Peptidomimetics and Mimicry of -Strand / Sheets and -Sheet Sandwiches Jian Liu Merck & Co., Inc. Rahway, NJ 07065.

Post on 13-Dec-2015

214 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

Transcript

Peptidomimetics and Mimicry of -Strand / Sheets and -Sheet Sandwiches

Jian Liu

Merck & Co., Inc.

Rahway, NJ 07065

Research Summary

Pyrrolinone -Strand Peptidomimetic

HIV-1 Protease Inhibitor

1999-presentUPenn

NH

HN

O

NHCH3

OPh

CbzHN

BnO

O

OHN

O

OH

PhO

HN

O

O NH2

OPh

Ph

-Sheet Sandwich

1998-1999UC Irvine

ON

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HNN

O

ON

H

Hi-Pr

O

Me

NH

RAla

RLys

N

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HN

N

O

ON

H

Hi-Pr

O

Me

NH

ROrn

RVal

Cycloaddition of Enol Ethers

1994-1998UCLA

Enantioselective Epoxidation

RR

O

O

R

O R

X

O

O

R

X

O

O R

s-transGround state of enol etherss-cis

s-transs-cis

Transition States

Part I

a. Computational Study on Epoxidation Reactions

b. Conformational Switch for Enol Ethers in Cycloaddition Reactions

Reaction Path Investigation by Computational Methods

R

TS1*

TS2*

Ea1

Ea2

Ea

k1/k2 = e -Ea/RT

P1

P2

Epoxidations of Unfunctionalized Olefins

Liu, J., Houk, K. N. et. al. J. Am. Chem. Soc. 1997, 119, 3385-3386; J. Am. Chem. Soc. 1997, 119, 10147-10152; J. Am. Chem. Soc. 1997, 119, 12982-12983; J. Org. Chem. 1998, 63, 8565-8569

O

OO

H

R'

R O

O

H

R'O

R

R O

R"R' O

R

R N R"

R'O

R

OO

NO

R'R"

R'

R"

R N+ R"

R'O

RN+

O

R'

R"R"'

R"'+

+ +(1)

+

+

+

+

(2)

(3)

+(4)

Part I

a. Computational Study on Epoxidation Reactions

b. Conformational Switch for Enol Ethers in Cycloaddition Reactions

Conformational Switch in Cycloaddition of Enol Ethers

s-cis in ground state s-trans in transition state

Liu, J.; Niwayama, S.; You, Y.; Houk, K. N. J. Org. Chem. 1998, 63, 1064.

O

R

N

O

O R

Stereoselective Cycloaddition Reactions of Chiral Enol Ether

Denmark, S. E. et. al. J. Org. Chem. 1994, 59, 5672; 1995, 60, 3205; 1995, 60, 3574.

Reissig, H. U. et. al. SYNLETT 1990, 514; Angew. Chem. Int. Ed. Engl. 1992, 31, 1033.

O2N

O

O

Ph

Ph

HO

H

N+ O-O

H

O

O

Ph

O

Ph

+Ti(O-i-Pr)2Cl2CH2Cl2

13 : 1

NO

Ph

O

O O

OO

OO

NO

R*

+

Diastereomerically pure

Ground State Conformations of Chiral Enol Ethers

Conformations of Vinyl Methyl Ether in Ground and Transition States

Design of Conformation Fixed Enol Ethers

trans cis trans cis

O O

Designed Diels-Alder Reactions with the Conformation Fixed Enol Ethers

Y NO Y

ON Y NO

Y

ON

Ph

Ph Ph

Ph

ON

Ph

ON

Ph

O

O

1

13.5

b: +33.5

+Y= CH2 : yield = 14%

Y= O : yield = 84%(1)

