Model Aircraft L-Band Beacon Antenna Pattern Gain Maps · Model Aircraft L-Band Beacon Antenna Pattern Gain Maps D. W. Mayweather 24 April 1975 Lincoln Laboratory MASSACHUSETTS INSTITUTE

Post on 28-May-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

FAA-RD-75-75

Project ReportATC-44

Model Aircraft L-Band Beacon Antenna

Pattern Gain Maps

D. W. Mayweather

24 April 1975

Lincoln Laboratory MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration, Washington, D.C. 20591

This document is available to the public through

the National Technical Information Service, Springfield, VA 22161

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

FAA-RD-75-75

4. Title and Subtitle

Model Aircraft L-Band Beacon Antenna PatternGain Maps

5. Report Date

24 April 1975

6. Performing Organi zation Code

7. Author! s) 8. Performing Organi zotion Report No.

D. W. Mayweather ATC-44

DOT-FA72-WAI-26111. Contract or Grant No.

10. Work Unit No. (THAIS) 45364Project No. 034-241-012Massachusetts Institute of Technology

Lincoln LaboratoryP. O. Box 73Lexington, Massachusetts 02173

9. Performing Organization Name and Address

12. Sponsoring Agency Name and Address

13. Type of Report and Period Coveredr-:-----------------------------

Department of TransportationFederal Aviation AdministrationSystems Research and Development ServiceWashington, D. C. 20591

Proj~ct Report

14. Sponsoring Agency Code

15. Supplementary Notes

The work reported in this document was performed at Lincoln Laboratory, a center for research operatedby Massachusetts Institute of Technology under Air Force Contract F19628-73-C-0002.

16. Abstract

This document presents L-band antenna patterns for a variety of general aviation and aircarrier aircraft; these patterns were based on scale-model measurements. The antenna pat­terns are described by aircraft-coordinate-referenced elevation vs azimuth gain-contour maps.This method of presentation conveniently displays the effects of aircraft configuration on antennapatterns and allows one to observe the changes in a pattern that result from a change in wheel,flap, or antenna location.

17. Key Wards 18. Distribution Statement

Gain mapsAzimuthal plane angleElevation plane angleL-band

Document is available to the public throughthe National Technical Information Service,Springfield, Virginia 22151.

19. Security Classif. (of this report) 20. Security Classil. (of this page) 21. No. of Pages

Unclassified Unclassified

Form DOT F 1700.7 (8 - 72) Rcprouuct ion of completed pagc :llltilori zcu

APPENDIX A

Section

I

II

III

IV"..

V

VI

TABLE OF CONTENTS

Introduction

MeasureITlent Procedure

Map Generation and Usage

Reading the Maps

Aircraft Photographs

Aircraft Antenna MapSA. General Aviation

1. Single Engine(a) Cessna 150(b) Piper Cherokee Arrow(c) Helio U 10D

2. Twin Engine(a) Beechcraft Baron(b) Beechcraft Baron 99

3. SITlall Jets(a) Gates Lear(b) GruITlITlan Gul£streaITl

B. Air Carrier1. Boeing 7072. Boeing 7273. Boeing 7374. Boeing 747

1

1

3

3

9 through 37

3838

393947616565809696

116128128134140146

152

REFERENCES

TABLES

153

JI l.2.3.4.

Single Engine Aircraft PatternsTwin Engine Aircraft PatternsSITlall Jet Aircraft PatternsAir Carrier Patterns

iii

5678

..

"

Model Aircraft L-Band Beacon Antenna

Pattern Gain Maps

1. Introduction

As part of the DABS program, Lincoln Laboratory has formulatedand carried out a program that measures aircraft L-band beacon antennapatterns on a variety of scale -model aircraft. These aircraft includedsingle- and twin-engine general aviation types, small busines s jets andseveral medium to large air carrier jets. The purpose of this report is topresent the gain patterns in a form that is convenient to the reader.

Each of the aircraft models was constructed to allow at least twoantenna locations and positions of the landing gear and flaps. Thus, severalpatterns were obtained for each of the models. As a large data baseaccumulated the alternates for graphically presenting the L-band beaconantenna, gain data were compared with more than casual interest. The"developed cylinder'! plots (gain contours related to airframe referencedelevation vs azimuth coordinates), as used in this report, were selected asa visual, quickly accessed and understood type of gain plot.

II. Measurement Procedure

Eleven model aircraft were measured. Keeping and Sureau [Ref. 1]have documented the results for seven aircraft measured at Lincoln Labora­tory. The remaining four aircraft were measured at the Boeing CommercialAirplane Company and documented in Ref. 2. A detailed analysis of some ofthe gain data has been accomplished by Schlieckert [Ref. 3].

The models constructed were scaled 1/20 to 1/40 the size of theactual aircraft, requiring that the test frequencies be 20x to 40x that of theL-band frequencies employed by the beacon antenna whose patterns weresought, i. e., to 20 to 40 GHz. The higher frequencies were used on onlythe air carrier models. Vertical polarization was used in most cases (onlya few of the air carrier models were measured using horizontal polarization).Measurements of the gain pattern were collected over the entire sphere(47T steradians). Figure 1-1 details the aircraft~rientedcoordinate systemwith the cp azimuthal plane angle measured counterclockwise from the +Xdirection (right wing); the elevation plane angle e measured from the +Zaxis (vector normal to wings) in a clockwise direction; and the pitch axis,+Y, aligned with the nose of the model.

To obtain gain values over the 47T steradians, the measurementprocedure was to begin at e = 10 , cp = 0 0 for the general aviation models,and (J = 0 0 for the air carrier models; then incrementing .cp in 2 0 incrementsfor a total of 180 points for that particular (J value. By repeating this

1

t X

t.jg

e

t Y

Projection of ­line of sight onXY plane

,

Line of sight

Fig. 1 -1. Aircraftooordinate system.

2

procedure after each 20

increment in e, a total of 16,200 or 16,380 gain valueswere generated for each general aviation or air carrier model gain map,respectively. Then the values were normalized to an isotropic antenna (dbi)by integrating over all the values generated [Ref. 1].

III. Map Generation and Usage

Previously, aircraft gain patterns were usually represented by polarplots, with one of the aspect angles held constant as the othe r was varied.The illustrations provided in this report take that idea a step further by in­cluding the 90 or 91 e planes in one diagram. By assigning a character to a10-db band and printing out the character at each data point, an L-Band gain"map" was generated. See Figs. 2-1 to 12-6: these maps provide useful in­formation regarding the effects of changes in antenna position for a particularairframe. Another use of the gain maps is to characterize the effects ofsignal blockage by various parts of the aircraft structure and to ind icatepictorially how these effects change if flaps and/or wheel pos itions are changed.This type of study has been accomplished by Schlieckert [Ref. 3] for typicalaircraft. A further use of the L-Band data is the study of improvementsresulting from ground and/or air diversity.

Tables I through 4 provide an index to the model aircraft patternIlmaps • " The table entries note for each aircraft type: the antenna positions,the gear and flap conditions, and the polarization used during the model patte rnmeasurements. Antenna pos itions are pictured (and identified by antennaposition number) in top and bottom views of the model aircraft (Figures 1- 2through 1- 26).

Since vertically polarized radiation was used throughout the generalaviation model aircraft measurements: Tables I, 2, and_ 3 do not tabulatepolarization. Both vertically and horizontally polarized radiation were used forthe air carrier model measurements, and the polarization i_s identified inTable 4. Note also that the flap condition was always IIUpll (flaps seated) duringthe air carrier measurements. Two-numeral codes used during the modelmeasureme nts to succ intly identify antenna pos ition and gear conditions areexplained in AppendiX A. (These code numbers appear in the 'Iconditions IIblock at the top of each map. )

IV. Reading the Maps

To provide a simple example of the way in which the airframe/antennapatte rn maps may be used, suppose that it is des ired to compare the gainperformance of the Cessna 150 top antenna (position I) with that of the bottomantenna (position 3). Table I indicates that Figs. 2-1 and 2-5 should becompared (flaps "upJl condition for both cases).

To examine first-order effects, compare the clear areas of each map,i. e., the areas repre senting gain greater than unity (0 db) for the antenna as

3

influenced by its surrounding airframe. As might be expected, the top-mountedantenna provides its greatest gain above the aircraft x-y plane (defined by air­craft nose -ta il and wingtip-wingtip axes), and the ga in of the upper antennaappears to be influenced only slightly by the tail structure (rudder) of the air­craft. It can also be seen that the gain of the top-mounted antenna exceedsa dB within and below the x-y plane of the aircraft within only infrequentand narrow azimuthal sectors, primarily on each s ide of the aircraft ta ilstructure.

Examining Fig. 2-5, it is seen that the gain for the bottom-mountedantenna (position 3) is predominantly below the x-y plane of the aircraft andmarkedly influenced by the extended nosewheel of the aircraft.

