Outline

Post on 07-Jan-2016

23 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Outline. Taylor Factors important for CI Science Question 1 What do we need to resolve processes? Required Instrumentation and deployment Sills Further instrumentation and deployment strategies (ATMOS, AMMOS, Aircraft). Wind. DeltaT. Additional:. PM sensor?. O3 sensor?. Cell antenna. - PowerPoint PPT Presentation

Transcript

1st UNSTABLE Science Workshop18-19 April 2007

Outline

Taylor• Factors important for CI• Science Question 1• What do we need to resolve processes?• Required Instrumentation and deploymentSills• Further instrumentation and deployment

strategies (ATMOS, AMMOS, Aircraft)

EC ATMOS Surface Mesonet Stations

O3 sensor?

PM sensor?

Additional:

WindDeltaT

T / RH + Fast TPrecip

Pressure

Cell antenna

Solar Panel

DeltaTLogger

Solar Radiation

Why collect 1 min avg mesonet data?

4 boundary passages within ~ 1 hr, 3 in 18 min!

Sydney 2000 Project 1 min average surface station data

How will the ATMOS units be used?

• Use both grid and line siting approaches

• Collect data as 1 min averages

• Augment mesonet with stations from other networks

PM sensor?

Photo / video

Additional:

EC AMMOS Mobile Unit

Wind

GPS

Logger Pressure

T / RH + Fast T (ventilated)

Compass

Rugged Laptop + Backup

Are hi-res / fast-response obs needed?

How will the AMMOS unit be used?

• Collect data at 1 s intervals

• Measure gradients across boundaries (met and land use)

• Fill in holes in mesonet as needed

What are the benefits of aircraft obs?

Twin Otter during ELBOW 200118 July 1751 UTC

0

100

200

300

400

500

600

700

800

900

1 000

1 100

1 200

1 300

1 400

1 500

1 600

1 700

1 800

1 900

2 000

heig

htin

mm

sl

140 120 100 80 60 40 20 0

space in km

6 ms-1

18julymorning

ErieHuron

Horizontal and vertical winds

0

100

200

300

400

500

600

700

800

900

1 000

1 100

1 200

1 300

1 400

1 500

1 600

1 700

1 800

1 900

2 000

heig

htin

mm

sl

140 120 100 80 60 40 20 0

space in km

6 ms-1

18julymorning

ErieHuron

Cloudbase (LCL)

No CuBuilding CuNo Cu

Sloped interface,shallow inflow

Erect interface,deeper inflow

12 1213 13 13 13

14 14 1415 15 15 15

16 1616

17 1717 17

18 18 18

1919

19

19

20 20 2021

2122 22 22

23

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

heig

htin

mm

sl

125 100 75 50 25 0

125 100 75 50 25 0

space in km

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

data: 18 july 01flight: 15:00 UTC

unheated starboard temperature in degrees( )30s avg,1/d^2 interpolation

Temperature (C)

6

7 7

8

8

8

9

9 9

9 9

10

10

1010

11

11

11

11

1212 12

13

13

13

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

heig

htin

mm

sl

125 100 75 50 25 0

125 100 75 50 25 0

space in km

5

6

7

8

9

10

11

12

13

14

15

16

data: 18 july 01flight: 15:00 UTC

water content in g/m3

( )30s avg,1/d^2 interpolation

Water Content (g m-3)

5000 500

0

5000

1000015

000

1500

0

20000

2500

0

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

0

200

400

600

800

1 000

1 200

1 400

1 600

1 800

heig

htin

mm

sl

125 100 75 50 25 0

125 100 75 50 25 0

space in km

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

data: 18 july 01flight: 15:00 UTC

cloud nuclei in g/m3

( )30s avg,1/d^2 interpolation

Cloud Nuclei (g m-3)

Skew-T Diagram

Aircraft descending profile over land

TTd

Skew-T Diagram

Aircraft descending profile over water

TTd

Jun 19 18Z

Ascending profile over land vs. rawinsonde data at ~same time

Vertical Wind

Incident Solar Radiation

Lake Huron

Aircraft about 300 m below cloud base, large updrafts beneath clouds.

Lake HuronLBF

Surface Temp

How would an aircraft be used?

‘Mesoscale Boundary’ flight path?

Ground

0

1 km

2 km

3 km

Questions?

top related