ up ~+ -pot'""'+.J A- ou,,,d B, ~-e o....rp ~, ,. o O ,.....-t, "4 -k»·- -fh,e_ e "'--e,y-j '/ by .s ho w I ::') ,-., 6 r Jt.

IAJt}(. .s d o ,-,, eJ fd t/,,-t. e' s i s +~ , th-ex-@ -Fe re o.d ol , j eri~y -lo ti,,-e sy s+e-wi.

In the situation shown below, a spring launches a r coas cart from rest on a "- frictionless track into a vertical loop. Assume e system consists of the cart, the earth, the

f- \ r,- ) track, and the SJ:>ring, - - - -- -===-V' - ;:::::== A.. -- ....-.~~ ,-... " ......,. <2 6 h D

...., ~ ..., ~ ">- . far+ > r ~- . ep..y-#, r . " k::. ··--··-·--·· ··-·· ... ·-· 1-b ' - . (!, -······-······~ --- -·· ·- ...

e l g el 0

Repeat roblem I a for a frictionless system that includes the ~be earth. and t; irack: not the sprin . -:::::=- -

k

h' t==== <3 \N s yn·~ 'k 5

Use the same system as problem I a, but assume that there is friction between the cart and the track. -

13

+ Fti,)5 I I

as rw X tntai:5f 17 ,ta f

This situation is the same as problem I a except that the final position of the cart is lower on the track. Make sure your bars are scaled consistently between problem I a and Id. Assume the system consists of the cart, the earth, the track, and the ~ ring. - - --~....... A -

I~ 'el' J(..

A moving car rolls up a hill until it stoP,s. Do this problem for a system that consists of the c~ t~e ~:.l!~.9 tb~-Assume that the engine is turned off, the car is in neutral, andJ/ there 1s no frict10n. ....::, A 13 h~ @~ h'9 ----= " ro~ '- - -·-

I .,. v-J-1_ 4., . : ·= L.,!.J -- -- ev-..r I r,

a ~ J<.. k. B l(lkt( )A= ~)B

Repeat problem 2a for the same system with friction.

IV\ """"''S e ~"f (' C, rt' -p o.r l"' d e X "'-""'-=t )-(' (z a. ) ) , -F- ~e ('0-..Y ,s 30;~ ~'E' ;+ ¾ -rht" ..5~~ ¥lt?;_,~+

WITH .p.,.. , c..-h' oY'> d- n-, us-+ Y' s~--l-~d i #,. k--1 o rf

--- el"lU-jj_ WOY-IL vva.S o/t;J;1~ Oh t'l,1-e sysf-e.. 1,vi .

,s cuss(

I. n i'l,i.e. k--i"'e..+ic. evi~/ v~sv.s v~/oc,·4, I~ Ne de..~,·yt~d CJ<... cK V 2 1)..//1. d , htrp (>~l/y

I F; c,< Wl~~S". Trz e -A 'rs+ I txft•a~

c e -Frcl'Yl #le sh.~ e cf o t.,c...y Jr °'-f J,., • The .s e o,~

Yt!.f~+,·0

v, cet..wi-e -trow, ~e ~s i.s cf 'fV'-e slope of. t"kf li'neo.r i z!-e.J (J""f"'· If do"'t' co,.-,,.-.!"c-H'f, the d~+<" Wo"'-ld

foy\'Vl jrt\..-pns lik-e be)ow

( \Jt-\oc.i+,) 2

Jh e y -/nf-e.r-r ep,+ b ~, 'n q . a. t- ( er n-e e,_y t,,v , "th W1 cx..k-e s s e,y1 se . J.f tt-,. ,e.re-J , s Yl o rvt c,-h'o h , 1vz ,ure cr~~::f-i V7.J th~ / l)c.UL tJf- w, o-h"on .

tfie s /. Y<Jle) is no EK.

~e slope ,·s rv,.or~ iVl f--GY-es-h·Vtj .

tt,,e vn,·+s.

