Oxygen Transport Membranes BIGCO2 AchievementBIGCO2 Achievements · 2014-11-17 · Oxygen Transport Membranes BIGCO2 AchievementBIGCO2 Achievements Paul Inge Dahl, Marie-Laure Fontaine,

Post on 20-Apr-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

OOxygen Transport MembranesBIGCO2 AchievementBIGCO2 Achievements

Paul Inge Dahl, Marie-Laure Fontaine, Florian Ahouanto, Christelle Denonville, Thijs Peters, Yngve Larring, Ove Paulsen,

Partow P. Henriksen, Rune Bredesen

SINTEF Ch i tSINTEF Materials and Chemistry

Trondheim CCS Conference, June 15, 2011

Outline

• IntroductionIntroductiono Air separation with OTMo Applications and integration concepts

• BIGCO2 Task A achievementso Membrane fabricationo Membrane fabricationo Sealing technologyo Membrane testingo Material development

• Summary• Summary

Air separationOxygen transport membranes (OTM)Oxygen transport membranes (OTM)

Dense layerPressurized air

(perovskite related)

Macroporous mechanicallyMacroporous mechanically strong support

(same composition)

Feed side:

Driving force Pressure vessel / housing

N22O2– 4e–

Feed side:High p(O2)

2

O2Permeate side:L w 2)o p(O2)

Applications and integration concepts• Oxygen production, i.e. for oxy-fuel

processes

O2-

O2(g), 1 atm O2(g) Air (30 atm)

O2-

O2(g), 1 atm O2(g) Air (30 atm)

N2(g)O2(g), 1 atm N2(g)O2(g), 1 atm

• Syn-gas production• Catalytic membrane reactor

O2-

CH4+H2O=CO(g)+H2(g) O2(g) Air

O2-

CH4+H2O=CO(g)+H2(g) O2(g) Air

N2(g)CO2(g)+H2O(g) N2(g)CO2(g)+H2O(g)

BIGCO2 Task AHi h t bHigh temperature membranes

• Overall objectives (2007-2011)Overall objectives (2007-2011)o Establish and develop fabrication and sealing

technology for ceramic high tem me ntechnology for ceramic high temperature membraneso Use the technology for fabrication of membrane

modules for oxygen and/o hydrogen separationmodules for oxygen and/or hydrogen separation

• Main activitieso Membrane fabrication o Sealing technologyo Sealing technologyo Testing and characterization

• Including material developmentIncluding material development

BIGCO2 Task A – Achievements • Fabrication of asymmetric tubular membranes

N O

22ln

16

2ln

2 Oil

ionelO p

LFRTJ

IIOp

I

L

O2Air

N2+O2

• Tubular membranes

162ln ionelLF I

Op2Air

• Tubular membraneso Extrusion of porous support

f thi d b l

Extruded tubular support

o Coating of thin densemembrane layer

D bDense membranelayer coated ontoporous support

BIGCO2 Task A – Achievements

Mixer

• Paste formulation and ceramic extrusion (La2NiO4)Mixer

As extruded tubular supports

m

m 100

cmPiston extruder

90 c

m 1

Tubular supports with close ends

BIGCO2 Task A – Achievements • Slurry preparation and coating of dense

membrane layers (La2NiO4) Coated supportsmembrane layers (La2NiO4)Stability of various dispersions investigated

Coated supports

Uncoated areas

SEM micrographs (cross-section) of selected asymmetric membranesSEM micrographs (cross-section) of selected asymmetric membranes

BIGCO2 Task A – Achievements • Sealing development – air braze

o Thermo-chemicall com atible with membrane materialy po Matching thermal expansion behaviour of braze, membrane/

housing material (HT alloy)Alloy 2,5

e

Alloycap

ane

1,5

2,0

2,5

(%)

Support Haynes 242Seal Ag-Cu braze CoolMembrane La2NiO4Sandvik Sanergy

embr

ane

allo

y

Bra

ze

Mem

bra

atin

g

0,5

1,0

Ther

mal

exp

.

