NATIONALADVISORYCOMMITTEE FORAERONAUTICS · nationaladvisorycommittee foraeronautics technical note 3172 effectsofleading-edgeradiusandmaximumthickness-chordratioonthevariationwithmachnumber

Post on 11-Oct-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

NATIONALADVISORYCOMMITTEEFORAERONAUTICS

TECHNICAL NOTE 3172

EFFECTSOF LEADING-EDGERADIUSANDMAXIMUMTHICKNESS-

CHORDRATIOONTHEVARIATIONWITHMACHNUMBER

oF YHEf3J3R0D~A.MIcc-cTERISTIcS oF

SEVERALTHINNACAAIRFOILSECTIONS

ByRobertE. BerggrenandDonaldJ. Graham

AmesAeronauticalMoffettField,

Laboratorycam.

WashingtonApril 14,1954

AFM2CTECHNICALK“xx!ay

https://ntrs.nasa.gov/search.jsp?R=19930083890 2018-10-11T16:42:38+00:00Z

TECHLIBRARYKAFB,NM

NATIONALADVISORYCOMMITTEETOR

.

TECHNICALNOTE3172

EFFECTS(X?LEADING+3X+ERADIUSANDMAXIMUMTEICKNESS-

cmozmmmo oNTHEVA31AIHONmm mm mm

OF TSXAERODYNAMIC

SEVXRALTEIl?NAC!A

By RobertE.Berggren

CHARACTERISTICS07?

AIRFOILSECTIONS=

andDonaldJ.Graham

SUMMARY

A wind-tunnelInvestigationhasbeenJu3deto &etemlinetheeffects-- —of leading-edgeradiusandmaximumthickness-chordratioonthevariationwithMachnunheroftheaerodynamiccharacteristicsof severalthinsymmetricalNAcA&Ligit-seriesairfoilsections.T@ Machnumberrangeoftheinvestigationwasfrom0.3toa~proximatelyO.9andthecorre-spondingReynoldsnumberrangefromapproximately1 x lCF to 2 x l&.

ThevariationswithMachnumberofthelift,drag,andTitchingmommt fora &percent-chord-thickairfoilsectionarenotsignificantlyaffectedby a changeof leading-edgeradiusfrom0.18to 0.53percentofthechord.A s3milarconclusioncanYe drawnfora leadi~dge-radiusvariationfrom0.10-toO.4Qercent chordona &percent+herd-thicksection.

Wogressive@rovementofthevariationofllft-curveslopewithMachnunber,theliftanddrag4ivergencecharacteristics,andthemx-imumsectionliftcharacteristicsat Machnuuibersa%ove0.6resultsfromreductionofthbmimum thicknes~hordratiofrom10to 4 percent.Sectionpitchiexmnt characteristicsarenotgreatlyaffected%y vari–ationofthemaximumthiclmess+hordratfo.

INI’RODU3TION

To investigatetheinfluenceofairfoilleading-edgeradiusonthevariationwithMachnumberoftheaerodynamiccharacteristicsofthin

&

‘SupersedesNACARMA50EQ4,“EffectsofLeading+dgeRadiusandMaximP ThicknesHhordRatioontheVsriationWithMachNumberoftheAerc-● dynamicCharacteristicsofSeveralThfnNACAAirfoilSections”by

RobertE.BerggrenandDonaldJ.Graham,1950.

2

airfoilsections,a seriesofairfoilby 3-1/2-foothigh-speedwindtunnel.

-..NACATN 317’2

test8wasconductedintheAmes1-Theresulteof theinvestigation

fora thicbess-chordratioof10 percenthavebeenreportedinrefer-ence1. Theresultsforthickness-chordratiosof 6 and4 percentarereportedinthepresentpaxm. ThebasicthicknessformoftheairfoilsinvestigatedwastheNACAtiigibseries(seereference2)withmaximumthfclmessat 40 percentoftheairfoilchord.

InadditiontotheI.eading+dge-radiusstudy,theInvestigationpez+mfttedfurtheranalyslsoftheeffects,ofthfcknes~hord-ratiovariationonthecharacteristicsofairfoilsectionsathighsubsonicMachnumt)ers.Thisanalysisisalsocontainedinthepresentreport.

a. section

c airfoil

cd section

c? section

c2- maximum

c%4seotion

NUIM!I!ION

lift-curveslope,~r ~~ee

chord,feet

dragcoefficient

liftcoefficient

sectionliftcoefficient

pitching~mentcoefficient

M free-stream

M= Machnumber

aboutthequarter-chordpoint

Machnumber

fordragdivergezme,definedas theMachnuniberatu

()dcdwhich — = 0.1mao = constant

‘2 Machnumberforliftdivergence,definedas the&oh nuuiberat

(J

d2c~which — =0

dM2 o = constant

T free-streamvelocity,feetpersecond

.

