MS Thesis Defense

Post on 11-Jan-2017

237 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Detection of Epileptic Seizures using Statistical Features in the EMD Domain

S M Shafiul AlamStudent No: 0409062207

Department of Electrical and Electronic EngineeringBangladesh University of Engineering and Technology

Outline Background Motivation Objective Methodology Results and Discussion Conclusion Future Research Questions and Answer

2

BACKGROUND

3

Human Brain

4

Complex network of approx. 100 billion neurons

Information processing Communication with and within rest of the

body

Human Brain

5

Neuron – fundamental element of the network Interconnected using Axon and Dendrite Transmission of electric impulse

Synapse

Epilepsy and Seizure

Most common and serious neural disease Results from brain malfunction Causes recurrent seizure activity

6

Epilepsy and Seizure

Violent body shacking Muscle twitching Lost of consciousness

7

Unpredictable Unexpected injury Death

EEG Electroencephalogram Records neural activity from electric impulses Non-stationary Non-linear

8

Scalpelectrode

Subduralelectrode

Depthelectrode

9

Normal Pre-Seizure

SeizurePost-Seizure

Detection of Seizure

10

Continuous Monitoring

How long is the EEG records? How many patients are there? Hospitalization for how long?

Automatic System

Alternative to continuous monitoring

Gives alarm when seizure occurs Enables automated drug delivery Less hospitalization

11

MOTIVATION

12

Automatic EEG Monitoring System

Diagnosis Is the person suffering from epilepsy?

13

Detection Is the person experiencing a seizure?

General Strategy

14

EEG records

Pre-processing

Feature extraction

Feature based classification

Pre-processingMandatory Noise suppression Artifact reduction (e.g. muscle activity, heart activity, eye activity)

15

OptionalTransform into another domain (e.g. FT, DWT, TFA etc.) Power spectrum estimation

Feature extraction

Energy content Statistical feature (e.g., mean, standard deviation, variance etc.) Chaotic feature (e.g. LE, CD, FD, AE etc.)

16

Feature based classification

17

Threshold based decisionLinear classifierNaïve BayesKNNANNSVM

Issues

Classification performance Computational requirement Speed Practical implementation

18

OBJECTIVE

19

Transform EEGs into EMD domain Extract EMD domain statistical and chaotic

features Investigate features’ discriminating

capability Design ANN based classification system Study performance for epilepsy diagnosis

and seizure detection

20

EMD Empirical Mode Decomposition Output – set of IMFs Independent of linearity/non-linearity Independent of stationarity Adaptive Requires no basis function (Different from FT, DWT and other

TFA)21

Sifting Process

22

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

Local max. ()

Sifting Process

23

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

Envelope (max.)

Local min. ()

Envelope (max.)

Sifting Process

24

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

Envelope (max.)

Envelope (min.)

Mean

Sifting Process

25

10 20 30 40 50 60 70 80 90 100 110 120-2

-1

0

1

2IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

Residue

To be an IMFNo. of maxima and minima = No. of zero crossings

orNo. of maxima and minima – No. of zero crossings = ±1

METHODOLOGY

26

EEG Online Database

27

http://epileptologie-bonn.de/cms Five data sets One hundred EEG records in each set Sampling frequency: 173.61 samples/sec Length of each record: 4097 samples Available with artifacts omitted

Healthy group Five healthy persons(awaken and relaxed) A:- eyes opened B:- eyes closed

Epileptic group Five patients C:-Inter-ictal (hippocampal formation) D:-Inter-ictal (epileptogenic zone) E:- Ictal (epileptogenic zone)

28

29

EEG samples

0 1 2 3 4 5 6 7 8 9 10-200

0

200

v

olts

Set B

0 1 2 3 4 5 6 7 8 9 10-200

0

200

v

olts

Set C

0 1 2 3 4 5 6 7 8 9 10-200

0

200

v

olts

Set D

0 1 2 3 4 5 6 7 8 9 10

-1000-500

0500

time (second)

v

olts

Set E

0 1 2 3 4 5 6 7 8 9 10

-100

0

100

v

olts

Set A

Feature Extraction Procedure

30

EEG

Low pass filter 9 Level EMD

Stat. feature

Chaotic feature

Stat. feature

Chaotic feature

Segmentation

Segmentation

Classification Procedure

31

Stat. Feature

Chaotic Feature Classifier

Classifier

Stat. Feature

Statistical Features

32

-2000 -1000 0 1000 20000

500

1000

1500

2000

2500Healthy EEG

Voltage (v)

Rel

ativ

e fre

quen

cy

-2000 -1000 0 1000 20000

500

1000

1500

2000

2500Inter-ictal EEG

Voltage (v)

Rel

ativ

e fre

quen

cy

-2000 -1000 0 1000 20000

500

1000

1500

2000

2500Ictal EEG

Voltage (v)

Rel

ativ

e fre

quen

cy

(a) (b) (c)

Statistical Features

Average level of dispersion:- Variance Average level of asymmetry:- Skewness Average level of peakedness:-Kurtosis

33

Statistical Features (Observation)

34

Preliminary observation

Quite large variance for ictal EEGs compared to non-ictal ones

Rapid decrease of variance from IMF1 to IMF9 In terms of variance, skewness and kurtosis – larger

difference among five sets in EMD domain

One-way ANOVA (99% confidence interval)

Variance:- Band-limited EEGs and all IMFs Skewness:- Band-limited EEGs and first two IMFs Kurtosis:- Band-limited EEGs and first four IMFs

Chaos

Apparent disorder of a non-linear system Highly sensitive to initial condition Phase-space plot demonstrates chaotic

behavior (if any) of time-series data.