(2)Y= CH2 : yield = 90%

Y= O : yield = 95%

(3) Competitive Reactions:

a: +

Product Ratio

1

+

Designed 1,3-dipolar Cycloaddition With the Conformation Fixed Enol Ethers

N+

COPh

O-Ph Y ONPh

COPh

Y

N+

COPh

O-PhY O

NPh

COPh

Y

N+

COPh

O-Ph

N+

COPh

O-PhO

O 12.2

Y = CH2: yield= 85%

Y = O, endo : yield= 72%

exo : yield= 23%

(1)

Product Ratio

+

1

(2)

+

(3) Competitive Reactions:

a:

b:

Y = CH2, endo : yield= 46%

exo : yield= 38%

Y = O, endo : yield= 51%

exo : yield= 47%

+

+

1

10.0

Comparison of the Calculated and Experimental Results

k1/k2 = e -Ea/RT

Diels-Alder of Enol Ethers

Calculated Ea (kcal/mol) Experimental Ea (kcal/mol)

Diels-Alder of Alkenes

1,3-Dipolar of Enol Ethers

1,3-Dipolar of Alkenes

2.4 2.1 ( 33.5 : 1)

1.0 1.5 (13.5 : 1)

3.0 1.5 (12.2 : 1)

1.4 1.4 (10.4 : 1)

Rationalization of Conformation Switch

OR

O R

s-transGround state of enol etherss-cis

s-transs-cis

Transition States

XO

OR

XO

O

R

Summary for Ph.D Research at UCLA

RR

O

a. Computation study on epoxidation reaction:

b. Conformation switch of enol ether in cycloaddition reaction:

O

R

NO

O R

s-cis s-trans

O O

O

R

O R

X

O

O

R

X

O

O R

s-transGround state of enol etherss-cis

s-transs-cis

Transition States

Part II

Design, Synthesis and Structure Study of Artificial -Sheet Sandwiches

Previous Study on Artificial -Sheet Structures

Nowick, J. S. et al J. Org. Chem. 1997, 62, 7906-7907.Nowick, J. S. et al Chem. Soc. Rev. 1996, 25, 401-415. Nowick, J. S. Acc. Chem. Res. 1999, 32, 287-296.

-Sheet Mimic

NH

HN

NH

HN

CH3O O

O OCH3 CH3

NH

HN

NH

HN

CH3O

O

O

PhO

N

N

O

Ph

NC

The Importance of the -Sheet Sandwich in Nature

Definition: The -Sheet sandwich is a structure motif in proteins in which two -sheets face each other to form a sandwich. The -sheet sandwich can act as a binding pocket.

Goal of building the artificial -sheet sandwich: To build a chemical model to mimic the three dimensional structures of globular proteins.

Lipid binding protein: 1lif

Design of an Artificial -Sheet Sandwich

Hydrophilic Back

Hydrophobic Face

ON

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HNN

O

ON

H

Hi-Pr

O

Me

NH

RAla

RLys

N

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HNN

O

ON

H

Hi-Pr

O

Me

NH

ROrn

RVal

Artificial -Sheet Sandwich

Xanthene Template

Synthesis of a Model with one Template Holding two -Turn Scaffold Structures

O

N

N

N

NC

N

NC

NH

OPh

NH

PhO

HN

PhO

O

HN

Ph

SO2Cl

NO2

DPPA, Et3N

BnOH, Tolune (80°C)

H2, Pd/C

MeOH

( 78 % )

Collidine, CH2Cl2

( 80 % )

O

CO2H

CO2H

O

NHCbz

NHCbz ( 95 % )

O

NH2

NH2

O

NHSO2Ar

NHSO2Ar

1. PPh3, DEAD, THF HOCH2CH2NHBoc

2. HSCH2CH2OH, LiOH DMF ( 85 %, two steps )

O

NH

NH

NHBoc

NHBoc

Xanthene Diacid

Synthesis of a Model with One Template Holding Two -Turn Scaffold Structures (Cont.)