NACATN 3172 3

9

v localvelocity,feetpersecond

uAva incrementinlocalvelooitycorrespondingtoadditionaltypeof

loaddistribution,feetpersecoti

x distancealongchordfromleadingedge,fractionofchord

Y distancePerpendic- to chord,fractionofchord

a. sectionangleofattack,degrees

DESCRIPTIONOFAIRFOILS

Theairfoilsectionsofthepresentstudyare:

9

Leadiqdge radiusNACAairfoildesignation (percentchoti)

0004-1.10 40/1.~~ 0.180004– 3.30 40/1.5~ .530006– 1.10 40/1.575 .400006- .70 40/1.373 .250006– .27 40/1.’575 .100008– 1.20 40/1.575 .700010– 1.10 40/1.575 1.10

Thefirstdigitof theairfofldesignationindicatesthecaniberinper-centofthechord;thesecond,thepositionof thecamberintenthsofthechordfromtheleadingedge;andthethirdandfourth,themaximumthiclmessinpercentofthechord.Thedecimalnumberfollowi~thedashistheleading+dge-radiusindex;theleading+dgeradiusas a fractionoftheairfoilchordisgivenby theproductoftheradiusindexatithesq,usreof thethiclmes~hordratio.A radiusindexof 1.10isstandardfortheNACA44igit-seriesairfoilsections.Thetwodigitsinmdiatelyprecetingtheslantrepresentthepositionofmaximumthicknessinper-centofthechordfromtheleadingedge. Thelastdecimalnuniberisthetralli~dge+ngle index,theanglebeingtwicethearctangentoftheproiuctof theangleindexandthethichess+hordratio.

ThecoordinatesoftheairfoilsinvestigatedaregivenintablesIto VII. Theprofilesareillustratedinfigure1 andthetheoretical

* low-speedpressuredistributions,determinedby themethodofreference3,infigure2.

*

4 NACATN 3172

Thetestsweremadetunnel,a low-turbulence

Theairfoilmodels,

.APPARATUSANDTESTS .—

wintheAUBS1-by 3-1/2-foothfgh-speedwindtwtiimensional-flowwindtunnel.

constructedofaluminumalloy,wereof &inchchordandcompletely@ned thel-footdimensionofthewind-tunneltestsection.Endleakgewaspreventadby mans ofcontouredsponge-rubbergaslmtscompressedbetweenthemodelendsandthetunnelwalls.

Measurementsoflift,drag,andpitchingmomentweremadeat Machnumbersfrom0.3toas highas 0.9foreachoftheairfoilsatanglesofattackincreasingby 1°or 20 incremmtsfrom42°toa maximumof 12°.Thisrangeofanglesofattackwassufficien.tto encompasstheliftstallup toMachnumbersoftheorderof 0.8. TheReynoldsnumberofthetestsrangedfromapproximtel.y1 X 106at theminimumMachnumbertoapprox—imately2 x 106at thehighestMachnumbers.

Liftandpitchingmommtswereevaluatedby a mthod similartothatdescribedInreference4 fromintegrationsofthepressurereactionsonthe tunnelwallsude bymeansof

producedby theairfoilmodels.Drag?masurementswerewalmsurveysusinga rakeoftotal-headtubes.

~—

?

8“HHJIITSANDDISCUSSION

Ssctionlift,drag,andquarte~hordpitching+no~ntcoefficientsfortheairfoilsectionsinvestigatedarep~sentedas functionsofMachnumberat constantanglesofattackinfigures3, 4,ad 5, respectively.ThecharacteristicsfortheM+ercenbthfclmess+hord ratioaretakenfromreference2. Theanglesofattackindicatedinthefiguresrepre-sentbutnominalvalues,beingsubjecttoa maximumexperimmtalerrorin settingofO.l~O.Thecharacterlsticshavebeencorrectedfortunnel-wallinterferenceby themthodsofreference5. wshed lineshavebeenusedinthefiguresto ~ndicatetheregion@ possibleinfluenceofwi.nd-tunnelchokingeffectsontheresults.

Leadtng4dgeRadius

Withinthelimitsof thepresentinvestigation,theleading+dgeradiusdoesnotsignificantlyinfluencethevariationwithMachnumberof theaerodynamiccharacteristIcsof ~ and&percentihord-thickair-foilsections.A smallsuperiorityimthemximumsectionliftcoeffi-

clentat Machnumbersfrom0.4to0.75isindicatedinfigures6 and7forthe&percent-thickairfoilwiththeverylargenoseradiw. Forthe *

NACATN 3172 5

.

,

.

&percent-thicksectionsho importantdifferencesexist.No importanteffectofnoseradiuschangeonthelift+mrve-lopevariationwithMachnuniberisindicatedinfigure8 foreitherthichess-chordratio.Theminimumdragcoefficientisnotedfroma studyoffigure9 (illustratingthevariationof sectiondragcoefficientwithsectionliftcoefficientat constantMachnuniber)tobe lowerat allMachnmibersforthe~ercent-thicksectionwiththestandardleading-edgeradius;but,atnmderatetolargeliftcoefficientsforMachnumbersupto 0.7, thedragcoefficientsareloverfortheprofilewiththelargernoseradius.Thelattertrendcanalsobe notedfromthisfigureforthe6-percent-thicknesHhordratio.No realdifferencesareobservedinthevariationsof sectionpitching-momentcoefficientwithsectionliftcoefficientat constantMachnmiber(fig.10)forthesectionswiththevariousleading+dgeradii.