M

HT

a B

Coa

0,00 200 400 600 800 1000 1200

T

Temperature (°C)

BIGCO2 Task A – Achievements • Sealing development – air braze

o Thermo-chemicall com atible with membrane materialy po Matching thermal expansion behaviour of braze, membrane/

housing material (HT alloy)Alloy

e

Alloycap

ane 6460 61

62 58

59

Braze

embr

ane

allo

y

Bra

ze

Mem

bra

atin

g

52-54

63

57 5655

Cu2Cr2O5

ft 4 k t hi h (900 960C)M

HT

a B

Coa

46-48

49-51

Alloy

Cr2O3

2 2 5

o Detected challenges after 4 weeks at high temperature (900-960C): Undesired interaction between braze and protective coating Thermal expansion mismatch between formed chromium oxide and

cupper-chromium oxide (formed from reacton with Cu in braze)

BIGCO2 Task A – Achievements • Sealing development – glass ceramicsBaO-La2O3-SiO2 glass (BLS)

1,00

1,20

1,40

1,60

ansion

 (%) La2NiO4

BLS cryst.

Ba2La8Si6O26

0,20

0,40

0,60

0,80

Thermal expa

0,00

,

0 200 400 600 800 1000 1200 1400Temperature (°C)

Seal

Ba La Si O

BaSi2O5

Ba3Si5O13

Reaction zone

Membrane

Ba2La8Si6O26

Ba2La2Si4O13

MembraneLa2NiO4

BIGCO2 Task A – Achievements • Sealing development – glass ceramicsBaO-La2O3-SiO2 glass (BLS) Na2O-CaO-Al2O3-SiO2 glass (NCAS1)

1,00

1,20

1,40

1,60

ansion

 (%) La2NiO4

BLS cryst.

Ba2La8Si6O261.5

2.0

2.5

p. (%

)

Haynes 242NCAS1 (cryst) CoolLa2NiO4Sandvik Sanergy

0,20

0,40

0,60

0,80

Thermal expa

0.5

1.0

Ther

mal

exp

0,00

,

0 200 400 600 800 1000 1200 1400Temperature (°C)

0.00 200 400 600 800 1000 1200

Temperature (°C)Compatible with membrane materialCracks on interface seal alloy housing

SealSealSeal

Cracks on interface seal – alloy housingCompatible with alternative housing

oMachinable glass ceramic

Ba La Si O

BaSi2O5

Ba3Si5O13

Reaction zone

MembraneMachinableglass ceramic

AlloyBa2La8Si6O26

Ba2La2Si4O13

Membrane glass ceramicLa2NiO4

BIGCO2 Task A – Achievements • Sealing development – glass ceramicsBaO-La2O3-SiO2 glass (BLS) Na2O-CaO-Al2O3-SiO2 glass (NCAS1)

1 5

2.0

2.5

p. (%

)

Haynes 242NCAS1 (cryst) CoolLa2NiO4Sandvik Sanergy

1,00

1,20

1,40

1,60

ansion

 (%) La2NiO4

BLS cryst.

Ba2La8Si6O26 Complex material systems

0.5

1.0

Ther

mal

exp

0,20

0,40

0,60

0,80

Thermal expa systems

Many possiblereaction products

0.00 200 400 600 800 1000 1200

Temperature (°C)

0,00

,

0 200 400 600 800 1000 1200 1400Temperature (°C)

Compatible with membrane materialCracks on interface seal alloy housing

to consider

Ba La Si O

BaSi2O5

Ba3Si5O13

SealSealSealSealSealSealSealSeal

Cracks on interface seal – alloy housingCompatible with alternative housing

oMachinable glass ceramic

Reaction zoneReaction zoneBa2La8Si6O26

Ba2La2Si4O13

MembraneMembraneMachinableglass ceramicMachinableglass ceramicMachinableglass ceramic

AlloyAlloyAlloy

La2NiO4MembraneMembrane glass ceramicglass ceramicglass ceramic

BIGCO2 Task A – Achievements • Membrane testing

• Various single tube modules investigatedg gAir outSweep

gasTubular membranes tested in Probostat™ cells up to 8 bars and

e

Brazedalloy caps

eve

ssel

p80% O2 (32 bar air equivalent)

Air

flow

Mem

bran

e

pres

sure

Gold seals

Glass ceramic

seal

M

Ste

el

Dense

Air inOxygen+

Sweep gas

alumina base

Machinedalloy caps

Sweep gas

BIGCO2 Task A – Achievements • Membrane testing

• Dense tubular membrane (reference material La2NiO4) tested over ( 2 4)2500 hours at various conditionso Pressurized up to 8 bars and 80% O2 in feed (32 bars air equivalent)o gas flows and temperature ranging from 800 to 1000Co Varying gas flows and temperature ranging from 800 to 1000C