Higher-order effects may then be observed by progressively compar-ing the areas of the two diagrams denoted by "dots," "slashes, II and Ilpercentage"symbols.

4

,

TABLE 1

SINGLE ENGINE AIRCRAFT PATTERNS ':'

ANTENNA POSITION GEAR CONDITION MAPAIRCRAFT FIG. NO. ANT. NO. WHEELS FLAPS FIGURE NO.

CESSNA 150 1-2~ -( T)t1 - 3 DOWN UP i-I

• 1-3 1 (T) DOWN DOWN 7-2"1-4 2 IB )** DOWN UP 2-31-4 2 (B) DOWN DOWN 2-41-4 3 IB) DOWN UP 2-51-4 3 (B) DOWN DOWN 2-61-4 4 (B) DOWN UP 2-71-4 4 (B) DOWN DOWN 2-8

PIPERCHEROKEE 1-5

1-6 1 (T) DOWN UP 3 -11-6 1 (T) DOWN DOWN 3-21-6 2 IT) DOWN UP 3-31 -6 2 (T) DOWN DOWN 3-41 -6 2 (T) UP UP 3-51 -6 2 (T) UP DOWN 3-61-7 3 (B) DOWN UP 3-71-7 3 (B) DOWN DOWN 3-81-7 3 (B) UP UP 3-91 -7 3 (B) UP DOWN 3-101-7 4 (B) DOWN UP 3-111 -7 4 (B) DOWN DOWN 3-121-7 4 (B) UP UP 3-131-7 4 (B) UP DOWN 3 -14

HELlO UI0D 1 -8.. 1-10 1 (B) DOWN UP 4-11 -10 1 IB) DOWN DOWN 4-21-10 2 (B) DOWN UP 4-31-10 2 IB) DOWN DOWN 4-4

~

• Vertical polarization used for all measurements.

t (T) Top mounted.** (B) Bottom mounted.

5

TABLE 2

*TWIN ENGINE AIRCRAFT PATTERNS

ANTENNA POSITION GEAR CONDITION MAPAIRCRAFT FIG. NO. ANT. NO. WHEELS FLAPS FIG. NO.-----

BEECH BARON J.-ll(T)t1 - ] 2 1 DOWN UP 5-1

1-12 1 (T) DOWN DOWN 5-21-12 ] IT) UP UP 5-31-12 1 (T) UP DOWN 5-41 - 1 2 2 (T) DOWN UP 5-51-12 2 (T) DOWN DOWN 5-61-12 2 (T) UP UP 5-71-12 2 (T) UP DOWN 5-P1 -13 3 (B)** DOWN UP 5-91-13 3 (B) DOWN DOWN 5-101 - 13 3 (B) UP UP 5 - 111-13 3 (B) UP DOWN 5-121 - 13 4 (Bi DOWN DOWN 5-131 -13 4 (B) UP UP 5 -141 -13 4 (B) UP DOWN 5-15

BEECH BARON 99 1-141 - 15 1 (T) DOWN UP 6 -11 - 15 1 (T) DOWN DOWN 6-21 - 15 2 (T) DOWN DOWN 6-3] - 15 '2 (T) UP UP 6-41-15 '2 (T) UP DOWN 6-51 -16 3 (B) DOWN UP 6-61 -16 3 (B) DOWN DOWN 6-71 -16 3 (B) UP UP 6 -81 - 16 3 (B) UP DOWN 6-91-16 4 (B) DOWN UP 6-.1.01-16 4 (B) DOWN DOWN 6 - 111-16 4 (B) UP UP 6-121-16 4 (B) UP DOWN 6 -13 •1-16 5 (B) DOWN DOWN 6 -141-16 5 (B) UP UP 6-151-16 5 (B) UP DOWN 6 -16

~

':' Vertical poladzation used for all measurements.

t Top mounted (T).

':":' Bottom mounted (B).

6

TABLE 3

-"SMALL JET AIRCRAFT PATTERNS"-

ANTENNA POSITION GEAR CONDITION MAPAIRCRAFT FIGo NO. ANT. NO. WHEELS FLAPS FIG. NO.

GATES LEAR JET 1-171 (T)t1-18 DOWN UP 7-1

1-18 1 (T) DOWN DOWN 7-2.1-18 1 (T) UP UP 7-31-18 1 (T) UP DOWN 7-41-18 2 (T) DOWN UP 7-51-18 2 (T) DOWN DOWN 7-61-18 2 (T) UP UP 7 -71-18 2 (TL,,,,, UP DOWN 7-81-19 3 (B) ',",- DOWN UP 7-91-19 3' (B) DOWN DOWN 7-101-19 3 (B) UP UP 7-111-19 3 (B) UP DOWN 7-121-19 4 (B) DOWN UP 7-131-19 4 (B) DOWN DOWN 7 -141-19 4 (B) UP UP 7-151-19 4 (B) UP DOWN 7 -161-19 5 (B) DOWN UP 7-171 -19 5 (B) DOWN DOWN 7-181-19 5 (B) UP UP 7 -191-19 5 (B) UP DOWN 7 -20

GRUMMAN GULFSTREAM 1-201-21 1 (T) DOWN UP 8-11-21 1 (T) UP UP 8-21- 21 1 (T) UP DOWN 8-31-21 2 (T) DOWN UP 8-41-21 2 (T) UP UP 8-51-22 3 (B) DOWN UP 8-61-22 3 (B) DOWN DOWN 8-71-22 3 (B) UP UP 8-81-22 3 (B) UP DOWN 8-91-22 4 (B) DOWN UP 8 -101-22 4 (B) UP UP 8-11

':' Vertical polarization used for all measurements.

t Top mounted (T).

':":' Bottom mounted (B).

7

TABLE 4

,'-

AIR CARRIER PATTERNS'.'

ANTENNA WHEEL POLARI- MAPAIRCRAFT POSITION POSITION ZATION FIG. NO.

BOEING 707(Fig. 1- 23) TOP UP VERT 9-1

TOP UP HORIZ 9-2BOTTOM UP VERT 9-3BOTTOM UP HORIZ 9-4BOTTOM DOWN VERT 9-5BOTTOM DOWN HORIZ 9-6

BOEING 727(Fig. 1-24~ TOP UP VERT 10-1

TOP UP HORIZ 10-2BOTTOM UP VERT 10-3BOTTOM UP HORIZ 10-4BOTTOM DOWN VERT 10-5BOTTOM DOWN HORIZ 10-6

BOEING 737(Fig. 1- 25) TOP UP VERT 11-1

TOP UP HORIZ 11-2BOTTOM UP VERT 11-3BOTTOM UP HORIZ 11-4BOTTOM DOWN VERT 11-5BOTTOM DOWN HORIZ 11-6

BOEING 747(Fig. 1- 26) TOP UP VERT 12-1

TOP UP HORIZ 12-2BOTTOM UP VERT 12-3BOTTOM UP HORIZ 12-4BOTTOM DOWN VERT 12-5 ..BOTTOM DOWN HORIZ 12-6

':' Flaps "up" (seated) always.

8

Fig. 1-2. Cessna 150, three-quarter view •

9

Fig. 1- 3. Ce ssna 150, top view showing antenna position 1.

10

..

Fig. 1-4. Cessna 150, bottom view showing antenna positions 2, 3 and 4.

11

Fig. 1- 5. Piper Cherokee Arrow, three -quarter view.

12

Fig. 1-6. Piper Cherokee Arrow, top view showing antenna positions 1 and 2.

13

3

Fig. 1-7. Piper Cherokee Arrow, bottom view showing antenna positions 3 and 4.

14

Fig. 1-8. Helio DIOD, three-quarter view.

15

P130-619

Fig. 1-9. Helio U I OD, top view.

16

Fig. 1-10. Helio DI0D, bottom view showing antenna positions 1 and 2.

17

Fig. 1-11. Beechcraft Baron, three -quarter view.

18

Fig. 1-12. Beechcra£t Baron, top view showing antenna positions I and 2.

19

Fig. 1-13. Beechcraft Baron, bottom view showing antenna positions 3 and 4.

20

Fig. 1-14. Beechcraft B99, three -quarter view.

21

Fig. 1-15. Beechcraft B99, top view showing antenna pas itlons 1 and 2.

22

Fig. 1-16. Beechcraft B99, bottom view showing antenna positions 3, 4 and 5.

23

Fig. 1-17. Gates Lear Jet, three-quarter view.

24

..

Fig. 1-18. Gates Lear Jet, top view showing antenna positions 1 and 2.

25

Fig. 1-19. Gates Lear Jet, bottom. view showing antenna positions 3, 4 and 5.

26

Fig. 1- 20. Grumman Gulfstream, three -quarter view •

27

Fig. 1- 21. Grumman Gul£stream, top Vlew showing antenna positions 1 and 2.

28

Fig. 1-22. Grumman Gulfstream, bottom view showing antenna positions 3 and 4.

