MABB_Part2

Post on 06-Apr-2018

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 1/84

1

MESIN ARUS BOLAK-BALIK

TE 1403

Dr. Dedet C. Riawan, ST., M.Eng

Electrical Engineering Department

Institut Teknologi Sepuluh Nopember Surabaya

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 2/84

2

Construction of Synchronous Generator

Stator 

 Rotor 

 pole

Shaft 

 Armature

winding

Field 

winding

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 3/84

3

Construction of Synchronous Generator

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 4/84

4

Excitation of Field Windings

1. Static excitation system fed through slip ring and brushes

2. Rotating excitation system mounted on the shaft brushless

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 5/84

5

Excitation System with Slip Ring & Brushes

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 6/84

6

Brushless Excitation System

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 7/84

7

Interaction of Rotor & Stator Magnetic Fileds

No-load operation

Br induces EA at stator

Vφ = EA

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 8/84

8

Interaction of Rotor & Stator Magnetic Fileds

On-load operation

• Stator is connected to a load

• IA flows in stator producing magnetic field BS

• BS induces ESTAT at its own stator winding

• EA =Vφ + ESTAT

Armature reaction voltage

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 9/84

9

Interaction of Rotor & Stator Magnetic Fileds

On-load operation

Br coincide with EA

BS coincides with ESTAT

Thus Bnet will coincide with Vf 

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 10/84

10

Equivalent Circuit with Armature Reaction

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 11/84

11

Armature Reaction & Self-Inductance Voltage

Synchronous Reactance

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 12/84

12

Phasor Diagram of Synchronous Generator

Unity power factor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 13/84

13

Phasor Diagram of Synchronous Generator

Lagging power factor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 14/84

14

Phasor Diagram of Synchronous Generator

Leading power factor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 15/84

15

Power & Torque in Synchronous Generator

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 16/84

16

Power Angle in Synchronous Generator

If RA << XA RA is ignored

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 17/84

17

Parameters of Synchronous Generator

1. Relationship between field current and flux (and therefore between the

field current and EA)

2. The synchronous reactance

3. Armature resistance

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 18/84

18

Open-Circuit Test

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 19/84

19

Open-Circuit Characteristic

SaturatedUnsaturated

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 20/84

20

Short-Circuit Test

Vφ = 0

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 21/84

21

Short-Circuit Characteristic

Unsaturated

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 22/84

22

Determining the Synchronous Reactance

From OCC

From SCC

For a given field current IF

Given IF

VOC

IA

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 23/84

23

Limitation on OCC-SCC method

Note:

• EA is obtained from OCC ranging from unsaturated to saturated region

• IA is obtained from SCC unsaturated region

Accurate up to unsaturated synchronous reactance

XS,u

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 24/84

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 25/84

25

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400If (A)

   I  s  c   (   A   )

0

2

4

6

8

10

12

14

16

18

20

If (A)

   V  o  c   (   k   V   )

Example of OCC & SCC test results

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 26/84

26

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 27/84

27

Armature Reaction & Leakage Reactance

Test with Zero Power Factor (ZPF) at IA rated.

Bnet = BR + BS

 Bnet ~ Er

 BR ~ Ea

 Bstat ~ -Ear

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 28/84

28

Potier’s Method

1.Find P from ZPF test

2.Find P’ from SCC

3.Draw RP = OP’

4.Draw RS parallel to initial of OCC slope(OS’)

5.Draw SQ perpendicular to RP

Procedure:

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 29/84

29

Potier’s Method

SQ = I A  xl

PQ = BS

Voltage drop due to leakage reactance

Magnetic flux due to armature reaction = If ar ~ Ear

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 30/84

30

Flux and Induced Voltage in Synchronous Generator

Bnet = BR + BS

Er = Ea – Ear

Vt = Er - IAXl

where

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 31/84

31

Paralleling Synchronous Generators

Purpose of paralleling generator:

1. Meet the demand on loads

2. Increasing reliability

3. Scheduling and maintenance

4. Load sharing for efficient operation

8-MW

8-MW

8-MW

4-MW

4-MW

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 32/84

32

Paralleling Synchronous Generators

Requirements:

• The rms line voltages of the two generators must be equal.