MaximumThicknestihordRatio

A progressiveimprovementinairfoil+ectionliftcharacteristicsresultsfromreductionoftheairfoilmaximumthickness-chordratiofrom10to 4 percent.FromfigureU, thelift+livergenceMachnuriberisobservedto increasenearlyMnearlywiththicbessreduction.2 TigureU illustratesthegaininmaximumsectionliftcoefficientwithdecreaseinHimum thicknessatMachnunibersabove0.6. ThevaluesatMachnum+hersbelowabout0.6arestijectto questionbecauseofthelowscale.However.,theresults01theinvestigationofreference6 indicatethatatthehigherMachnunibersthevaluesarenotmuchinfluencedby therela-tivelylowtestReynoldsnmibers(approximately2X106).Theeffectsofmaximumthi.ckness-chord+atiovariationonthesectionli=urve slope}illustratedinfigure13,arewhatshouldbe expectedinthateachsucces-sivereductionofthicknessincreasestheMachnuniberatwhichthelift-curveslopebreaks.

Theeffectofreductionofthickness-chordratioontheMachnuniberfordragdivergence(fig.14)isto increasemarkedlythevalueofthisparameterat zerolift. Withincreasingliftcoefficientthisfavorableeffectdiminishesbecomingverysmallat a liftcoefficientof0.5.

At Machnunibersbelow0.7,thevariationof sectiondragcoefficientwithsecti?nliftcoefficient(fig.9) isadverselyaffectedby reductionofthemaximumthickness;forMachnumbersgreaterthanOn, theconverseistrue. Theminimumdragcoefficientisprogressivelydecreasedwithmaximuuthicknessreductionat allMachnunibers.

Maximumthickness-chordratio,withinthelimitsofthepresentinvestigation,hasno importantinfluenceonairfoil-sectionpitching-momentcharacteristics.%l?heportionsofthecurvesshownforthelift-coefficientrangefromapproximately-0.2to0.2representestimatedvaluesofthelift-divergenceMachnuniber,therebeinginsufficientdatato permitpo~itivedeterminationofthisparameternearzerolift. Thelift+iiivergenceMachnuniber,of course,hasno significanceat zerolift.

6 NACATN 3172

CONCLUSIONS“

Fromtheresultsofa h@h-syeedwind-tunnelinvestigationof theeffectsof leadin&edgeradiusandmximumthickness+hordratioonthevariationwithMachnumberoftheaerodynamiccharacteristicsof severalthinsymmetricalNACA~igit-seriesairfoileections,itisconcluded:

1. ThevariationswithWch numberofthelfft,drag,andpitchingmo~nt fora &percent-chord-thickairfoilsectionarenotsignificantlyaffectedby a changeoftheleading~dgeradiysfrom0.18to 0.53percentofthechord.Theu is trw fora leading+dge-radiusvariationfromO.l& to O.-percentchordona 6-percent+chord-thicksection.

2. Reductionofthemaxfmumthickness-dordratiofrom10to 4percentprogressivelyimprovesthevariationoflift-curveslopewithM%chnumber,theliftanddrag-divergencecharacteristics,andthemax-im sectionliftcharacteristicsatMachnunibersabove0.6.

39 Sectionpitchi~nmmntcharacteristicsarenotgreatlyaffectedby variationofthemaximumthlckness+hofiratio.

&s AeronauticalLaboratory,N3tionalAdvisoryCotitteeforAeronautics,

MoffettTield,Calif.,May4, lg50

REFERENCES

1. Smmws, JamesL.,andGraham,DonaldJ.: EffectsofElystematicChangesofTrailing~dgeAngle- Ieadh@ldgeRadiusontheVbriationwithMachNumleroftheAerodynamicCharacteristicsofa 10-Percen=hord-I’hickNAcAAirfoilSection.NACARMA918, lgkg.

2. Stack,John,andvonDoenhoff,AlbertE.: Teetsof16RelatedAirfoilsatHighSpeeds.NAcARep.4$72,1934.

3. Theodorsen,Theodore:TheoryofWingSectionsofArbitraryShape.NACARep.411,1931.

4. Abbott,_ E.,vonDcmhoff,AlbertE.,andE%ivers,LouisS.,Jr.:SummaryofAirfoilIhta. NACARep.824,1943.

NACATN 3172 7

.

5. Allen,H. Julian,andVincenti,WalterG.: WalllnterferenoeinaTwQtinslonal+lowWindTunnel,WithConsiderationof theEffect* ofCompressibility.NACARep.782,1944.

6. Spreiter,JohnR.,andSteffen,PaulJ.: Effectof&h andRemoldsNumbersonMaximumLiftCoefficient.IIACATN1044,1946.

8 NACATN 3172

TAKCEI. – COCIRDINAZESANDTHEORETICALIRESSUREDISI!RIBUTIOMSFCE?TEENACA000L1.1040/1.775AIRFOIL

(per~entc) (per~entc) (v/v)= V/v Ava/V

o 0 0 0 5.3651.23 .603 l.lq 1.061 1.4272;5 .8U3 1.130 z.063 1.010y.o l.o~ 1.123 1.060 ●7057*5 1.270 1.115 1.056 .56610 1.413 1.108 1.053 .48315 1.620 1.099 1.048 .382

1.765 1.097 1.048 .320; 1.940 1.093 1.046 .243

2.000 1.088 1.043 .lg550 1.940 1.085 1.042 .15660 1.773 1.082 1.040 .12570 1.493 I..061 1.030 .09680 1.106 1.032 I.016 .069

.622 ;;3 .997 .037~~.. .342 ●970 .013

.040 0 0 0

L.E. radius:0.18percentc.