29

iI8-4-16615L

(@T

Fig. 1-23(a). Boeing 707, side Vlew showing station position of antennas 1 and 2.

30

FUSELAGE

t.

STA 339 NOSE GEAR

91 in.

STA 430 ATe ANTENNA

457 in.

l18-4-16616L

ANTENNA ,: TOP MOUNTED

ANTENNA 2: BOTTOM MOUNTED

MAIN GEAR MAIN GEARSTA 887 LBL 136.6 in. + ....L..--+ + STA 887 RBL 136.6 in.

136.6 in. 136.6 in.

Fig. 1-23(b). Boeing 707, relative positions of landing gear to antenna station.

31

~~ @)

4'10

c -~

c

Fig. 1- 24(a). Boeing 727, side view showing station position of antennas 1 and 2.

32

FUSELAGE

'tl18-4-16614 L

STA 309.24 NOSE GEAR

110.76 in.

STA 410 ATe ANTENNA

532.65 in.

ANTENNA 1: TOP MOUNTED

ANTENNA 2: BOTTOM MOUNTED

MAIN GEAR MAIN GEARSTA 942.6 LBL 112.5 +---..L.-oJ-----+ STA 942.6 RBL 112.5

112.5 in. 112.5in.

Fig. l-24(b). Boeing 727, relative positions of landing gear to antenna station.

33

~~ ~

~~

l18-4-16611L

Fig. 1-25(a). Boei.ng 737, side VLew showi.ng station position of antennas 1 and 2.

34

l18-4-16612LFUSELAGE

't-L STA 289.2 NOSE GEAR

15.8 in. STA 305 ATe ANTENNA

393 in.ANTENNA 1: TOP MOUNTED

ANTENNA 2: BOTTOM MOUNTED

MAIN GEAR MAIN GEARSTA 698 LBL 103 +__---L.-+ + STA 698 RBL 103

103 in. 103 in.

It

Fig. l-25(b). Boeing 737, relative position of landing gear to antenna station.

35

l18- 4-16617 L

Fig. 1- 26(a). Boeing 747, side Vlew showing station position of antennas 1 and 2.

36

FUSELAGE

<tl18-4-16618 L

-...--

135 in.

-f--

812.5 in.

STA 395 NOSE GEAR

STA 530 ATC ANTENNA

ANTENNA ,: TOP MOUNTEDANTENNA 2: BOTTOM MOUNTED

FORWARD MAIN GEA R """I~ +---+-4_3-,-3-=---in-,-'---'J.~I FORWA ROM AIN GEA R

STA 1342.5 LBL 216.51 l STA 1342.5 RBL 216.5

AFT MAIN GEAR 121 in.- AFT MAl N GEARSTA 1463.5 LBL 75.5 +-'------1--- + STA 1463.5 RBL 75.5

151 in. I I

NOTE: 747 MAIN GEAR HAS 4TRUCKS; TWO ON WINGSAND TWO ON FUSELAGE

Fig. l-26(b). Boeing 747, relative positions of landing gear to antenna station.

37

VI. Aircraft Antenna Maps

GENERAL AVIATION

I. Single Engine(a) C e s s na I 50(b) Piper Cherokee Arrow(c) Helio U1 OD

2. Twin Engine(a) Beechcraft Baron(b) Beechcraft Baron 99

3. Small Jets(a) Gates Lear(b) Grumman Gul£stream

38

.r.c.., f .,mm: - ,,* . c,,,,. ,,,m,,, m,s . ,, .,c, u m,,, ,,.,s !,, #m,, - ,,,,,,., ,,, mc, L ~,,,, a,,..

,,.”,,, ,,,, . ,, a .,,s,, ,,,-.$,,,.,s . ,, ,,,s. m,. ,,,m .,. ,., ----- . . . . . . . . “,mc,, W.,, a,, o,

;;

.0,,.: . . . . . s,,-. ,..,

OS ,,,0, $,,,.,> .,:: , .,,.

> .,0. > .,,. ;

> .3,. i > -70. :

> ..,. . > .,0.> .,,.

Fig. 2-1. Cessna 150; antema position 1 (T); wheels do-, flaps up.

.. . ... .....

Fig. 2-2. Cessna 150; antem

,

.,” ““, ,,1,

,..,,: ,!::! s.iuL

> .,0. ;> .?,. :> .,0.> -,,.

,,757,:,,,2,,?$,,.:,:;Y,z;?>, ;?7’:::, ;?,, ;7,’,?,’,:; :?,’:?5’,7,,,,,,,,0,,,,,,,!,,,!>!!,,,,,,,,,,,,,,25427!2,,,,,,,,,5,,,,,,,,!!4,,,,,.,,.,,,>,5,,,,4,7,,,!6,,,,,6,4,7, ‘,,7,,,,,7,,,7,7!

position 1(T); wheels dOwn, flaps dOwn~

.

..0.. . . . . . . s,.m,

i ..::> .,,.> .,,. f> ..,. -

Fig. 2-3. Cessna 150;

L,” ,..

antetia position 2

m,,

co,,0. . . . . . SZ, m,> .,,.> .’,. ;> .,,. :> .,,.> -,0.

(B); wheels do-, flaps up.c., .,

t’

.,,”,,, .,,, - .!,, ,.,,,, 450,,-, ” ..,, . .!50 , .,ss.. .30

-,,,,,-3 . ,, .,, EM .-,, r... m“,, -.. . . . . . . . ,,,, . . . . “,,,,,, m,,.,,,,..m,,nm.s. 1, .“W3 m,. ,L..s ,,. s. .0”.. .60”,, . . . . . . . .,”re.L m...,.o.o.

.,,,,, ” - ,,,,,,.,,, ,.,

. “’:. .

,,,,.. a,,,, s..-,> ,.> .!0.> .20.> .>0.> -,,.

Fig. 2-4. Cessna

,,1,

cm...,,,., S. Km,

> .,.. ,> -60. ,> .,,. :> -,,.> .,0.

15o; antema position 2 (B); wheels dOwn, flaps dOwn.

,,,. “I.”

.,,.,21,

. .3t

,’

.,,-, ” ,,,. . .,,! .,,,,, ,*-Sin,, m,s . ,, “5,,.s ~“,. ,,.,s ,,, ,.,,O, ,00”,0 ,n,,,,, ,,m, c,, ~,,, ”.,,., ,,,,,,,, ,,,, . C,* c,,,,. ,,,

.,, o,,,ms . ,, .,,,= ,-,, ,,,. ,,, ~m, .a,,,D ,,,,,,.. ,,,,, =,. ~u,,=,,o,

Fig. 2-5. Cessna 150; antema position 3 (B); wheels down, tips up.

4’

.,,,,,” ,,,. . c,- ,,ss.. >-,,,,,,,, ,,,, - .,,, ,,ss.. . .

-S,,, m,s . >1 ..,,M m.. . . ..s m.,. -“.. ..0,,.. . . . . . . .C”...t.......... w,,,,,,,, . *, ..,,. 0-s. ,,..s m.,. m,m. ..0.1.. . . . . . . ..-1.., mLi.n.lmr

,1,,,, ” - . . .“,,,,. F.>

,,. ”. . . . ,,,, ,,. ,., ,,,, ,,, ”, “,..

........

...........................

. .,,.- “,,0 ,,,, L,m “,,,

.,”m ,1,,

Fig. 2-6. Cessna 150; antetia position 3 (B); wheels down, flaps down.. .......

:?,,.::,,!!,,‘,7

:.?,.,,,,,,,!,,,,,,,,,s,,5,!5!!6,,,,,,,,6,!,,!,,,,,,,,

:7,

,I,m .Z. c m,,

m,.., ,,,,, sr.mL

; .1::> .20.> .>,. (> ..,.

L,” . . . ,,,.

cm.n, ,,,., S.. w,> ..,0.> .’0. I> .70. :> .,,.> -,0.

Fig. 2-7. Cessm 150; antema position 4 (B); wheels do-, flaps up.

,,.. “,.,

_ .. & .. . . ..._ 7

,,M,,,, ,,,, . .,,, ,,s,,, ,,4Co., r.,.,, . ,. ,,.,. 0-,. ,,,” m,.. -,. ,..,,,, ,,,,.,,, .,,,,,c. L ~L,,, z,,,o, ..-. ” .!,. - C!* , ,., s,, ,,,

.,,,,,, ,,,~,~.,,~,~ . . . . ..s DW..,Li,, o.s., $0-. ..8,,,. ,“,,,,. .,”!.., ~L,, =,,,o,

,,.= “,,,.,,,,, ,,,

,0,, ,,,, .,,. ,.,, . . . . . . . . .

,0s,,,,, “,,, ,.,, ,,. m

Fig. 2-8. Cessna 150; antema position 4 (B); wheels down, flaps down. .,,.,,,1

.

. 4’

....- .,.. ..,, ,... “r.. ,.,, ,,,. “.0

,.,, .... .,,,,,,,

s; ,!::: . . . . . .