CN

2) NaHCO3

80°C

3) MeOH,

PhCNO

Template with Two Scaffolds

O

NH

NH

NHBoc

NHBoc

1) TFA/CH2Cl2

( 70 % )

O

NH

NH

HN

NH

CN

CN

( 95 % )

O

N

N

N

NC

N

NC

NH

OPh

NH

PhO

HN

PhO

O

HN

Ph

Crystal Structure of the Model with a Template Holding Two -Turn Scaffolds

Synthesis of the Designed -Sheet Sandwich

O

NH

NH

NH

NH

NC

NC

OCNO

HN

OCH3

NH

O

NH

NH

N

N

NC

NC

O

HN

OCH3

NHN

H

O

O

HN

OCH3

NH

NH

O

OCNO

HN

ROrn(Z)

O

N

NH

N

N

NC

NC

O

HN

OCH3

NH

NH

O

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

O

O

O

N

O

O

N

O

O

RVal

( 94% )

THF, 30 min

( 95 % )

THF, rt, 19 hr

Synthesis of the Designed -Sheet Sandwich (Cont.)

O

N

NH

N

N

NC

NC

O

HN

OCH3

NH

NH

O

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

H2N

HN

O

RAla

O

N

O

O

O

N

N

N

N

NC

NC

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

O

N

O

Cl

O

HN

OO

NH

HN

O

O

CH3

N

O

RLys(Z)

RVal

O

N

N

N

N

NC

NC

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

O

N

O

HN

O

HN

OO

NH

HN

O

O

CH3

NH

N

O

O

RAla

RLys(Z)

RVal

RVal

COCl2, CH2Cl2

NaHCO3 ( sat ), 0 °C, 15 min

•HCl

TEA, THF, rt, 19 hr

-Sheet Sandwich

( 90 %, two steps )

Two Dimensional TLC Test on the Interconvergenceof Different Conformations for -Sheet Sandwich 11

Solvent 10 % MeOH / CHCl3 1D TLC 2D TLC

Possible Conformations for -Sheet Sandwich

Back - Face Face - Face

Back - Back Face - Back

New Design for -Sheet Sandwich with an Additional Linkage between -Sheets

ON

CN

N

O

O

HN

O

O

N

H

NN

O

O

N

H

H

O

Me

NH

RTyr

N

CN

N

O

O

HN

O

O

N

H

NN

O

O

N

H

H

O

Me

NH

ROrn

S

S

Synthesis of -Sheet Sandwich with S-S Linkage

O

N

N

N

N

NC

NC

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

O

N

O

HN

O

HN

OO

NH

HN

O

O

CH3

NH

N

O

O

RCys(Acm)

RTyr(Bn)

RCys(Acm)

2. Dithiothritol

1. NPSCl, AcOH

O

N

N

N

N

NC

NC

O

HN

OCH3

NH

NH

O

NH

HN

O

O

ROrn(Z)

O

N

O

HN

O

HN

OO

NH

HN

O

O

CH3

NH

N

O

O

RCys

RTyr(Bn)

RCys

Synthesis of -Sheet Sandwich with S-S Linkage (Cont.)

O

N

N

N

N

NC

NC

O

HN

OCH3

NHN

H

O

NH

HN

O

O

ROrn(Z)

i-Pr

O

N

O

HN

O

HN

OO

NH

HN i-Pr

O

O

CH3

NH

N

O

O

RCys

RTyr(Bn)

RCys

ON

CN

NO

O

HN

O

O

N

HN

N

O

ON

H

Hi-Pr

O

Me

NH RTyr

N

CN

NO

O

HN

O

O

N

HNN

O

ON

H

Hi-Pr

O

Me

NH

ROrn

S

S50%

(1) O2, MeOH, Cu

(2) HBr/AcOH

Synthesis of -Sheet Sandwich with C-C Linkage

Metathesis Product: ( 3 : 1, trans to cis )

O

N

N

N

N

NC

NC

O

HN

OCH3

NHN

H

O

NH

HN

O

O

ROrn(Z)

