Non-Cooperative Multi-Radio Channel Allocation in Wireless Networks Márk Félegyházi*, Mario Čagalj†, Shirin Saeedi Bidokhti*, Jean-Pierre Hubaux* * Ecole.

Post on 05-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Non-Cooperative Multi-Radio Channel Allocation

in Wireless Networks

Márk Félegyházi*, Mario Čagalj†, Shirin Saeedi Bidokhti*, Jean-Pierre Hubaux*

* Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland

† University of Split, Croatia

Infocom 2007

Infocom 2007

Márk Félegyházi (EPFL) 2

Problem

► multi-radio devices► set of available channels

How to assign radios to available channels?

3d4d5d

6d

1d 2d

Infocom 2007

Márk Félegyházi (EPFL) 3

System model (1/3)

3d4d5d

6d

1d 2d

2p

1p

3p

► – set of orthogonal channels (|| = C)

► – set of communicating pairs of devices (|| = N)

► sender controls the communication (sender and receiver are synchronized)

► single collision domain if they use the same channel

► devices have multiple radios► k radios at each device, k ≤ C

Infocom 2007

Márk Félegyházi (EPFL) 4

System model (2/3)

► N communicating pairs of devices► C orthogonal channels► k radios at each device

,i xknumber of radios

by sender i on channel x

,i i xx C

k k

,x i xi N

k k

example:

3 2, 2p ck

Use multiple radios on one channel ?

, 1i xk Intuition:

23ck

34pk

Infocom 2007

Márk Félegyházi (EPFL) 5

System model (3/3)► channels with the same properties► τ t(kx) – total throughput on any channel x

► τ(kx) – throughput per radio

Infocom 2007

Márk Félegyházi (EPFL) 6

► selfish users (communicating pairs)► non-cooperative game GMRCA

– players → senders – strategy → channel allocation – payoff → total throughput

► strategy:

► strategy matrix:

► payoff:

Multi-radio channel allocation (MRCA) game

,1 ,,...,i i i Cs k k

1

N

s

S

s

, ( )i i i x xx C

u k k

Infocom 2007

Márk Félegyházi (EPFL) 7

Game-Theoretic Concepts

Nash equilibrium: No player has an incentive to unilaterally deviate.* * *( , ) ( , ),i i i i i i iu s s u s s s S

Best response: Best strategy of player i given the strategies of others.

' '( ) : ( , ) ( , ),i i i i i i i i i ibr s s u s s u s s s S S

Price of anarchy: The ratio between the total payoff of players playing a socially-optimal (max. Pareto-optimal) strategy and a worst Nash equilibrium.

soi

iw NEi

i

uPOA

u

Pareto-optimality: The strategy profile spo is Pareto-optimal if:

' ': ( ) ( ),poi is u s u s i with strict inequality for at least one player i

Infocom 2007

Márk Félegyházi (EPFL) 8

Lemma: If S* is a NE in GMRCA, then .

Use of all radios

Each player should use all of his radios.

p4 p4

,ik k i

Intuition: Player i is always better off deploying unused radios.

all channel allocations

Lem

ma

Infocom 2007

Márk Félegyházi (EPFL) 9

Proposition: If S* is a NE in GMRCA, then dy,x ≤ 1, for any channel x and y.

Load-balancing channel allocation► Consider two arbitrary channels x and y in , where kx ≥ ky► distance: dx,y = kx – ky

all channel allocations

Lem

ma

Pro

posi

tion

Infocom 2007

Márk Félegyházi (EPFL) 10

Nash equilibria (1/2)

Theorem 1: A channel allocation S* is a Nash equilibrium in GMRCA if for all i:

► dx,y ≤ 1 and

► ki,x ≤ 1.

p2

Nash Equilibrium: p4

Use one radio per channel.

all channel allocations

Lem

ma

Pro

posi

tion NE type 1

► Consider two arbitrary channels x and y in , where kx ≥ ky► distance: dx,y = kx – ky

Infocom 2007

Márk Félegyházi (EPFL) 11

Nash equilibria (2/2)

Nash Equilibrium:

Theorem 2: A channel allocation S* is a Nash equilibrium in GMRCA if:

► dx,y ≤ 1,

► for any player i who has ki,x ≥ 2, x in ,

► for any player i who has ki,x ≥ 2 and x in +, ki,y ≥ ki,x – 1, for all y in –

Use multiple radios on certain channels.all channel allocations

Lem

ma

Pro

posi

tion NE type 1

NE type 2

,

( 1) ( 1)

( 1) ( )x x

i xx x

k kk

k k

► Consider two arbitrary channels x and y in , where kx ≥ ky► distance: dx,y = kx – ky

► loaded and less loaded channels: + and –

+–

Infocom 2007

Márk Félegyházi (EPFL) 12

Efficiency (1/2)

1

1 1 1

t

t t tx x x x

POAN k

k k k kC

Corollary: If τt(kx) is constant (i.e., ideal TDMA), then any Nash equilibrium channel allocation is Pareto-optimal in GMRCA.