; :::: ;

> .,, ., .,0.

,.,, ,,.

Fig. 3-1. Piper Cherokee Arrow; antema positionl (T); wheels do-, ” flaps up.

I

t’

.!!7, >,)2,:;;

,,>:;:

:;;

!,,;::

,.,,.,!,,,.,,s!,,,:;;

>,.

,, ,,,,,....,,,,0,

: .,:.> .,,.> .,,,> .,,.

‘: .!z’”m.,y>.,,.>.7,., .,,.>.,,.

.,,.

Fig. 3-2. Piper Cherokee Arrow; antenna position 1 (T); wheels down, flaps down.

.

. t’ ‘ .

.... .. .“. , L,,, w,.. ..,, ,,.,. “L..

.

,,.’$ srmc . . . . .,,7 ,,,. . . m ,,.. . . .

,.,s.,,,

0, ,,.., s..,,.,, ,!~! ,7.,

: .!). < .,.. !

; :;), $; :%,

> . . . .> .,..

Fig. 3-3. Piper Cherokee Arrow; antenna position 2 (T); wheels down, flaps up.

t’

,,,.,,” .,, .,,,”,, ,,,,,.. ,.,, .$1 ,,., .,s. ..,. . . . . . . . .

.,.”7 .,. ,.s, ,.. . . . ,,,, ,... . . . .

C.,, ,...m,,,,0, s!,,., .: .!::! s,,.,; .,:

> .,,.: ~ym: :

> .,0. > .,,. :> .,8. > .,0.

Fig. 3-4. Piper Cherokee Arrow; antema position 2 (T); wheels down, flaps down.

., .... .... ,,.. ,,,.

,,,”, . . . . s, .,,, .,. .,,, . . . . .

cam,,, ,,,:! s..,..

; ~::

> .,0.> ..0.

Fig. 3-5. Piper Cherokee Arrow; antema position 2 (T); wheels up, flaps up.

..

4’

. . ... .,,, . ,,. ,,,,, c.....,-..,= ..3 ., .“., 0,, -,8 ,..., .,, ..,,,., ,“..,,, ..,,,.., .,,,,,.,.,

.-,. ,,,, K. ,,,. ,..0,,,... . . . . . ., ..,,, .,.,,,,s ,.s. . . . . . . . . . . . . . . . ,,”,.,, ~,,, r,.,,,

.,1..,. ,., .,,,0,. ,“,

,,.”, “,s, ,.s, !!,, ,,,, ,, z, ,s. .1.,

,,.., ,,,. ..s . .,. ,,,. .,,, ,!.. .,,.

3-6. Piper Cherokee Arrow; antenna position 2 (T); wheels up, flaps down.

$t ..

.2 . . ..s ,“, ,,,.,, s ,m.

.,,. ,,.. -, .’. “!”. “,, ,,,. ,,,.

.$,,... ,.’ . . . . . . . .“.

,,.. “.., .s , 1,. .,,, .1,. ,,r. .,, ”

3 (B); wheels down, fhps dew.

,:$1

,,.. .,.,

Fig. 3-8.

..5. ,.,7 . . . .

.,,.. . ,.. r ,?,.,

} :::.

> .,,.> ..,.

Piper Cherokee Arrow; antewa position

z .*t . .

Fig. 3-9. Piper Cherokee Arrow; antema position 3 (B); wheels up, flaps up.

4’

,,-,. r,,, ,,. ,,,,, ,s”..,,. . . . . . . . . ., ““,,, s 0,. ?l,, s m,.,. . . . . . IO”,, zm ,.,,,,, .,.,,,, .,,,,,,.,..

,.-,,. ,,,, . .,, ,,,,, .“,,0,,,..,, . . ..s .> .“.,.3 S,,,... 0.., .“0, ,.l.,, m ,,,.,,. .,,.,,, ..,,,. ”..

,,,.”., ,“, .!,”. !. m.,

,,,,, .s0 ,.,, ,,. .,,, “,, ,,.. “,,.

,,.. .,,0 .,, ,,,. .,,, ,,,. . . . . . “.,.

,, ,,,c,c. m. m,,,,.., . . . . . . . s.,,.,

~ ~:;;> .,,.> .,0,

> .,!.; ~::.

> ..,. > .,,. :

Fig. 3-10. Piper Cherokee Arrow; antema position 3 (B); wheels up, flaps dom.

t’ “,

Fig. 3-U. Piper Cherokee Arrow; antema position 4 (B); wheels do-, flaps up.

Fig. 3-12. Piper Cherokee Arrow; antema position 4 (B); wheels down, flaps do-.

,>.

.. .,.,

.... .... ,,,. ,,,,, ,,..

“:,!::v~y>.6,.> .>.. ,> .,. .> .,..

Fig. 3-13. Piper Cherokee Arrow; antena position 4 (B); wheels up, flaps up.

Fig.

,,.., ,,s,

3-14. Piper Cherokee Arrow; antema position4 (B); wheels up, flaps do-.

,,’ - “1!, m,, L,” “,”” ,1,, ,,.. “,!’

LE. “I,. .,1,

,..,,, ,“,’, araw,

> .,,,> .60. /> .,0. :> .,,.> .,,.

Fig. 4-1. Helio U1OD; antenna position 1 (B); wheels down,

,,,3. “r,.

flaps up.

!,.. ,1,, “0s,

Fig. 4-2. Helio U1OD; antenna position 1 (B); wheels dom, flaps down. .45.1211

. t’

1,,””7” ,“1,1, ”0,. ?“.

. . “... “o, t ,,” .,,, ,,,, S,’. (,,,

Fig. 4-3. Helio UIOD; antenna position 2 (B); wheels down, flaps up..4,.,,,,

;*

,,,’,.,. ,,, ! . “c,, ,,,,0 ,,,,,-,,,,,0,, . ,, s..,. ,-,. ,,,,, m.,. --O, ,0,,,,, .,,,,,,. S,,,,*, ~L,,, z,., o,

,,,.,,,, ,,,, . ,,” ,,,,. .,0.CO. ar.. o.s . >! “1.,,. ,W,, ,,,,, m.,. w,,. ,.,,,,. ,,, !,,,, ,,,,,.,, ,.,,,,,,,,,,

.,,,.,, . ,,, ,,,,,,, ,,,,,,. .,,. w.,, .,” “.. m,, ,,. ” “,,.

.

Fig. 4-4. Helio U1OD; antema position 2 (B); wheels down, flaps down.c,s.,,,.

* z

.

.,,””!. ,.! .s,.,,. ,.,.,.1, “z,. ,.,, ,,. .,,. .,, L ,,.. .x,$

,,.” .,.. ,,,, ,,. ,.,, .,,, ,,.. .. .....,; ,!; :! ,r.,

> ... .> .,,, .,,.> .,,

“,$,. ,,,6 ,,,, L,. .,,6 ,., ! ,,..

Fig. 5-2. Beechcraft Baron; antema position 1 (T); wheels down, flaps down,

. , .st

. ,

c,....,,

ma,..s. s.!,..,. ,,,,, s,a..

.,:; :7,: ;

; ~r,: j; :::. ,

> .,,.

Fig. 5-3. Beechcraft Baron; antema position 1 (T); wheels dOwn, flaps uP.

-.. -— ..

,.,. “,,, ,,s, .,!, ,,,, ,,.. ,,,.. ,,..

‘: ‘!:7’””’,7-,>.’0. ,> .7,.> .,. .> .,,.

Fig. 5-4. Beechcraft Baron; antema position 1 (T); wheels up, flaps dom.

, 1’ . .

Fig. 5-5. Beechcraft Baron; antema position 2 (T); wheels do-, flaps up.

,. ,.. m

..,”,., ,., .,,.,,, ,“!

,.,, .,..

Fig. 5-6. Beechcraft Baron; antema position 2 (T); wheels down, flaps down.

. .

.,,,”,” ,“, .,,,. !” . . .

.,.,,’. .. ,.s , .!. “,, ” ..,. ,!,. .,,O

.,.= ,,,, ,.s, ,,,> . . . ,,,1 ,,.”, .,,,

,.s ,,: ,..:! s,,.,

> .,0.> .,.., .,,.

.,!”!,. ,“1 ,,!.,, ,,,

Fig. 5-8. Beechcraft Baron;

,,,. .>.. ,.,, .,.,, .,..

antema position 2 (T); wheels up, flaps down.

_ .. .

. 7 t’

; ..,.

Fig. 5-9. Beechcraft Baron; antema position 3 (B); wheels down, flaps up.

...”... .“.

,.,Z ,.,. .,.” ,.,, ,... .1.”

.,, ::: ...

Fig. 5-10. Beechcraft BarOW antema position 3 (B); wheels do-, flaps do-.

,,.,, .,,, ..,, L!. ,.,. ..1, ,,.. .,.”

5-U. Beechcraft Baron; antema position 3 (B); wheels up, flaps up.

..