O

N

O

HN

O

HN

OO

NH

HN

O

O

CH3

NH

N

O

O

RAllyl

RTyr(Bn)

RAllyl

ON

CN

NO

O

HN

O

O

N

HN

N

O

ON

H

H

O

Me

NH RTyr

N

CN

NO

O

HN

O

O

N

HNN

O

ON

H

H

O

Me

NH

ROrn

1. Grubbs Ru Catalyst CHCl3, 48 hrs, 70%

2. Pd/C, H2, MeOH

NMR Study of the -Sheet Sandwiches with C=C Linkage

No Inter Sheet NOEs Observed Inter Sheet NOEs: H15 - H18; H15 - H20; H18 - H19;

H23 - H27; H26 - H21; H27 - H21.

O

Me5

Me6N

CN

NO

O

H28N

O

O

NMe

H11

NN

O

O

N

H26

H27

O

Me22

NH12

RTyr

N

CN

NO

O

H25N

O

O

NMe

H9

NN

O

O

N

H23

H24

O

Me21

NH10

Bu7

Bu8

H4

H1

H2

H3

H13H14

H15

H16H17

H18

ROrn

H31

H32

H19

H20

H30

H29 Me

Me

Me

MeH

MeMe

H

O

Me5

Me6N

CN

NO

O

H28N

O

O

NMe

H11

NN

O

O

N

H26

H27

O

Me22

NH12

RTyr

N

CN

NO

O

H25N

O

O

NMe

H9

NN

O

O

N

H23

H24

O

Me21

NH10

Bu7

Bu8

H4

H1

H2

H3

H13H14

H15

H16H17

H18

ROrnH19

H20

H30

H29 Me

Me

Me

MeH33

MeMe

H34

H31

H32

Summary of Postdoc Research at UC Irvine

a. Designed and synthesized the artificial -sheet sandwich:

b. Designed and synthesized the -sheet sandwich with homogenous conformation:

ON

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HNN

O

ON

H

Hi-Pr

O

Me

NH

RAla

RLys

N

CN

NO

O

(CH2)2

HN

O

O

NH

CH3

HNN

O

ON

H

Hi-Pr

O

Me

NH

ROrn

RVal

Artificial -Sheet Sandwich

ON

CN

NO

O

HN

O

O

N

HNN

O

ON

H

Hi-Pr

O

Me

NH RTyr

N

CN

NO

O

HN

O

O

N

HNN

O

ON

H

Hi-Pr

O

Me

NH

ROrn

S

S

Artificial -Sheet Sandwichwith a Second Linkage

Part III

Design, Synthesis and Structure Study of -Strand Peptidomimetic Based on Pyrrolinone Backbone

Concept for the Design of -Strand Peptidomimetic Based on Pyrrolinone Backbone

NH

HN

NH

O

O

O

O

HN

R H

R H

R H

R H O

O

O

OR

R

R

R H

NH

O

R

HN

O

R

NH

O

R O

R H

NH

O

R

HN

O

R

NH

O

R O

R H

Nitrogen-Displaced Pyrrolinones

NH

NH

HN

Peptide -Strand ConformationDisplaceNitrogens

CyclizePyrrolinone

Rings

IncorporateEnaminone

Functionality

NH

OR

NH

ORH

N

OR

HN

RH O

NH

HN

NH

O

O

O

O

HN

H R

H R

H R

H R

NH

HN

NH

O

HN

NH

OR

NH

ORH

N

OR

HN

RH O

R

R

R

RH

O O

ODisplace

Carbonyls

CyclizePyrrolinone

Rings

IncorporateEnaminone

Functionality

Carbonyl-Displaced Pyrrolinones

Peptide -Strand Conformation

Precigoux, G et. al. J. Am. Chem. Soc. 1987, 109, 7463.Smith, A. B. III; Hirschmann, R. et. al. J. Am. Chem. Soc. 1994, 116, 9947.