.

.

NACATN 3172 9

.

. TABLE11.– COORDINATESANDTEEOIUZTICALI?KEESUREDISITUWTIONSFORTHENA.CA0004-3.3040/1.575AIRFOIL

(perc~ntc) (perc~ntc) (v/v)z VP Ava/V

o 0 0 0 3.5151.25 .g31 1.328 1.153 1.1992.5 1.196 1.317 1.148 .9945.0 1.468 1.214 1.102 .6857=5 1.611 1.182 1.087 .34910 1.717 1.153 1.074 .46615 1.799 1.112 1.054 .36620 L 862 1.091 1.045 .30630 1.955 1.078 1.038 .23440 2.000 1.082 1.040 .18950 1.940 1.(X3 1.041 .154‘60 1*773 1.079 1.039 .v6

1.493 1.059 1.b29 .099U I.106 1.033 1.016 .07590 .6222 .994 .%7 .04993 .342 .935 ●967 .033100 .040 0 0 0

L.E. radius:0.53P9rcentc.

.

.

10 NACATN 3172

.

.

!lXBLllIII.– coommATEsAm THEORETICALmxsm DISTRIBUTIONSFmTHENACAOOO&l.10 40/1.575AIRFOIL

(per~entc) (perc~ntc) (v/V)’ Vp Ava/V

o 0 0 0 3.7811.25 ●!307 1.149 2.072 1.3612.5 1.228 1.174 1.054 ●9745.0 1.633 1.174 1.084 .6847*5 1.908 I.164 1.080 .55110 2.120 1.158 1.076 .47015 2.433 1.145 1.070 .37220 2.643 1.141 1.068 .31230 2.915 1.143 1.069 .23940 3.000 1.141 1.06a .189.50 2.915 1.u8 I.062 .15460 2.660 1.115 1.056 .12570 2.240 1.038 1.043 .0$)880 1.660 1.053 1.026 .07290 .934 1.002 1.001 .04595 .514 .915 =957 .027100 .060 0 0 0

L.E. radiua:0.40~rcentc.

.

.

NACATN 3172 11

TABLEIv. - COORDINATESANDTHEORl?TICALPRESSUREDISTRIBUI’101’TSFORTHENACAOboti.70ho/1.575AIRFOIL

(perc~ntc) (perc&tc) (v/’v)2 v/T Av3/v

o 0 0 0 4.5201.25 .766 I.083 1.041 1.3652=5 1.067 1.123 1.060 .9775.0 1.473 1.138 1.067 .6877*5 1.767 1.142 I.069 -55510 1.989 1.144 1.069 .47415 2.354 1.148 1.072 ●37720 2.607 1.152 1.073 .317{: 2.908 1.148 1.072 .241

3.000 1.145 1.070 .193;; 2●915 1.136 1.066 .156

2.660 1.117 1.057 .1262.240 1.095 1.046 .0S9

X 1.660 1.056 1.028 .07490 .934 ●997 *999 .04795 .514 .924 .961 .030100 .060 0 0 0

L.E. radius:0.25percentc.

12 NACATN 3172

.

TABLEV.– COORDINATESANDTHEORETICALPRESSUREDISTRIBUTIONSFC!RTHENACAOO06A3.2740/1.575AIRFOIL

(perc~ntc) (perc&tc) (v/v)2 T/v Ava/V

o 0 0 0 6.8931.25 .566 .962 *g81 1.3492.3 .8ko 1.029 1.015 .9745.0 1.247 1.077 1.038 .6897*5 1.567 1.0$?7 1.047 ●5%

10 1.826 1.119 1.058 .48015 2.246 1.140 1.068 .38320 2.546 1.154 1.074 .32230 2*WQ 1.16040

1.077 .2453.000 1.148 1.071 .194

50 2●914 1.134 1.065 .15760 2.660 1.120 1.O% .127P 2.240 1.097 1.047 .09980 1.660 1.058 1.029 ●073w .934 ●999 ●999 .04693 .514 .g20 ●959 .028100 .060 0 0 0

L.E..radius:0.10percentc.

.

.

NACATN 3172 13

.

TABLEVT. - cOORDINXLESANDTHEORETICALIRESSUREDISTRIBUTIONSFQRTEElWICA0008-1.10kO/1.5~ AIIU?OIL

,

(perc~ntc) (perc;ntc) (v/v)2 v/7 Ava/V

o 0 o“ o 2.%31.25 1.210 1.138 1.067 1.3292.5 1.636 1.228 1.108 .9745.0 2.179 1.236 1.3X2 .6867.5 2.540 1.223 1.106 .55210 2.825 1.217 1.103 .47115 3.240 1.206 1.098 .37420 39530 1.199 1.095 .31430 3.889 1.194 1.093 .23940 4.CQO 1.191 1.0$.?2 .19150 3.889 L 182 1.087 .15560 3.545 1.160 1.077 .12570 2=985 1.123 1.06Q .O*80 2.212 l.o~ 1.037 .0729 1.243 .994 ●997 .04595 .684 .919 .958 .029lW .080 0 0 0

&

L.E. radius:0.70percentc.