BIGCO2 Task A – Achievements • Membrane testing

• Dense tubular membrane (reference material La2NiO4) tested over ( 2 4)2500 hours at various conditionso Pressurized up to 8 bars and 80% O2 in feed (32 bars air equivalent)o gas flows and temperature ranging from 800 to 1000C

0,025

8 bars/900C

o Varying gas flows and temperature ranging from 800 to 1000C

o Data currently being processed for modelling purposes

Measurements at 2-8 bars, constant sweep flow

0,015

0,02

O2

flu

x

/4 bars/900C2 bars/900C1 bars/900C

for modelling purposes Ambipolar conductivity Flux model as function of T, pO2

and membrane thickness

0,01

Rel

ativ

e O and membrane thickness

Preliminary model indicates flux goal of 10 mL/(cm2min) is achievable

0

0,005

15 25 35 45 55 65 75 85

R achievable

Oxygen % in Feed side

BIGCO2 Task A – Achievements • Material development

• Im roved stabilit in reducin atmos here b B-site substitution with p y g p yiron (La2Ni1-xFexO4, x < 0.3) and no CO2 absorption (from HPTGA)

• Improved transport properties by A-site deficiency (La2-xNiO4, x<0.5)

BIGCO2 Task A – Achievements • Material development

• Im roved stabilit in reducin atmos here b B-site substitution with p y g p yiron (La2Ni1-xFexO4, x < 0.3) and no CO2 absorption (from HPTGA)

• Improved transport properties by A-site deficiency (La2-xNiO4, x<0.5)

0,025

0,030La-deficientFe-substitutedLa2NiO4 reference

o Improved O2 flux of La2-xNiO4compared to reference material (La2NiO4)

900C

Air/Ar gradient1000C 800C

0,015

0,020

m-1

min

-1

( 2 4) Doubled at 900C

o Decreased activation energy: From measurements in

0,010

0,015

P / m

l cm From measurements in

Air/Ar gradient La2NiO4: 86 kJ/mol La2-xNi2O4: 45 kJ/mol

0,000

0,005

0,75 0,80 0,85 0,90 0,95

2-x 2 4

1000T-1 / K-1

BIGCO2 Task A – Achievements • Material development

• Im roved stabilit in reducin atmos here b B-site substitution with p y g p yiron (La2Ni1-xFexO4, x < 0.3) and no CO2 absorption (from HPTGA)

• Improved transport properties by A-site deficiency (La2-xNiO4, x<0.5)

0,040

0,045

0,050La-deficientFe-subsitutedLa2NiO4 reference

o Improved O2 flux of La2-xNiO4 compared to reference material (La2NiO4)

O2/Ar gradient1000C 900C 800C

0,025

0,030

0,035

m-1

min

-1

( 2 4) Doubled at 900C

o Decreased activation energy: From measurements in

0,015

0,020

0,025

P / m

l cm From measurements in

Air/Ar gradient La2NiO4: 86 kJ/mol La2-xNi2O4: 45 kJ/mol

0,000

0,005

0,010

0,75 0,80 0,85 0,90 0,95

2-x 2 4

o La2Ni1-xFexO4: Flux comparable to reference material at high pO2

1000T-1 / K-1material at high pO2

Summaryy• BIG!!! BIGCO2 achievements on OTM

o Membrane fabricationo Membrane fabrication• Long porous tubular supports (up to 1 m)• Asymmetric membranes with thin dense layers (10-20 µm)

o Material development• Increased stability with Fe-substitution• Increased transport properties by La-deficiency

o Membrane testing• Long term tests (2500+ hours) of tubular membranes• Pressurized tests u to 8 bars 32 bars air ressure e uivalentp ( p q )• Modeling using experimental results in progress

o Sealing with brazing or glass ceramics in progress

• OTM: high potential for various applications when integrated in high temperature syste -fuel Pox )integrated in high temperature systems (oxy-fuel, Pox,…)

AcknowledgementgFunding through the BIGCO2 project, performed under the strategicNorwegian research program Climit.

Thanks to the Research Council of Norway (178004/I30 and 176059/I30)and Gassnova (182070) for their support.

And supporting industrial partners:

Thank you for your kind attention!y y

top related