Peptides and Peptidomimetics Which Forms -Strand/Sheets

CO2Me

NH2

Ph

N

N

N

O

O

O

CO2Me

NHBocPh

N

N

N

O

O

O

NH

HN

O

NH

CH3

OPh

CbzHN

BnO

O

H2NNH

HN

NH

OHO

O

O

O

OH

Parallel-Sheet in Solid State

Anti-parallel -Sheet in Solid State

Parallel-Sheet in Solid State

What Kind of Conformation?

H

H

H

H

HH

Retrosynthesis of Tris Carbonyl Displaced Pyrrolinone

NH

O

HN

O

NH

CH3

OPh

CbzHN

BnO

HN

O

NH

CH3

OPhCbzHN

BnO

O O

TeocHN

HN

O

NH

CH3

OPh

H

O

TeocHN

CH3

OCbzHN

BnO

TeocHN CHO

BnO CH3

OBocHN

BnOH

O

NHCbz

CH3

Ph

A B C D

+

NH

O

CH3Ph

BocHN

O

+

A

B

Synthesis of Fragment A and B

HO2C

NH2 NO

O

AllocN

O

O

AllocOBn

NHO

O

O

OBn NH2OBn

HO

CbzNHOBn

HO

TeocNHOBn

HO

CbzNHOBn

H3C

O

TeocNHOBn

H

O

( 88 %, three steps )

CbzCl, TEA, CH2Cl2

( 61 % )

3. Alloc-Cl, CH2Cl2

( 60 %, three steps )

1. NaOH, EtOH, H2O

2. t-BuCHO, pentane reflux, 3d

L-Leu 0 °C, 14d

KHMDS, BnOCH2Cl

THF, -78°C

1. 1N NaOH, MeOH

2. (COCl)2, PhH, reflux

NaBH4, MeOH 0 °C

( 65 % )

1. TPAP, NMO MS 4Å, CH2Cl2

3. TPAP, NMO MS 4Å, CH2Cl2

2. MeMgBr, THF - 78 °C

A

TPAP, NMOMS 4Å, CH2Cl2

B

Teoc-succimide, TEA, CH2Cl2

( 85 % )

( 94 % )

( 72 %, three steps )

over 20 : 1 cis : trans

Synthesis of Fragment D

S. Knight

HO2C

NH2

Ph NO

O

Alloc

PhN

O

O

Alloc

PhCH3

NHO

O

O

CH3

Ph HOCbzHN CH3

Ph

CbzHN CH3

O

H Ph

D

KHMDS, CH3I

D-Phe

2. t-BuCHO, pentane reflux, 3d

3. Alloc-Cl, CH2Cl2THF, -78 °C

1. NaOH, EtOH, H2O

1. 1N NaOH, MeOH

2. NaBH4, MeOH MS 4Å, CH2Cl2

Et3N, THF, 0 °C

( 44 %, five steps )

TPAP, NMO

2. (COCl)2, PhH, reflux

1. Cbz-Cl, DMAP

( 81 % )

( 74 %, three steps )

0 °C, 15d

Synthesis of Fragment C

S. Knight

HO2C

NH2

ON

O

Alloc

ON

O

Alloc

OBn

ONH

O

OBn

O

HO

NHBocOBn

H

NHBocOBn

O

H3C

NHBocOBn

OH

H3C

NHBocOBn

OO

BocHN

BnO

C

L-Val

1. NaOH, EtOH, H2O

2. t-BuCHO, petane, reflux, 3d

3. Alloc-Cl, CH2Cl2 0 °C, 14d

( 84 %, three steps )

KHMDS, BnOCH2Cl

THF, -78 °C

( 84 % )

1. 1N NaOH, MeOH

2. (COCl)2, PhH, reflux1. Boc2O, DMAP Et3N, THF

2. NaBH4, MeOH 0°C,

( 61 %, four steps )