.

14 NACATN 3172

.

w

TABLEVII.- COOIU2WITESANDTHEORETICALTRESSUREDISTRIBUTIONSFORTEENACA0010-1.1040/1.575AIRTOIL

(perc~ntc)

o1.252.5~.o7~5

1015203040w6070809095100

(perc~ntc)

o1.5112.0442.7223.1783.5334.@64.4114.8P65.0004.8564.4333-7332.7672.556.856.100

(v/v)2

o1.1081.245I.2861.2771.2691.2611.2481.2441.2421.2311.2111.1551.089.980.912

0

L.E, radius:1.10percentc.

o1.0531,1161.1341.1301.1271.1231.1171.1161.1151.1101.1011.0741.043

● 990● 955

0

2.3241.286.966.690.556.475.377.316.241.193.155.126.og8.072.045.0300

NACATN 3172 15

L

NAGA 0004-UU 40/L575

cNACA 0004-330 40/’.575

NAGA 0006 -LIO 40/L575

u

NACA 0006-0.70 40/L575

NACA 0006-0.27 40//.575

NACA 0008 –LIO 40//!575

.

NAGA 0010- UU 40/4575

=S=’FigureL- NACA airfoil profiles invesfiguted.

L4

M

Id

.8

(9e

v

.6

.4

2

n

\

4

\— ~ _ / . . — . _

~ _

-

NAGA 0004-3.30 40/1.5?5 \__ NACA 0004-1.10 40/L5R5

1 1 1-o ./ .2 .3 d .5 .6 .7 .8 .9 LO 5

x(0) Maximumthixness-cbad mtio of 0.04.

GEl

Figun?2.- Theoreticalpressm distributions showhg Me effect ofthichess-chotd mtb and leading-edge mdius. ~, Oj M, O.

.

IL4

I!2

h

aNACA 0006-1.10 40/1.575

V2(+

— —_ /VACA 0006-0.70 40/1575v ______ AJACA 0006-0.27 40/L575

.6

.4’

.2

o ‘o .f .2 ●3 .4 .5 .6 .7 .8 .9 LO

(b) Moximum thkks - chtvd tznlo of 0.06.Figure 2.- confihtteo!

.- 171 I I

IL- I-7---I--+ -+-—I-+--I---I---L--L-T 1A

lo

.8

(+YNACA 0010-1.10 40/L5?5

;

.6 _– _ NACA 0004-1.10 40/1.575

#

.2

0 1 I 1

0 J 2 9.3 4 5 .6 .7 .8 .9 M

(c) Variation of m;imum thickness-chord rohb.Figure 2.- Conchded

NACATN 3172 19

.

.

(o) NACA 0004- 1./0 40/1.575 Airfoi~

Fi~n9 3.- Vuriutionof sectionlift coefficimt with Mach numberof constontffnglesof ottuck.

-— — —-

NACATN 3172

Figure3.-

M7ch number,Mv

(b) NACA 0004-330 40/1.575 Airfoile

Continued.

,

Y

NACATN 3172 21

.

ae v /

o 0:

: &A4

/t‘. — - — —

4.3 $ .5 .6 .7 .8 .9 Lo

Moth number,M

(C} NACA 0006- LIO 40/L575 Airfoila

Figure3.- Continued.

22 NACATN 3172

Mach number, M

(d) NACA 0006-0.70 40/1.575 AirfoiL

F@#i93- cwim?a!

-=25=

.—

NACATN3172 23

.

8

.

.

.

me

1

.W.2 .3 ,4 .5 .6 .7 .8 .9 40Moth number,M

(e) NACA 0006-0.27 40/1.575 Airfoil

Figure3,- Confizked.

NACATN 3172

au

o:;0’ 6’ A

A 4°V GoD 8°a IOU<*v /2°

*W

●2 .3 ,4 .5 ,6 .7 .8 .9 koMachnumber,M

(f) NACAOm8-LIO 40/[575 Airfoil,

Figure 3.- Cmfkwed..

.

NACATN 3172

.

.

f.i

/.c

-.2

-.4

-4s

o &

•1 /0

A 4°V 6°D go

v /p q . .-.

-:2 .3 4 .5 .6 .7 & .9 LoMuch numbe~M

(g) A!ACA 00/0-[/0 40//575 Arfoil,

Figure 3.- &cl.uu’ed.

26 NACATN 3172

I I . ..-A I I I A I I I

,02

?2 .3 !4 .5 .6 .7Mach?lUmbef, M

(d NACA 0004 -1./0 40/1.575F’igure 4.- Variationof sectiondmgcoeffickntwith

constuntanglesof attack.

.8 .9 mT

AirfoihMuchnumberat

NACATN 3172 27

0

*

*

.

.

Mach number,ttf(~) NACA 0004-3.30 40A!575 Airfoil.

Figure4.- Continued

> Section drug coefficient,cdmm.-.