4’

,,,,0, ” .“! .,,..,, .,

,,.. .1.. . . . . ,,. . . . .,, ,,.. ,,,,

Fig. 5-12.

4.

. .,,”

:

Beechcraft Baron; antema position 3 (B); wheels up, flaps down.

, 1

. f’ . .

Fig. 5-13. Beechcraft Barom, antenna position 4 (B); wheels do-, flaps do-.

. . ...

.)4

,,,..,, ,,, ,,$”. ” ,“,

,,.. w,.. ,.,, L,., U,,, r,11 .,.,, .,,.

Fig. 5-14. Beechcraft Baron; antenna position 4 (B); wheels up, flaps up.

...! L?,. .1.. ,,,, ,,.”, .,..

,;:,..”, “,,,

Fig. 5-15.

t’

.

m0

,1,., .,.

Fig. 6.1.

;;::7s:?,;;!n!,,,0,,0,

::!,,!!,,,,i,,,,,!?,,,,,2,

::,,,,,,,,7,,,4,,,,,,.,,.,,.,,,,,$,

::4,,,’,,6,, ‘,,,,!’,,,,,,,,,,

:,7

m,...””

L,” ,.,,“” .

,,1,i,. m . . .

Beechcraft Baron 99; antenna position 1 (T); wheels down, flaps up,

k4

. ,

m.

,, :: ,.::::,::, ::

,,,‘0 s,

,, . . . . . s..ao..> .50. ,> .60. ,> .70. :> .80.> -90.

Fig. 6-2. Beechcraft Baron 99; antema position 1 (T); wheels down, flaps dOwn.

t’

,.,,D: . ..<. C,@m,

> .,::> .,,.> .,,. (> .,,.

,,,,“.:‘!::: ‘w ,> .’,. ,

> .,,. :> .,,.> .,,.

Fig. 6-3. Beechcraft Baron 99; antema position 2 (T); wheels dew, flaps down.

c,,.,,,,

. 4 .

..,..,, ,,, ,,.,.., ,,,

m.

L,,. !,,0

Fig. b-4. Beechcraft Baron 99; antewa position Z (T); wheels uP, flaPs uP.

a,. m ,..

2,

;1

,,K,. ” ,,0, 1,,, ,1,,, ,,,-.s . . ..s . ., “..,s 0,.,,,,, i... ..> 5.,,,,, ,-1,,.. ,,”,.,, ml,, ,z,r, o,

.,,..,,, ,,,, - ,s,, ,,,. ” 1,!,0. m,x,o’. . !2 “,,!,6 m.,,,.,! ,“’, ,0, “.,,,,, ,s,,,,,, ,1,,,.,, m,.,,,,,,,,

,218”, ” ,“! ,,, s”,, 9“.

,,. ”, “,,. ,.,, ,,” “,,. .,,, ,!.. “r,,

m,,

‘..,,, ,,, ”, .,”,.,

> .> .,,.> .20.> .3,. i> .“0.

Beechcraft 99; antenna position 2 (T); wheels up, flaps down.

e .

,,,,”, ” ,,1,,,,, ?” ,8,

. . . “.., !1 ,! ,,., ,,,, ,,... “,,,

::,

,,.,, ,,,. ,0,, ,,” “., ,.,, ,,,,, ,1.’

.0,, CC, !

08 ,,,., ,,,,.,,.

,, ,,,.s s.”-.> .,0. ,

; .,0. > .,0. ,

, .,0. > .70. :

> .30. i > .80,

> ..,. > .,0, :,

Fig. b-b. Beechcraft Baron 99; antema position 3 (B); wheels dew, flaps up.

:

f’

,0,,,,,.,, . ,, “,,,. ,a,, ,,:W:R.’::F:8’”::O:,:R. W,, ,,,,,,,, ,.,,,,,,,,,, ,,,.,.,, ,,,, . .,,, .,,,8 m,. . . . . ..0. s . 2, .“,,. .-!, .,.,$ w“,, .,,,, ..,,.,, ,1,,,,,. ,,,,,’., ,.,,,,,,,,,.

,,,,0,, ,,, ,,,,,, ” ,,,

,,,. “,,’ ,.s, ,,m ,.. ,,,, ,,, ” “,,.

,

Fig. 6-7.

.

“o, , L,,, .,”. .!1.

‘ . . .08 .,”., ,,”.. s

> .,,.> .,0. ;> .,,. :> .8,.> .,0.

Beechcraft Baron 99; antema position 3 (B); wheels down, flaps down.

. . .

“,””

,,,”0,, ,“1. . . . . . ,, r, i,.,. ,x,.

:

,.,,,,,,:<:

Fig. 6-8. Beechcraft Baron 99; antema position 3 (B): wheels uP> fiPs uP.,,,

‘,

.,,,., ,L.., s,.,.,> .50.> ... ,’> .70.> ..,.> .,,.

Fig. 6-9. Beechcraft Baron 99; antema position 3 (B); wheels up, flaps do-.,.,,;,

;

Fig. 6-11. Beechcraft Baron 99; antenna position 4 (B); wheels down, flaps down. I

.

..’, ”,, ,“1.,,.0,, ,,1

,,,,, “,”, “,s, ,,. .,,, ,.,1 8,’W “,,.

Fig. 6-1o. Beechcraft Baron 99; antenna position 4 (B); wheels do-, flaps up.

I

ii,),,,,7!.,,,,,,,,,,,!7,,,~:

,25,,7),,,,,,,3,,,,,1,,,,.,,.,,$5,“,,!,,,,,,,),,,,7,,,,,,,6,,,,,,7,.,,,,,,,,,,,,7,,,

Fig. 6-12. Beechcraft Baron 99; antema position 4 (B); wheels uP, flaPs uP. ,,,,

,.,,0,,,,,,,,,,,,,,,!,2,,,,,>,,,,,,,,,,,,,,,,!,,),,,.,, “,,“,}“,,“!,,,,,,,,,,,,,5,,,,,,,,,,!6,,.,,,,,,,,,,,,7)7,

.,.

Fig. 6-13. Beechcraft Baron 99; antema position 4 (B); wheels up, flaps down.

, , *

. 8+

, ,

,,,8,., ,“.,,1””,, ,“,

.,. . “.”, ,.,, ,,,, s.”, .,,. ,,,,, “I..

“,,,, “I”. “0>, IL,, “,”, ,,1, m,.”, “,”<

,.,1 “,,

,s ,,”’, ,,”00, ,, ,!SGE S.”mi> .,0.

; .!:. > .60. I> .20. > .7,. :

> .s0.

; :::: > .,0.

Fig. 6-14. Beechcraft Baron 99; antema position 5 (B); wheels down, flaps dom..,,,,

,,,””,. ,“. ,,,.”, ” !“,

,1,,, “r,, “o,, ,,” “1”. .,,. ,10!, “,”,

“,,,

Fig. 6-15. Beechcraft Baron 99; antema position 5 (B); wheels up, flaps up. ~,,,n

‘ & .

,,,””,” ,“1,,,, ”,” ,,,

“,,,, “I,, ,.,, ,,,. ,,,. ,,,, ,1,”, “,”,

>N,,,,,,,,,,,,,,,,,,,,,!,7, ,,,,,,,,,2,,,,,,,!,,!33!,,,,,,,,!“,,“,,,5,,,,,,,,,1,,,,5,,,,,,!6,),,,65,,,,,,,7,,7,,,5!7?,7,

.0,,,: ,.”Y SI.s..

..!!,, P.,., ,,,,.,

> .,0.

, .>0.> .,,.

> .6,. /> .,,. :

> .,0. , -8,

, .“0. > .,, . :

Fig. 6-16. Beechcraft Baron 99; antewa position 5 (B); wheels up, flaps do-.

,,2...” ,., 1!.””, ” ,“>

.,’., ,>,. . . . . ,.,, .,,. :,!. ,!. ”, .!.,

Fig. 7-1. Gates Lear jet; antewa position 1 (T); wheels dom, flaps up. ,.,.,..,

. ..

. ii , <

.. . .... . . ,,s , L?., .L.. ,,,1 ,,,,, ,,,0

>,0., .,. ,,s, ,,” ..0 .,,, ,,=. “..

,, ,,,o,,omj,,,mt,.,,

,.

.: ,!K ,7. !

: .!..> .,0. ,

; :70: <> .,,. ,; ::). ;

> ...

Fig. 7-2. Gates Lear jet; antema position 1 (T); wheels dew, flaps down.

t’

.1, ””., ,,, ,,:””7. ,.,

,X’. “,., .,. L,. .,,, .,,. ,,.. “z.”

,,,. “,,0 .,, ,,,, .,., ,.,, ,,, ”, .,,,

Fig. 7-3. Gates Lear jet; antena position 1 (T); wheels up, flaps up.

i

. ,. 4’ * i

,,,.”, ” ,,. ,!l”,, ! ,“,

.,. ”. . . . . ..=, ,,,, “,.. ,. r, , r.,. “,,”

1

I

........ ....