Theorem: In GMRCA , the price of anarchy is:

, 1x x

N k N kk k

C C

where

Infocom 2007

Márk Félegyházi (EPFL) 13

Efficiency (2/2)

► In theory, if the total throughput function τt(kx) is constant POA = 1► In practice, there are collisions, but τt(kx) decreases slowly with kx (due to the

RTS/CTS method)

G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” in IEEE Journal on Selected Areas of Communication (JSAC), 18:3, Mar. 2000

Infocom 2007

Márk Félegyházi (EPFL) 14

Summary► wireless networks with multi-radio devices► users of the devices are selfish players► GMRCA – multi-radio channel allocation game► results for a Nash equilibrium:

– players should use all their radios– load-balancing channel allocation– two types of Nash equilibria– NE are efficient both in theory and practice

► fairness issues► coalition-proof equilibria► algorithms to achieve efficient NE:

– centralized algorithm with perfect information– distributed algorithm with imperfect information

http://people.epfl.ch/mark.felegyhazi

Infocom 2007

Márk Félegyházi (EPFL) 15

Future work

► general scenario – conjecture: hard► approximation algorithms► extend model to mesh networks

(multihop communication)

Extensions

Infocom 2007

Márk Félegyházi (EPFL) 17

Related work► Channel allocation

– in cellular networks: fixed and dynamic: [Katzela and Naghshineh 1996, Rappaport 2002]

– in WLANs [Mishra et al. 2005]– in cognitive radio networks [Zheng and Cao 2005]

► Multi-radio networks– mesh networks [Adya et al. 2004, Alicherry et al. 2005]– cognitive radio [So et al. 2005]

► Competitive medium access– Aloha [MacKenzie and Wicker 2003, Yuen and Marbach 2005]– CSMA/CA [Konorski 2002, Čagalj et al. 2005]– WLAN channel coloring [Halldórsson et al. 2004]– channel allocation in cognitive radio networks [Cao and Zheng 2005, Nie

and Comaniciu 2005]

Infocom 2007

Márk Félegyházi (EPFL) 18

Fairness

Nash equilibria (fair) Nash equilibria (unfair)

Theorem: A NE channel allocation S* is max-min fair iff

min min

, , , ,i x j xx x

k k i j

C C

N

Intuition: This implies equality: ui = uj, i,j

Infocom 2007

Márk Félegyházi (EPFL) 19

Centralized algorithm

Assign links to the channels sequentially.

p1 p1 p1p1 p2p2

p2p2 p3 p3 p3p3

p4 p4 p4p4

Infocom 2007

Márk Félegyházi (EPFL) 20

Convergence to NE (1/3)

p1 p1

N = 5, C = 6, k = 3

p2 p2

p4

p1

p3 p2 p5

p4

p5

p3

p3

p4

p5

c1 c2 c3c4 c5 c6

timep5: c2→c5

c6→c4p3: c2→c5

c6→c4c1→c3

p2: c2→c5p1: c2→c5

c6→c4

p1: c4→c6c5→c2

p4: idle

channelsp5

p3

p2

p1

p1

p4

Algorithm with imperfect info:► move links from “crowded”

channels to other randomly chosen channels

► desynchronize the changes► convergence is not ensured

Infocom 2007

Márk Félegyházi (EPFL) 21

Convergence to NE (2/3)

3UB

Algorithm with imperfect info:► move links from “crowded”

channels to other randomly chosen channels

► desynchronize the changes► convergence is not ensured

xx

N kS k

C

C

Balance:

unbalanced (UB): best balance (NE):

Efficiency: ( ) ( )

( ) ( )UB

UB NE

S SS

S S

0 1S

15UB 7S

15 7 3

15 3 4S

Infocom 2007

Márk Félegyházi (EPFL) 22

Convergence to NE (3/3)

N (# of pairs) 10

C (# of channels) 8

k (radios per device) 3

τ(1) (max. throughput) 54 Mbps

top related