R 1 , ,- ,, u , 1 1 1 1 1 1 1 1 1 1

NACATN 3172

d

\

\

\ rg

I$$; .f “

/ 2.1“

o 0:I

; ;:/

V 6°D 8°4/0”

.3 .4 .5 .6 .7 .8 .9 ltMachwmber,M

ii?’) NACA 0006-0.70 40/L575 Airfoil,4.- continued

29

?

30 NACATN 3172 .—

.

.02

0 0°

‘o z“A 4°

kk’”

L!..Ll)bl I I IV 6°e: /%

.4 .5 .6 .7 .8 .9 40Machnumbe~M

(e) NACA 0006-0.27 40/1575 A)rfoil,w

Figure 4.- Gontinueal

.

.

IfACATN 3172 31

.221

.20

./8

.16

.06

.04

.02

:2 .3 .4 .5 .6 .7 .8 10

~UCh #W?b8f8 M 6(f) NACA 0008-HO 40/[575 Airfm7+

Figure 4.- Confi’ued.

32 NACATN 3172

(g) NACA00/O-LIO 40//.575 AirfoiLFigure4.- Concluded.

.

.

.

.

Sectionp!tching-momenlcoefficient,Cm.1 .1 .1 c?

?‘k b h Q “< “h L “h

b

v

. .“.

I /-[f

34 NACATN 3172

.4

me.3 6 .=”

N d+ 0$ ~ &

o

$’ .2 ;~ A‘-Q“+ A 4ek V 6*8 ./ : ,;”$ v /2°g . . .yo

.$* ~.3 -./Q /~“-%Q -.2w

–,3

-.42●3 .4 .5 .6 .7 .8 .9 10

Mach numbertA+

(b) NACA 0004-3.30 40/i.575 Airfoi/.

Figure 5.- Continued.

.

.

NACATN 3172 35

. . .

[

\

+

73

y-,4.2 .3 & .5 .6 .7 ,8 .9’ [0

Much number,M

{c) IVACA 0006-110 40/1.575

Figure5.- Continued.

Airfoii”

.

.

d

.7.2 .3 $ .5 .6 .7 ,8 .9 40/$ft#Chnumber,M

(i+) NACA 00(X -0.70 40/1.575 Airfoil.

.

4

Figure5.- CWlnueo!.

.

NACATN 3172 37

ae

o 0:

: !?OA 4°V 6“D 8°4 /0:v /g

v v

,3 ,4 .5 ,6 .7 .8 ,9 iOMuch number,M

(e) A(ACA0006-0.27 40/L575 AirfoiL

Figure5.- Continued.

ylI

Sectionpitching-mamentcoefficient~Cmw4

NACATN 3172 39

6-:0cf-/”o 0°: ;;

A 4°V 6°b 8“Q /0°v [2°

.-.2 .3 .4 .5 .6 .7 .8 .9 10

Much number,M

(9) ~ACA0010-110 40/L575 AirfoZ

Figwe 5.- Concluded

.“

..%2 40 .W .56 .60 9625 .65 .675 .70 .725 .??5 .725 .60 .825 .85 .875 .90

4 8 L?Mach numbur W ae = O“ds

Sedk4 a)g~ d *ck, a., deg (f~ M“SO)

(a) A!ACA 0(W4-LIO 4CW575 AfrW.

F@tw 6.- Vmbtim of sectkm lift ooefftcient wifh o?@ of affock at constant Mach numbers.

, # .

9 *

/.0

Q- .8

j’ #j

a%Q .4

g% .28$*go

72

-.4

Y6.30 L40 .50 .55 .60 .625 .65 575 ,70 .7P5 .75 ,775 .80 .825 .85 .875 .W

-4 0 4 8 12Mach twmber for me= O” axis

Section ongle of attock, ae, deg f for M= .30)

Figure 6.- Continued

(b) NACA mo4-3.30 40/1.575 Afrfbfl.

.8 IJ. \

& i/

1 r 1 u I 1 I I I #

-.4I 1 /

/ I .90– ~

;6 -3.40 .50 ,55 ,60 .625 .65 .6Z5 .70 .?25 .75 .?= ,80 .825 .85 .875 .90

-4048Section angle of atfock,

Figure 6.- Continued

Mach number for UO-W arls1? v

ao, &g (for M=.30)

(c) NACA OOC6-HO 4GZ575 Airbif.

, . . . . .

t , . ,

.8 I I I I I I II 1 II I II I II Ill Ill Ill Ill I II Ill I 1/ I v I I

u’ ~!, , , I , - I .

b lY1-YIYljI

/ v vI

t / /I I I

I / /I i IK;8751“ I r

+1 I t . 7(/

I 1

%6.30 .40 .50 .55 .60 .(X5 .65 .6Z5 ,~ .?25 75 .775 &30 .825 ,85 BZ5 ,90

Mach ntier fir q-00 axfs-4 0 4 8 L?

Section angle of attock, an, o’@ @r ME.30)

(d) NAC4 LW06-O.?V 4W5Z5 Ai&i!

F@w 6- Confi~ed&

.