35

Phase – Space Portrait

36

-200-150

-100

-50

0

50

100

150 -200

-150

-100

-50

0

50

100

150-200

-150

-100

-50

0

50

100

150

volts

Phase Space Plot of Healthy EEG

volts

vo

lts

Phase – Space Portrait

37

-400

-200

0

200

400

600

800

1000

1200

-400

-200

0

200

400

600

800

1000

1200-500

0

500

1000

1500

volts

Phase Space Plot of Inter-ictal EEG

volts

vo

lts

Phase – Space Portrait

38

-1000-800

-600-400

-2000

200400

600800

1000

-1000

-500

0

500

1000-1000

-800

-600

-400

-200

0

200

400

600

800

1000

volts

Phase Space Plot of Ictal EEG

volts

vo

lts

Chaotic Features

39

Chaoticity:- Largest Lyapunov Exponent (LLE)

Complexity:- Correlation Dimension (CD)

Level of disorder:- Approximate Entropy (ApEn)

40

Chaotic Features (Observation)Preliminary observation

No specific trend of LLE and CD values for Band-limited EEGs

Gradual decrease of LLE values from Set A to E for IMF1 and IMF2

Gradual decrease of CD values from Set A to E for IMF1 – IMF4

Gradual decrease of ApEn values from Set A to E for Band-limited EEGs, IMF1 and IMF2

For all IMFs, mean_LLE (Set A) > mean_LLE (Set E)mean_CD (Set A) > mean_CD (Set E)mean_ApEn (Set A) > mean_ApEn (Set E)

41

One-way ANOVA (99% confidence interval)

LLE:- Band-limited EEGs and first four IMFs CD:- First four IMFs ApEn:- Band-limited EEGs and first five IMFs

Chaotic Features (Observation)

ANN-based Classifier

42

Two-layer feed-forward network Hyperbolic tangent sigmoid transfer function Back-propagation training

Problem Formulation

43

Input Feature

SetClassifier

Healthy

Ictal Epilepsy Diagnosis

Input Feature

SetClassifier

Ictal

Inter-ictal

Seizure Detection

Problem Formulation

44

Input Feature

SetClassifier

Ictal

Inter-ictal

Detection and Diagnosis

Healthy

Diagnosis A, E

Detection D, E

Detection and Diagnosis A, D, E

Others (A,B,C,D), E (A,B), (C,D), E

RESULTS&

DISCUSSION

45

Classification Performance

46

Target ClassO

utpu

t Cla

ss

+ –

+

TP

TNFN

FP

Confusion Matrix

)/()()/()/(

FPTNFNTPTNTPAccuracyFPTNTNySpecificitFNTPTPySensitivit

Performance (3 Stat. Features)Detection (D, E) Better performance in EMD domain 100% accuracy for IMF3 and IMF4Diagnosis (A, E) Better performance in EMD domain 100% accuracy for IMF2 and IMF3Detection and diagnosis (A, D, E) Better performance in EMD domain 100% accuracy for IMF3

47

Performance (3 Stat. +3 Chaotic Features)

48

Detection (D, E) Better performance in EMD domain 100% accuracy for IMF3 and IMF4 Maximum accuracy reported to date:98.74% (FT, ApEn, AR modeling)Diagnosis (A, E) Better performance in EMD domain 100% accuracy for IMF2 and IMF3 Reported same performance using TFADetection and diagnosis (A, D, E) Better performance in EMD domain 100% accuracy for IMF3 Reported 99.28% accuracy using TFA

Stat. features – Maximum accuracy

Addition of chaotic features – similar performance

EMD domain statistical features play major role in characterizing EEGs

Explore the use of statistical modeling

49

Statistical Modeling

50

Sample data

Empirical pdf

Fitting with standard pdf

Estimated parameter

NIG and Stable pdfMoment based estimationEstimation requires large samples

Goodness-of-fit :- KLD, KS statistics

Statistical Modeling

51

0 5 10 15 20-200

-150

-100

-50

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 2000

0.002

0.004

0.006

0.008

0.01

0.012

Voltage label ( v)

Pro

babi

lity

Empirical pdf

-200 -150 -100 -50 0 50 100 150 2000

20

40

60

80

100

120

140

160

180

Voltage label ( v)

Rel

ativ

e fre

quen

cy

Histogram plot

52

Statistical Modeling

-2000 -1500 -1000 -500 0 500 1000 15000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6x 10

-3 Probability Density Function

Voltage ( v)

Pro

babi

lity

Den

sity

EmpiricalStable FitNIG Fit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1P-P Plot

Probability

Pro

babi

lity

EmpiricalStable FitNIG Fit

Performance – Stat. Modeling

Band-limited EEGs – better fitting than IMFs

Stable pdf – better than NIG pdf

53

CONCLUSION

54

EMD domain statistics – better for detection and diagnosis

Less computational requirement Faster Less number of features ANN – optimum classifier Statistical model – promising method

55

FUTURERESEARCH

56

Extensive analysis using Stable pdf Maximum likelihood estimation Classification of visually inseparable EEGs Neo-natal seizure detection Sleep apnea detection Hypnosis detection Brain-computer-interfacing (BCI)

57

THANKYOU

58

QUESTIONS&

ANSWER

59

top related