,>,,,,” ,s,.,”O, ! ,,,

.,,. .,,, .,, ,Zr, ,,,, ,,,, ,,.,, ,,,.

00

,,.., ,,.. .,s, ,,. .,., .,. . ..” ,,.

“: ‘!::v’p; :::>.,!. :, .,, . .

Fig. 7-5. Gates Lear jet; antema position 2 (T); wheels down, flaps up.

, 4

0

Fig. 7-6. Gates Lear jet; antema position 2 (T); wheels down, flaps dew.

,,.. “,,. .s , L,. .!,, .,, , ,.. . .

Fig. 7-7. Gates Lear jeti antema position 2 (T); wheels up, flaps up.

r ‘ ,

. i. *t . *

0w

.,<,.. ,,.. ,m.. ,3,. “z...0,...s .> .,>.,s !?,,>,,, ,.”,, ,,, ,.”.., ? .“,..., !..XC. L . . ..ll.., or

.1,,... ,,,

,,.,, .,., ,.s.

Fig.

,,,.,. ,,,, ,,.. .,.. .1..,s,. !..> .2 .,1.ss “,. ?,,, s ,.”,. ,0, .,.,1, ,.,..., !,,,,.,, .,. =..,.,

.,.,..” . . .

. ..7 “.,O ,,,, .,.. ,,,$

7-8. Gates Lear jeti antema position 2 (T); wheels dOwn,

,,s. ,,,

flaps down.

,,-,,. .,,, ,,,, , i,,, ,.,0.,,..., . !3 .“,,. m.,, ,,,. .>, -,0! ,0,,.. ,,,,,,,, .,..,, ,,.,,..,.,

,1,”,. ,!,, . .,,, ,,,, ,,.. . . . . . . . . !, . . ..!? -... ,!.,, .,, ,... ,..,, ,.,., !. .,.,,,, -.,,, >..,0,

,,,”,, ” ,,1 .,...” ,,,

,.. “,,. .,, ,,,, .,,, ,),, ,1.,. .,,6

......... ..::. ..................... ...............

,,.”1 ..s ,.s , ,,, > .,,, .,. ,,.. ““.

..,!m, ,,,., s.,.!

,.; .!0.> .,, .> .,,.> ..,.

Fig. 7-9. Gates Lear jet; antema position 3 (B); wheels do-, flaps up.

.1,,”, ” ,“! ,,,””, ” ,“.

,,.. ,,,, .s , ,,. w!.. 1,,, ,,,. . . . .

,,.! ..... “,,,

Fig. 7-10. Gates Lear jet; antema position 3 (B); wheels do-, flaps down.

_.. .

J’

.,,,.,” ,,, ,,, ””!. .,,

..-. “,s$ .,, ,,. “,,. “,, . ..” . . . ..-.

.,.. .,., ,0,, L,. .,!, .,,, ,,.. . . .

.... ...

Fig. 7-U. Gates Lear jet; antema position 3 (B); wheels up, flaps up.

I

,2,.,,, >., ,,, ””1, ,“,

,,=.. .!,. ,0s, ,.. “,.. ,,,, ,,.. “r,,

~

1$i$,

$!:@B

I.... .. .. ..;................-..............................;....~..,J.rm<k ....,....: ,..,,. ..4.,e.,+.,,. ,, .. .. .. , ..-+

............

. . . .,,.. .1.. ,,,,

,.s ,0. ,,,:! S!,.,

; .,0.: ~;:: (

> ..,.

... ,>..

Fig. 7-12. Gates Lear jet; antenna position 3 (B); wheels up, flaps do-.

,,,,.,, ,“, ,,,., ” ,,,

,,,., ,,,. ,.3, ,,. !,,, .,, ,,.. ,,..

Fig. 7-13, Gates Lear jet; antema position 4 (B); wheels dom, flaps up.

. .. .. ,,,, 1,,, C,.. J...,,,.. ,,.. ,,., ,,., J..

-,.,,,..$ ,. UW.LS m.!, .L!.s 0..., .-. ...!.m . . . . . . . ,.. r..L ., . . . ...00-.>,,..s z. . ..! ..0, r,,,, 0,.., .0.0, w..?, ..,,,,, .,..,, . . . . . . . . . .

..,.” ,s!.,,,., .“1

:... :. .: .: ....... ::’

Fig. 7-14. Gates Lear jet; antema position 4 (B); wheels down, flaps down.

.,,,.,, ,,, ,,,.,!, .“.

.,.., “,.6 ,0, m ,m. .,,, ,!,, ,,6. “,,.

,. ;;;::;!!,,,,!,,!,,

:,2,,,,,!!,,,,,;,y

,.,~;

,,,!!!

,,!. “I.. ,.,, !,,, “r., r,,. ,,,,, “’,.

‘0,1., ,.,,, ,,,.!

: .1::> .,..> .,,, f> ..,.

..0,0. ,,., ,,a.,> .s0,> .,,. 1> .,..> .,,.> .,0.

Fig. 7-15. Gates Lear jet; antema position 4 (B); wheels up, flaps up.

I

1

,,,,$,,.,,,,:;:

,,,,7,,,,,,,

: Fig. 7-16. Gates Lear jet; antema position 4 (B); wheels up, flaps do-.

z

... . .. . .

,1

.1,.,.. .!,, ,.,. ,.., ,...,,,.,, ,, ,.,,. .,,. ,,.,, . . . . . . . . . . . . . ,.,,,,. ,,”, <,, S,,,..,,, .,,,.!.s !5 ..,,. ,.., ,.::s”:! ‘w.;%:.+.;,::,;?..,,,.<.,..,,”,,.,

,,,,,.” ,“, .,,.!, ,“,

,,.”, .,.. ,,,, ,1. .>.< .,. ,,,. ,,..

.

.,

,,’. .,,0 . . . ,,. . . . “,, ,,.. “,.

,.s,. . . . . . . ,!.., ‘; ‘!::F”’’Y”.: .,:: >.,,. ,>.,,, , .,,., .,,. >.,,.>.,,. >.,,.

Fig. 7-17. Gates Lear jet; antema position 5 (B); wheels down, flaps up.

. ..

., it .

.,m,.lo,, ,, ..!,. D.., ,.:’.”’W.’:MS”::,;,:::,,,,, .,.,,,,,. ...........-,,, .,?, . .. .,, >.

-,.,,,0,. . ,s .,,,” “.0, ,... .! 0, . . . . ..0,!!s .!...,, .1......!..,>..’0.

,.,

w

Fig. 7-18. Gates Lear jet; antenna position 5 (B); wheels dOwn, flaps dO~.

..2. !.. ,.! .,,.,.. .,

,,’”, .,’ ,.1, .l!. . . . . ,,,, ,,.. . . .

Fig.

.

,,...“,,’ .,, ,,. . . . “It ,... .,.,

7-19. Gates Lear jet; antenna position 5 (B); wheels UP, flaps up.

..

. . d’ + r

,1,”0 ,“ ,., !,,8,., ,,,

“,..,,,,, ,,,. ,,,, ,,,, .!,. ,,,, ,,,.

* .

,,,<,,,,.,., 00s. .,, . . . . .!”.,.,.!.,.,, . ,! .,.,. 0.. ?!.. m?, . . .0..1 .0 .,.,,... .z..rc.L !...! >.”..

,rfl..:,. z . .,, ,.0...’ -L,,...,.,,., s ,7 .,,., ,,, .!.., or. .0.=0 .!..,... .e..r.. c . . . . . . . . .

.>,,,, ” ,,, .,,.., ,.!

..- . .s. ,,,, .,,, ,.,, ,.,, ,,,.

z

Fig. 8-2. Grumman Gulfstr earn;

... “,., ,,,1 .,.. “r’,

,.,,,, ,!::: s,,.,

; :::. (, ..,. :, .,, .

antenna position 1 (T); wheels up, flaps up.

.,!,0,, ,“1 ,,,,,, ” ,“,

.,.. ,.O ,,,, L,. !,,, ,!,1 ,,.. .,,.

.,,

Fig. 8-3. Gruman Gulfstr eaq antenna position 1 (T); wheels up, flaps do-.

. .. . .. . . .. . . . . .. , . . . .

. >. .*t

. .

..,,. ,,,, ,.,, ,...,.. 00.7,...,.,.,, ,> ,..,s ..,, ,.,,$ .,. .m. ..0.,0 ..1,..., .,.Z. L ?. . ...1..1..

. . . . . >,.1 . . 0,,”.!, ,.,,,...,0,,.’, 7, .“,,,s ..,, ,,,,s .>. m, . . . . . . . . . . . . .,.,,,, .,,, !,,,,..

.,,.,, ,“, . . . . . . ,.,

Fig. 8-4. Grumman Gulf stream; antema position 2 (T); wheels down, flaps up.