• The two generators must have the same phase sequence.

• The phase angles of the two a phases must be equal.

• The frequency of the new generator, called the oncoming generator, must beslightly higher than the frequency of the running system.

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 33/84

33

Procedure of Paralleling Synchronous Generators

1. Adjust field current until terminal voltage of two generators are equal in

magnitude.

2. Checked phase sequence of two generators. They must be equal.

3. Adjust the frequency of oncoming generator slightly higher.

4. Close the tie breaker

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 34/84

34

Paralleling Synchronous Generators

If the rms line voltages of the two generators IS NOT equal

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 35/84

35

Paralleling Synchronous Generators

If the two generators DO NOT have the same phase sequence

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 36/84

36

Paralleling Synchronous Generators

If the phase angles of the two a phases IS NOT equal

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 37/84

37

Paralleling Synchronous Generators

If the frequency of the two generators IS NOT equal

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 38/84

38

Paralleling Synchronous Generators

If the frequency and phase sequence of the two generators ARE NOT equal

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 39/84

39

Speed Governor in Stand-Alone Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 40/84

40

Speed Droop Principle

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 41/84

41

Speed Droop Principle

Concept of Speed Droop

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 42/84

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 43/84

43

Speed Droop in Stand-alone Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 44/84

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 45/84

45

Speed Droop in Parallel Operation with Infinite Grid

S d D i P ll l O i i h I fi i G id

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 46/84

46

Speed Droop in Parallel Operation with Infinite Grid

f nl’

P G’

P load’

Set point increased 

P     i    n   f    b   u   s   ’    

S d D i P ll l O ti ith I fi it G id

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 47/84

47

Speed Droop in Parallel Operation with Infinite Grid

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 48/84

Two Same Size Generator in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 49/84

49

Two Same Size Generator in Parallel Operation

Second generator takes small amount of load

demand during the first moment of 

synchronization (PG2)

Two Same Size Generator in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 50/84

50

Two Same Size Generator in Parallel Operation

Speed of the second generator is increased to

take more load from other.

Two Same Size Generator in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 51/84

51

Two Same Size Generator in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 52/84

52

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 53/84

53

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 54/84

54

Power Sharing in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 55/84

55

Power Sharing in Parallel Operation

Power Sharing without shifting system frequency

Power Sharing in Parallel Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 56/84

56

S a g a a Op a

Power Sharing without shifting terminal voltage

Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 57/84

57

y

Three phase winding of stator produces rotating

magnetic field BS

If field winding on rotor is excited with current,

magnetic field BR is produced. This magneticfield will “chase” BS.

So, rotor will rotate in the same speed as rotating

magnetic field generated by stator synchronous

Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 58/84

58

y

Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 59/84

59

From Generating to Motoring Operation

Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 60/84

60

From Generating to Motoring Operation

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 61/84

Load Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 62/84

62

Load Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 63/84

63

Load Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 64/84

64

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 65/84

Load Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 66/84

66

Load Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 67/84

67

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 68/84

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 69/84

69

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 70/84

70

Under-excited Over-excited

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 71/84

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 72/84

72

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 73/84

73

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 74/84

74

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 75/84

75

Field Excitation Changes on Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 76/84

76

Starting Synchronous Motor

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 77/84

77

Starting Synchronous Motor

Basic Approach

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 78/84

78

Starting Synchronous Motor

Reducing Electrical Frequency

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 79/84

79

Low frequency slow rotating magnetic field rotor is capable to

accelerate

Stator frequency is then increased gradually up to nominal value.

Requires variable frequency variable voltage source

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 80/84

Starting Synchronous Motor

Armotisseur or Damper Winding

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 81/84

81

Damper winding

Starting Synchronous Motor

Armotisseur or Damper Winding

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 82/84

82

Starting Synchronous Motor

Armotisseur or Damper Winding

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 83/84

83

8/3/2019 MABB_Part2

http://slidepdf.com/reader/full/mabbpart2 84/84