11~1 -UNIT OF SLC"Pc ~I LO q -e_ 14M S !

Pr=t-C::,I? w'f

S t'nt"'f' the um+ of s lap e_ is /l. ilaj/ ' tLVVIS i f- 01/1. ly rvi.o..1Le5 Se.YlSt' th~ th-e_ slo;r!_~ m0tS"s I+ Me s lope i.s

/VlC<S5, i.S ,; _ _ O<;:'V" _ h~j'l _ _ __ * / ~v-e c>- ("Onf c-ssion -1-o rYlo..k~. ' J was CJ vi ck. I y /IV7 "-" e as u r- e wr e "'--Is , o-vid )oeiviJ very s!Ofp'f" - I w"'-s 1

, ey-e l:>t>--11 , .,, j V'e , j h--t s, i,v,-e ,xs u r c:, t,, -ti,,(> 1

bt'--C~ ~heel t:N+- tf,,,e fop of ~-e f"'tUY\1) I • cu,,,d mea.son'j f-,, -{he -+,-o.,,,+ ~heel c::d 1

~e. bo+f-oyVI ovy rt:U'V'p ,~) 1,,0e//J

oui2- 1)¥7-T~ \S E A-D\. * - ---~-- -- ---- - - --

h'-oJ'Y? ouv- cl~-f61..J ,+- does see...,, +o l,-e pYe~ cloS(O k> fl,te l'V\<>..S s o-F- ouir bu33j .. . btA-+ ;r is SDf'f' osedo

t-o b-e --;k-( mas.s o+ -th-e. bu5jy).

Sa / et 's jus -t s / o u v I i'neo.ri zed J n•:p0 loo 1<-s l,'k,_e tt,,us: z. f" r- vasu.s V

V :y v s:

(\J e,\ OC-l ) z.

1:-~ vz. I=''" = 6. 13 3 · v 2

1:-:_ j- (. o? s) · v 2

j EK = t ·rn ·v"7/

Kinefic fvt£Y':}Y - -J- (mass) ( v-e/oci+().

\t- snou\ct ho+

M S S \ s "f>O-r+- <fr

o.lreo..d~ ~~-ew i+-p o +evt+i ~J evi erj (

<A ukA.a.. l l_,'1 b~ \J-ex~ s u r~ r i s i '\ho::\-;1,-l ,e \l.' V'-e..-h C. e.lAU 1 9 V ~-Fi on I 1/'Jf>

wo.-.5 po..r+ of- -t-h,e 3ro....vi-J-"'--h·ov-1o...l

-etu~-1-, o-V'l .

Now we k.novtJ two eq u°'"'-h·0 vt5 to eo../ cu lo.if d,·t+ eren+- --hjres of- evler3ies.

~ = ~h ,:- J_ 2. l::-1<_ = d- MV

c5 ,.Je N6if' Wi-1-hw..+ 3ettiY1.3 toe mo.,~ - WhV'l o u Mv..lfi'pt~

+-1,<l o vec,-bi--- 1 v o..v1- +l+i e J ti,, -e o v+-p o +- is o-. .s ca.I. o.r 1 u /l.Yl -h +'j ( OI. "' u ,,,, b-e.r t,<J ITH 6 () T ci /Y-e c-h 'ah). . r;-r

h o-t1,,, o-f thes e evt 9 i cc,_/ c v I o:;f, 'oVl.J l"J t'

h 0t-Ve -1-t,vo vec.~rs rvi ul-npli eel -feJ e-fl,-te.r :

3-h Th erefo Yf',

{ +h~ do tvi4 o-,r e

0vnd

s-~ Yl Of- h t)....1./f>

('(UllA_/~

.... -.l

V · V.

"E";_ ()Ye bath .sct,Jo-rs a I 're c.-/--10 n) e Ve..M fho UJ V\ w ,·ft,,, vec.-J-oys.

top related