,rz.sr. ,“! .1.0,, ,,,

... - . ,.$, ,1,, .,,0 ,,,, ,,, ” .,,,

,,.., ,,,. ,0,, ,,. ,,., ,,,, ,,..

,. ,,,=,c.m,,,,ao,

.,~

; :;: <

> . . . .

Fig. 8-5. Grumman tilfstream;

,

antenna position 2 (T); wheels up, flaps up.

s,.,

4 *

N

,,,,0,. ..1

.,,..,,.

,,,,0,. .-r

.s, L,. ““. . . . ,,,. .,,.

..... . : .:,...

Fig. 8-6. Gr_man Gulf stream; antenna position 3 (B); wheels down, flaps uP.

,!,,,,,, !,,, -s, .,, ”,,, .,”,,.m,,,..... . 1, “.!.. . . . . . . ..s -.. -,. ,...,, . . . . . . . . .,,,,,,, .,,,,.,,0,,,.,,,, ,,,, . -s, .,,,,,, .,..,.

-,,,,1,, s >, .,,,. . . . . . . .. .“., -.0. . . . . . . ... ”.,. .,,.!,,, .,,,, ”.,.,

.,,.,., ,,, ,,,,,!” ,,,

,,.. . . . .s , L,. . . . .,. ,,,. . . .

.,,. “,,, ,.,, ,1. “,,. !,. L

‘.,,

,,,. .!..

. . . .. . . . . . . ,,,., .; !y,;! s,,.,

i .,:: > .’,. ;> .,,,> .,,.

> ..,. > . . . .

Fig. 8-7. Grumman Gulfstr earn; antema POsition 3 (B); wheels down, flaps do-.

, ., ..

.... ,,. “,,, ,,,, ,,$. “!,,

.,.. “.,, ,.,. ,,. “... ,,!1 ,,.. . . . .

Fig. 8-8. Grumman Gulf stream; antenna position 3 (B); wheels up, flaps up.

,,,,,,,,,,,! ,,.. .,,,,,, .,,s,,.. . . . . . . . . . ., ,“l!. . . . . . . . . . . . .,,. ..”,,,, ,,,,.,.. ,,...,l .,,, !,,,,,,

,,-,. ,,,, . . . . . . . . . .,,,,.,... . . . . . . .! .“.,.$ !...,,., 0..., .“.. ..,,,., ,.,,.,, !,”,=.L .,,,,,.,,..

,,,.”!” ,“, ,,,,,., ,.,

,,,. “,,. ,0$, ,,,, .,,. ,.. ,,.”. ,,,0

Fig. 8-9. Grumman Gulf stream; antenna position 3 (B); wheels up, flaps down.

. .

, *t

, *

..,, ,,,, .,.. .,,, ,,.”. .,,.

,,,.,,! . . . .!.,, ” .“,

,,, ” “,,, ,,,, .,,1 ,,.. ., u ,,.,, ,,..

Fig. 8-U. Gruman Gulf stream; antema position 4 (B); wheels up, flaps up.

,,..,_

.

‘it

,.

AW

N.

..

..

.-,.:;,. . ,,0, .,,,, ,,,-,-.,, . ,! .!.,., . . . ,.?s “,

“’”’”:.’..:::’AF:%.:7z.lG.t.........-,.,>,.s . . . . !.. !... -. L.... ro. ...~..,~.. - ,, ....-, ,.. ?-., “........ ... ,,.0., ,.Z

Fig.

,,,”, .. . . ,.,, L,, ! .,.. ,,,,

.,,

,,,. “,,.

,.,,

,: . ...! !.,,.! ,; ,!::! s,.,..

> .,, ; :::: ;, .,,.> .,0. : ~::: :> ..,.

9-1. Boeing 707; antenna position 1 (T); wheels up, vertical polarization.

i t’ i .

.,,”.. ,.1 “., ,,<....

,,.,, “,”, -, ,,” .,,, .,, ,,,. .1..

Fig. 9-2. Boekg 707; antenna position 1 (T); wheels UP; hOrizOntal Polarization.

.,.

,,,,,,,. .,?! . ,70, ,.,,. ?0>,....,.s . 27 ,... !. . . . . . . . !?. -.0. .Oo.!cm . . . . . . . . . . . . . . . . . .I..re.

,,.,,,, ,,,, . ,,,7 ,.,, = 7.. ..0..1... . ,, ,.”!!. s,. ,,.. . . . ,.,., -,”,. ,,,.,,, !,.,,,,. -.,, . . . . .

,,’.,. ,,, ,,,.,. ,,,

,,6. . . . .,. ,,. ,., .,, ,,,. . . .

,... .,,, ,,,, .,,7 ,,,6 ,.,, ,,,,, .,,”am,

., ..,s, . . . . .; .,.,

.,,. 1> .,0.> .,, .> .,..

Fig. 9-3. Boeing 707; antewa position Z (B); wheels up; vertical polarization.

. ..... .,,, ,>,, .,1,, >,,. . . . . . . ..s 1? ,..,., .,, ,.,, s 0,, ,-., .,,.,. . . . . . . . ,..,,...,, .,,,,1,,,., . . . . . . . ..$ . ,, ..,,. ,,,~,,,, ,,,~ . .,,, ,~~,- ,*,0,. ,!.. m,, -.,, ,.,,,. ,,.,,,,, .,,,a,,. L .,,,,.,,.,

.,,..” ,,, ,,,.,. ,“,

,,,,, .,0 .$, L,. ..6 “z. . !=. . . .

c0,,.; .% s,,..

, .,,. :> .,,.> .,,.

w

,,.. ,,,$ ,.s, !.,, “,, s ,, r, ,,.. “,, $

Fig. 9-4. Boetig 707; antema position Z (B); wheels up; horizontal polarization.

4’

.,.,,.,!,, ,>0! .~,r,.1,,,,.,.,. ..,, . .70! ,0,,. 7.

-,.,.. s . >! . . ..- . . . . i.!. 0!. . . . . ..”~~.,,100....”,..,....,f,.!~, ,,..,.!..s .21 ,.!.,. s-o. . ..!s .,. m.. -O”., . ....’......!.............“. ,,,”,. .!....... ..

. . .. .,,, .!” . . . .,, ,,.. ,,.

,,,. “... .,. ,s. .,., . r, ,,.. .!.,

m,,,.,,

mm. . . . . ,.”.1.: ,!::! >Y

; .,& ; :::; :%: { ; ::), ;

> .“,.

Fig. 9-5. Boetig 707; antema position 2 (B); wheels down; vertical polarization.

> ji 1 ●

,,,=,.,, ,,., ,707 . . . . . ,!7“-,. .,,, ,?6> S,,.. ,0>

. ...,,,,, . 2! ,.,,. -0, ,...s .?._,o..,,,.,,,,..,.,.,,,0,.,. . . . ...10. ,,,0,,.,, . ,. . ...= -., ?,,>. !,, ..-, -... . . . . . . . . ...0.,. . . . . . . . . .

. . . . ..,.,,” ,.r

. . .

.- . . . . ,,. .,.. . . .

.ww

,,.”, . . . ,.,, ,,. ,,...,, .1,

,..,,.,,

., ,,,,, s,..’ ,: ,!% sr

.,: ; :::,

; .,0. ~, :::: ; ~:, :

Fig. 9-6. Boetig 707; antema position 2 (B); wheels down; horizontal pobrization.

I

,,,,!.” . . .

,,s”, “’., ,,,,

...s!.,.,, ,! .,,,,s “’””’” ““ ““ ‘“”” ‘“0,. ,.,,s 0,. ,0, ,,,.!s .,.,..,, .,,,,.,, ,0.,> ..,,,

,s,,,,, ,,,

... .. . .,, ,,.. ....

. . . . .. . .:. .

,,,,, .1.6 ,., ‘ .,,. . . . . ,.,, ,,, !. . . .

Fig. 10-1. Antema position 1 (T): wheels up; vertical polarization.

.. ‘,,, ,!,. ,,,, ,,,”, . . .

“.. ..,.,,“,.. ,.,, ..,, ,.,, .,,, ,,.. “x,.

co..mm,,,c,mo.,,,m,

,:. T,: !!”.0> ; :70: ,

> .,..

: :~:} ( ; ~::: ;

Fig. 10-2. Boeing 727; antema positionl (T); wheels up; horizontal polarization.

. ..... .... ,,>, . .... !,.,0..,1..s 11 ... !.> s!. ..#., . . m.. . ...* . . . . . . . . . ..IC.. . ...!!..!.. .ormL.r... . >!....ICS .?. rL.,, 0,. . . . . . .0.”. . . . . . . . . ...tf~.t .“,’”,,..

.,.,,,7 .“. ,,>, ,,.,. ,,.

.,,,,. .,, ,,,,,,, ,.,.,=”. ..= .,, L,. .,,. ,.,, ,,,. . . .

,

Fig. 10-3. Boekg 727; antema position 2 (B); wheels up; vertical polarization.