TPAP, NMOCH2Cl2, MS 4Å

MeMgBrTHF, -78 °C

( 60 % )

TPAP, NMOCH2Cl2, MS 4Å

( 99 % )

( 96 % )

Synthesis of Mono Pyrrolinone

S. Knight

MeOH, rt

CH2Cl2

Dess-Martinperiodinane

H2, Pd/C

( 86% )

1. HCO2H, Pd black MeOH

1. MeMgBr, THF

( 81% )

2. Dess-Martin

( 60 %, for two steps )

+

( 98% )

LiHMDS

THF, -78 °C

2. TPAP, NMO

( 70 %, two steps )

C D

BocHNO

BnOH

O

NHCbz

CH3

PhBocHN

O

BnO

OH

NHCbz

CH3

Ph

BocHNO

BnO

O

NHCbz

CH3

Ph

NH

CH3

OPh

BocHN

BnO

NH

CH3

OPh

BocHN

H

O

NH

CH3

OPh

BocHN

O

Synthesis of Bis Pyrrolinone

N CH3

OPh

BocHN

OBoc

THF, -78 °C - 0 °C

KHMDS (1.1 eq),Boc2O ( 2.5 eq )

( 85 % )

NH

CH3

OPh

BocHN

O TeocHN CHO

BnO

N CH3

OPh

BocHN

OBoc

OHTeocHN

BnO

LiHMDS ( 5 eq ), THF, -78 °C

B ( 2 eq )

( 60 - 85 % )

NH

CH3

OPh

BocHN

OTeocHN

BnO

O2. Dess- Martin, Pyr, CH2Cl2, rt

( 76 % )

1. NaHSO4 ( sat ), THF, rt, 24 hr

HN

O

NH

CH3

OPh

TeocHN

BnO

TsOH ( 4 eq ), EtOH 85 °C, 25 min

( 82 % )

HN

O

NH

CH3

OPh

H2N

BnO

( 0 - 5 % )

+

Synthesis of Tris Pyrrolinone

HN

O

NH

CH3

OPh

TeocHN

BnO HN

O

NH

CH3

OPh

TeocHN

HOHCOOH, Pd Black

MeOH

( 91 % )

HN

O

NH

CH3

OPh

TeocHN

TMSO

TMSCl ( 2 eq ), TEA (4 eq)

( 89 % )

HN

O

N CH3

OPh

TeocHN

TMSO

Boc

KHMDS(1.1 eq),Boc2O (3.0 eq)

THF, -78 °C - 0 °C

( 85 % )

HN

O

N CH3

OPh

TeocHN

HO

Boc

4 % AcOH / MeOH

( 95 % )

HN

O

N CH3

OPh

TeocHN

H

Boc

ODMSO, DCC

Pyridine, TFA, PhH

Synthesis of Tris Pyrrolinone (Cont.)

HN

O

N CH3

OPh

TeocHN

H

Boc

O

CH3

OCbzHN

BnO

TeocHN

HN

O

N CH3

OPh

Boc

CbzHN

BnO

O OHLiHMDS, THF, -78 °C

( 23 %, two steps )

A

TeocHN

HN

O

N CH3

OPh

Boc

CbzHN

BnO

O OH

Retro Aldol Reaction:

CbzHN

BnO

O O

HTeocHN

HN

O

N CH3

OPh

Boc+

H

Synthesis of Tris Pyrrolinone (Cont.)