L? I I I 1 I I I I I I 1 1 I I I I I I I I I I I I I I

10 - . . —— .—

r r f I It I I l\f

-.4I I \

d I f.w– J

+5.30 .40 so .55 .60 &5 .65 .673 .~ .?25 25 .m .80 .m .65 &75 .90

Mad amber for u. =00 &-404812 w

Section *e of ottack, aO, &g (* IW=.30)

* *

[e) IU4G4 0226-0.27 40.45% AtrtivZ..

i

, .

F@R? 6.- GmWJed.

-. I. . .

-4 0 4 8Section angle of attack,

Figure 6.- Continued.

ffacb munberfor ~ =0° axis/2

6

@*.

.$

Mach number for ~ = OOaxls-4 0 4 8 12

Section angle of attack, ~, deg (for M 8.30)

(g)NACA 0010-IJO 40/1.575 airfoil section

F@n’e 6.- Conchded.

, . , .

Lu

ElN

NACATN 33.72 47

/,2

(0

— NAGA0004-3.30 40/4575——— NAGA0004-1% 40/1575

/

\ ~ f\ * . ~ ./-

} .3 .4 .5 .6 .7 .8 .9Moth number,M

(a) Maximumfhidness- chordratio of 0.044

m’

.8 “~ ‘-— -’. .-/~ < --”.-

.6 -fVACA0006-1.10 40/L575NACA0006-0.70 4CVZ575—=G==’–

‘— NACA 0006-0.27 40/1575.42 ●3 I

.4 .5 .6 .7 .8 .9Much number, Al

(b) Moxlmumfhickness- chordratio of 0.06.

FigureZ- Effect of changeof leading-edgeradiuson the variationof maximum section hft coefficient with Mach number.

4a NACATN 3172

.7-

— NACA0004-330 40/[5?5——— NACA0004-410 40/1575

.3 I

.2 “ tA/

,/

‘2 .3 .4 .5 .6 .7 .8 .9Moth num&er,M

(u) Moxlmumthkbess-dord fofioof 0.04.

.4’NACA0006-HO 40//375

.— NAGA00(26-Q7040//575

.—.. —NAGA0006-02740/L575.3

.2

,/

.4 .5 .6 .7 .8 .9Mach number, M

(b) Moximumf~kness- chordrotioof 0.06.

Fi&ure& Ef&cf of ckmgeof [eudng-edgerodusw th vur~ti ofsecfhn[ft-curve dopewfihMuchnwnkr.

NACATN 3172 49.

.

.875

,85,

.

.

.

,/8

,/6

./4

,/2

./0

.08

,06

.04

.02

0

,

a

,

,

.80

.775*s ,75QII.725@

,70

,675

,65

4

.60

.55

.50

.40

.30

i

;

1

I A I/1 1 1 I I I I

:8 ;6 -# ;2 O .2 .4 .6 ●8 /’.042Sect/onlift coefficient,c1

(o) NACA 0004 -1.!0 40/L575 AMbil.Figure9.- Vuriotlonof sectiondrugcoefficientwifh secfion

coefficientd consfcmfMachnumbers.Rff

.-. -. —.- --—.

.MWA TN

./8

./6

,/4

./2

./0

.08

.06

,04

.02

n

I ,-- - , I r 1 1 1 — v 81

/t

/ ~ 1/Ill I* I 11~1

.85 H+H+H+H[L__ I I I

.825 ~ \- I

.80 .80 I I\ f

.775

.75

.725

● 70

.675

.65

.625

1rt

//

I 1 I 1 1 I 1 1 ! -l I I I II

1 1AA I II

.60 .Ou ,f / Al)

!/1

RR > - - /.55 I I I.-Q I I 1

I II I 1 I I I 1/ If II I I

I I I1= .

.50 .50 / I I/ ‘ I I7.

.40 .40I TTwR+b4-+!?ii=’

I I I I I I

30{ I I.

‘“W-8 =6 74 :2 0 .2 $ .6 .8 LO k2Section/if/ coeff/c/ent,c,

(b) NACA 0004-3.30 40//.575 A/ifoiL

Figure 9.- Continued.

NACATN 317P

.18

.!6

./4

./2

./0

.08

.06

.04

.02

0

.875

.85

.825

.80*a .775

T .75J

.725$& .70*~ .675cs .6582 .6S

.60

●55

.50

.40 I I I 1 I I 1/ AM=.30 1

% _ / -

●3%8 -96 + -.2 0I I I I I I

.2 4 .6 .8 !S USection lift coefficient,

(C) NACA 0006-/./0 40/M75

c,

AirfoiLFigure9.- Continued.

52 NACATN 3

./8

./6

./4

./2

./0

.08

.06

.04

.02

0

c1

F/gwe 9.-

}mmlm

.80

.775

.75

.725

.70

.65 I t I I 1/

.625 t-1

I I v

.625 &J~ / - I I 1/ i

I1A /1H

-i. / -.60 I

66 I I

(d) NACA

Continued.

Section fif t

Ocw6-o.mcoefficient, c1

4W!575 Airf&L

.

.

.

*

53

.

.

.20

./8

./6

,/4

./2

./0.08

.06

,04

S02

o

Ill

II II 1 I III I

I I

section/ift

(e) NACA 0006-0.27~!@tr9 9.- GOJ?finU8d.

coeffibkt, ct

40/L575 AirfolL

‘yI NACATN 317’2

./8

./6

./4

./’

./0

.04

D2

0

Figure9.-

.