.

w4

,,.., !,,, so,, .,. . . . .,, ,,.. ,,s,

;*

,,,,,,,.,,,. . ,7>7 ,,,,. !>,..,.,,,.., ,! . ...* -s. ,,.. . . . -.0! !.-..!0 . . . . . . . . !...ZL.L .a..!..!oo

,,-,. ,,,, ,,,, .,,,. >.0,.,,,,s . >, ,.”,., . . . . ,,!,, 0,, ,,,., W.., ,,.,,,,, ,,”,,, $ ~L,,”,,,.m

ww

,,,,0, ” ,,, .,,,,, ,.,

,.. - . . . .,,, L,,, .x.. ,.. ,.,, .,,,

,,,., ,,,. ,0,, ,,,, ,,,, ,,,, ,,.,, ,,,,

,0,1,, ,.,., ,,,,.,

,6,,

: .,,,; ,!;:! S,,.,

> .,,.> .,,. ;

> .,,.> .7,.

> ..,.> .,,> .,,.

Fig. 10-5. Boekg 727; antema position 2 (B); wheels do=; vertical polarization.

,,.,, ” ,“! !,, . . . . ,..

,x... .’0 . s. L,,, ..! ,.,, ,,.,, .,.,

,,.. “,.s

polarization.

>,,.,.,. ,,s, ,,. u.. .,,

,.,,.: ,T ,,.,,.

, .2,. ;> .,,. ,> ..0.

Fig. 10-6. Boeing 727; antema position 2 (B); wheels down; horizontal

,,””, . . . ,.,, ,,. w“” ... L ,1.. .1.’

Fig. 11-1. Boetig 737; antema position 1 (T); wheels up; vertical polarization.

,17... ” .“r,,. “1.. ,.,, .,0” .,!.

Fig. U-2. Boeing 737; antema position 1 (T); wheels up; horizontal polarization.

.94

-,..-,, . >,,,,,- “-’” ““ ““ ““,$ ,“... ,..1$ 0.. .-!*. -..0 ..!.ss.. !,.,,., .,,,,,.,,., . . . . . . . . . . ,! ,“”,., ,,, ,l.?:’.%:”““ 1’” -,,,- ,,,.-.. ....0 . . ..rr.. !.”1.., ,.ti,.,,,o,

.,,0., ,,, ,,,,,,, ,,,

,,.,, .,. ,, s, ,,” ,,,, ,.,, ,,,,. ,“.

.

> .20.> .,,.> ..,.

Fig. 11-3. Boeing 737; antenna position 2 (B); wheels up; vertical polarization.

.,,,0,. ,s1. . . . . . . . . .

“,. 5,.. .,!,

,... ...!

m: ..:! . . . . .,: .::! s~

> .’,.> .,0.> .,,.

; ~ua: :

; ::). : > .!,. :

Fig. 11-4. Antema position Z (B); wheels up; horizonbl polarization.

,*

,,-.. !!,, ,>,7 .,,,0 >!> ,,.,4. ,,,, ,7>7 .,,,, !,.. ..-..,, . 2, ,.,,., 0.s, ?,. ?s n.. .-m. .ao..m ..,.0...!.”!C.. .L..,....o. . . ..!....7 !, . ..’- . . . . . . . . . . 0,. . ..-. .!. !. .!!- . . . . .=. >... .L.. !...!or

p..

. ... .,! ..s, L,. “,.. “.. .,,. .,,,

Fig. 11-5. Boeing 737; antenna position 2 (B); wheels down; vertical polarization.

“.,,. ,,,, ,7,> ..1.6 !,7,,. !,, ,,,, . .!,, .,-r. .!, ,,,,,,.,, . ,. .,,,,,, . . . . rL. @3 0.. ,e., . ..., ,.,,... ,.,! . . . . . . .L.. r... ro.

,..,”.,, . ,. ,,,,,. . . . .Li. 0,.~m. ,..,,O ..,,,,.. .,,...!. .O..r..x..

,,,.0.. ..1

,,,.. ” .1,,,, .1,0

.,,, ,,.. . . . .

.,,, ,1” .!.0.,,

,,.,, ,,,e

. . . . .Z.c

Fig. 11-6. Boeing 737; antema position 2 (B); wheels down; horizontal polarization.

,,.,,. .!,. ,..? ,.,,,, ?.,

-,,”..s . 1! ..,, - 0>. ,,,,s 0,, .,,,..,.,,::,, . ,,.7 ,.,,. 7,,

,-.. ,,,.,,, ,,,.,,!, ,,.,,.,1,, ,.,,,,,0,, . ,, ..,,,. 0,, ,,, >s 0>, .!.,, ,,,.,,. .,,.,,,, -.,,..,.,

,2,,!,, ,,, ,,,.,, ,,,

,,.,, .,. .s , L,. ,“0 .,, ,,.” ,,,.

./:,: ;;;:: ;: ::,;,,=. .,,’ .s,

,#,,: ,,,., $,,.,

> .!:: ;> .>,.> .,,. ,> .,, .

Fig. 12-1. Boeing 747; antema

,,. ,,,, .!, ,,.. .,,O

c 0,,): .!:: ,, !.,

> .’,. ;

; ~:fi

> .7,.

position 1 (T); wheels up; vertical polarization.

,,,.0,, ..1 .,,,,. ,,,

,,,. . . . . .3. ,,,, .,,. ,,,, .,,” ,..

Fig. 12-2. Boekg 747; antema position 1 (T); wheels UR; hOrizOn~l polarization.

,,..,,. .!,, ,,., ,,,,. ,.,.,,,,,,, ,,>. . .7,, ,,,,. 7.,

,0...,0,, . >1 .“..,. . . . .,. ” m,. -,.. .,,. !.0 . ..!.... . . . . . . . . . . . . . . . . . ~.,~..,~,. ,, .“~...~,.,.~”~~.m,,. ,,,..0 . ...,,.. !...!.. ! ..””..0,

,,,... .!!....... ,...- . .. -. ,,. .. . “1, ,,$. .,,$

,,!. .,., .,. ,,,, “,,, ,,. ,,.s. “1..

....>s ,,.:! s,,.,

} :;:.

> .,..> ..,.

Fig. 12-3. Boeing 747; antenna position 2 (B); wheels up; vertical polarization.

.

, r ;1

! ,,,,

Fig. 12-4. Boeing 747; antema position 2 (B); wheels up; horizontal polarization.

.“. . . . .

,,,,,,. ..,, ,!.7 .,,,. ..!~.m,,.,s z, ,.”, - .,,. ,,, >s m.,

,,,.,. ,,?, . .7., -,!,. ?..

,.. ? . . ...0 .s.. !!,. .,,.1 ?!. -L. !!,.. r.. -s.,,..s !! .0”.., -... ,...s s.. !-0” -0.10 .!. ?..4, !.”..., .LL . . . . ..O.

.,,,,, ,“.),,,”, , ,“,

.“,. L,,, .,,6 .,,, ,,.,, ,,,.

Fig. 12-5. Boeing 747; antema position 2 (B); wheels down; vertical polarizatia.

,,,.,,, ... ,,,,... .,,,,.,. ,,.’ .,, ,,,, ,,, $ ,.,, ,,.., ,,,,

,,,”, .,. .0, z ,!,, “,.. ,,,, .,.,, .,,,

Fig. 12-6. Boekg 747; antema position 2 (B); wheels down; horizontal polarization.

APPENDIX A

ANTENNA POSITION AND GEAR CONDITION CODING

1. General Aviation and Small Jet Models Only

Numerals of the two-numeral code, IJ, have the following meanings:I denotes gear condition:

1. Wheels down, flaps up2. Wheels down, flaps down3. Wheels up, flaps up4. Wheels up, flaps down.

J denotes antenna position as designated by numerals onFigs. 1-3 through 1-22.

2. Air Carrier Models Only

Numerals of the two-numeral code, M'N, have the following meanings:M denotes antenna position as designated on Figs. 1-23 through

1- 26.

N denotes wheel condition (flaps always up), and polarization used:1. Wheels up, vertical polarization2. Wheels up, horizontal polarization3. Wheels down, vertical polarization4. Wheels down, horizontal polarization.

152

.-

1.

REFERENCES

Keeping, K. J. and Sureau, J. C., "Scale Model Measurements ofAircraft L-Band Beacon Antenna, " Lincoln Laboratory, M.1. T. ,Project Report ATC-47, FAA-RD-75-23 (4 March 1975).

2. "ATC Antenna Patterns on Boeing Aircraft, " Boeing Co.(June 1 974).

3. Schlieckert, G. J., "An Analysis of Aircraft L-Band BeaconAntenna Patte rns, " Lincoln Laboratory, M.1. T., Proj ect ReportATC-37, FAA-RD-74-144 (15 January 1975) .

153 J} u. S. GOVERNMENT PRINTING OFFICE: 1975 600-223'3

top related