TeocHN

HN

O

N CH3

OPh

Boc

CbzHN

BnO

O OH

NH

HN

O

NH

CH3

OPh

CbzHN

BnO

O

1. Dess-Martin, Pyr, CH2Cl2

2. TFA, rt, 15 min( 18 %, two steps )

H2, Pd/C

NH

HN

O

NH

CH3

OPh

H2N

BnO

O

74 %

+

N

HN

O

NH

CH3

OPh

CbzHN

BnO

X - Ray Crystallography and NMR Study

Part IV

Design and Synthesis of Pyrrolinone Based HIV-1 Protease Inhibitor

Previous Peptidomimetic HIV-1 Protease Inhibitors

OHN NH2

OPh

OH N

N O

PhPh

O O

O

IC50 1.3 nM, CIC95 800 nM

OHN

OPh

OH NPh

O O

OH

IC50 2 nM, CIC95 100 nM

OHN

O

OH

Ph

HN

O

Ph

NH

O

CH3

Ph

10 % inhibition at 3 M

OHN

O

OH

PhO

HN

O

O NH2

OPh

Ph

HH

H

Smith, A. B., III, Pasternak, A., Hirschmann, R. et. al. J. Med. Chem. 1997, 40, 2440-2444

Retrosynthesis of Second Generation Carbonyl Displaced Pyrrolinone HIV-1 Protease Inhibitor

OHN

O

OH

PhO

HN

O

O NH2

OPh

Ph

BocNO

H

OPh

Ph

O

NHCbz

OBn

Ph

+

BocHNO

O

Ph

BocHNOH

O

Ph

ON

O

Alloc

Ph

BocHNOH

O

Ph

L-Phe

D-Phe

Available from PreviousCarbonyl-Displaced PyrrolinoneHIV-1 Inhibitor Project

Synthesis of Carbonyl Displaced Pyrrolinone HIV-1 Protease Inhibitor

1. Dess-Martin Periodinane Pyr, CH2CL2

2. H2, Pd(OH)2, MeOH, Overnight

( 72 %, two steps )

BocNO

Ph

PhHN

O Ph

OHa. Cl3CCON=C=O, CH2Cl2

b. K2CO3, MeOH / H2OBocN

O

Ph

PhHN

O Ph

O NH2

O

1. 1N HCl / MeOH

2. O

O OO

N

O

O Et3N, CH2Cl2

OHN

O

OH

PhO

HN

O

O NH2

OPh

Ph

( 54 % )

( 62 %, two steps )

O

NHCbz

OBn

Ph

a. LiHMDS, THF, -78 °C

b.BocN

OH

OPh

Ph

( 35 - 43 % )

BocNO

OH O

NHCbz

Ph OBnPh

Ph

X-Ray Crystal Structure of HIV-1 Protease Complexed with Inhibitor

H2O

Asp29

Asp25

Asp225

H2O

Ile250 Ile50

Gly27

A. Pasternak

OHN

OPh

OH N

Ph

O O

OHH

IC50 2 nM, CIC95 100 nM

X-Ray Crystal Structure of HIV-1 Protease Complexed with Inhibitor

Asp29

Asp25

Asp225

H2OIle250

Ile50

Asp230

Gly227

L. Zawaki

OHN

O

Ph

OH N

Ph

O O

O NH2

OH

IC50 2.1 nM, CIC95 250 nM

Design of New Carbonyl Displaced Pyrrolinone HIV-1 Protease Inhibitor

Asp230

Gly227

Asp225

Asp25

Asp29

Ile250Ile50

OH

Ph

PhHN

OPh

NH2OH

HNO

OO

Summary of Postdoc Research at UPenn

a. The tris carbonyl-displaced pyrrolinone was synthesized and the structure is being studied:

b. A carbonyl-displaced pyrrolinone HIV-1 protease inhibitor was designed and synthesized. A new design was made based on modeling:

NH

HN

O

NH

CH3

OPh

CbzHN

BnO

O

NH

HN

O

NH

CH3

OPh

H2N

BnO

OOH

Ph

PhHN

OPh

NH2OH

HNO

OO

OHN

O

OH

PhO

HN

O

O NH2

OPh

Ph

Acknowledgements

Professor Ken N. Houk (UCLA)

Professor James S. Nowick (UC Irvine)

Professor Amos B. Smith, III (UPenn)

Professor Ralph Hirschmann (UPenn)

Thank You

top related