.

.

e

.[{ a=L.75-—1 I IA 1/1

.Z5 m=— I 1A I /1

●W

.625

.60

Sectim lift

{f) NACA 0008-/./0

Gontihued.

coefflcieflt*cIT40//.575 Airfo//.

.

NACATN 3172

.

.

.f6

./4

./2

./0

.08

.06

.04

.02

0

,875

,85

.825

.80

.775

1 # 1 1, b 1 1 i

----

.75

,725

.70 1 1 1 n 1 1.675H --II I I

> -~.675 I I ,,

.65 \ },65

.625

.60

.55

.50

.40 I I I I IM=.30—11

t1

I I I I I I t I 1 I I I I I I I I I I I )“30Y8 ;6 -94 ;2 O .2 ,4 .6 .8 LO 12

Section

(g) A(ACA00/O-LIO

/ift coefficient,c1

40//.575 oirfoih~

Figure9.-

9875

.85

.825

.80

,a-Y8 ;6 -.4 T2 O .2 d .6 .8 40 42

SectionIlft coefficient,c,v

(o) NACA 0004-1.10 40/15Z5 Airfoil.

Flgu~ 10.- Vurlationof sectionpliching-momtmtcoeffidd with$Wthnlift mefflclentot consfontMwh numbers.

NACATN 3172 57

.

*

.

A?75

.85

.825

.80

.775

.75

‘~ .725

; ,70

t?:675

.65

.625

.60

,55

.50

,40

.30

-.8 -.6 -4 -.2 0 .2 .4 .6 .8 10 42Sectionlift coefficient, c1

=s=(b) NACA0004-3.30 4CW575 Airfoil,

Figure IO.- Gontinuetl

58 NACATN 3172

,8Z5

.85

,825

.80

C775

.75

Jz!5

.70

.2

.1

0

-./

?2

.63tii’!!fi iiiiili P{ii iit4396

.55

.50

.40--030 r ‘--

I I I 1 I I I I I -h I

t ISection//ft coeffhhnt,c1

T(C) NACA 0006-L (O 40/L575 Airfoii,

.

✎FlgurwIO.- Conffnued

NACATN 31-72 59

./

0

-./

-.2 ;8 76 -.4 :2 0 .2 .4 .6 .8 LO MSection Iifi coeffkient, c1~

(d) AiACA 0006-0.70 40/1.575 Airfoil.

FlpureIO.- Continued

60 NACATN 3172

o-./

Sectiontiff coefflclen~c‘-W NACA 0006-0.27 40//.575 AirfdL

Figuta10.- Continued.

~CA TN 3172 61

.

.

.

o

.

s Flgwe10.- Conthued

62

Am

.&5

Jw5

,80

,775

75

.725

.m

675

.63

,63

.60

35

30

.40

30

:8 ;6 -.4 :2 0 .2 4 ,6 .8 10 &Section lift coeffkient,c,

.

.

‘i

(@] NACA 0010-LIO 401L575 airfoil.

F..gure10.- Concluded.

h

Lo

.9

.8

.7

.6

.

.5-.6 -.4 + o .2 .4 .6

section #f) Coefficient, c1

Figure 11- Effect of change of moxlmum thickness - chord ratio on the voriotion ofMach number with section lift coefficient.

B m

Iiff-diw?rgence

64 NACATN 3172

/.2

Lo ///k“*

s 1f~~ ‘ \. 1“~ Q .8 - /

—. .- -- /$*-

\. ..> - “s -u)~ ~ /

Q .6.g> NACA 00/0 -M7 40//.575~~ — — NACA0008-/.10 40/L 575

*————— NACA 0006-LW 40//.575 --—— NACA 0004-/./0 40/1575

.42 ●3,4 .5 .6 .7 .8 .9

Much number, MFigure/’2.- Effect of changeof maxhnumthickness-chordratio on

thevariationof muximumsectionlift coef?%i~twithMuchnumbe~

NACA0010-1.[0 40/L575NAGA0008+Y0 40//. 575

~–~— NACA0006-4/0 40/L575—.— /VACAUO04-UO 40//’.575 A

—. -— -

72 .3 .4 .5 .6 .7 .8 .9Mach number, M .

Figure/3.- Effect of changeof moxlmumthk%ess- chordrofio on the Nvariationof sectiontiff-curveslopewithMothnumber.

$’

(,0

—,9 A~ ●

//“ ---

/ ‘ / “ ‘\ \/ /’ e~ ~. \

~/,/ /

.8 //,

\~ <\ \ \~ .7g \’ \\\

s\

b — NACA 0010- /./0 40/1.575

& ,6 . —— ffACA 0cW8-i.10 40/i.575– – – — NACA 0006-410 40/1.575_ -—NACA 0W4-LIO 40/L575

,~.6-.4 -.2 0 .2 .4 .6 .8 1’

,

Section lift coeffichwt, c1

Figure 14.- Effect of chongeof maximumthkkmss- chwd ratio on the vuriotionof dreg-divergenceMoth numbw with section iiff coefficient

top related