Linear Average Carbon Monoxide Methane Nitrous Oxide ...pfarrell/Weather and Climate/extra credit S0… · and information economy. B2 describes a world with intermediate population

Post on 20-Jul-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

*Thesetemperaturesweretakenfromthislineartemperaturegraph:

LinearAverageTemperature(DegreesF)*

CarbonMonoxide(Partspermillion)**

Methane(Partsperbillion)**

NitrousOxide(Partsperbillion)**

1750 *** 275 750 280

1800 *** 280 770 275

1850 *** 290 800 280

1900 56.625 300 880 285

1950 57.100 325 1000 290

2000 57.550 375 1700 315

2005 57.600 379 1774 319

**Anthropogenicemissions:

Global average radiative forcing (RF) in 2005 (best estimates and 5 to 95% uncertainty ranges) with respect to 1750 for CO2, CH4, N2O and other important agents and mechanisms, together with the typical geographical extent

(spatial scale) of the forcing and the assessed level of scientific understanding (LOSU). Aerosols from explosive

volcanic eruptions contribute an additional episodic cooling term for a few years following an eruption. The range for linear contrails does not include other possible effects of

aviation on cloudiness.

Percentageofanthropogenicemissions

***Thesetemperaturesdon’tfollowthelinearpatternasindicatedinthe1880‐2007graphabove.Theaveragetemperatureswereveryclosetothe1900temperatureof56.625degreesFwithlittlefluctuation.Thesetemperaturescanonlybeestimatedbylookingatthedifferentaveragetemperaturesbefore1900.Theseaverageglobaltemperatureswereestimatedfromicecoresamplesfromvaryingplaceswithvaryingextremes.Thisisthereasonforallthedifferentcoloredlines,butyoucanestimatethatthesetemperatures

wereaboutthesameasthe1900temperature:

ReasonsfortemperatureandAnthropogenicemissionchanges:• TheincreaseinCO2emissions,whichismainlyduetotheuseoffossilfuelsalongwithdeforestation,both

ofwhichwerecausedbyhuman‐inducedactivities.CO2isresponsiblefor64%ofthetotalGHGanthropogenicemissions.Thesecondlargestcontributorwith19%ofthetotalanthropogenicemissionsisCH4.CH4emissionshaveincreasedmainlyduetotheriseinnumbersoflivestockandricefields.N2Oincreasesarealmostsolelyduetotheuseoffertilizers.N2Oisthethirdlargestcontributorofanthropogenicemissions.• GlobaltotalannualanthropogenicGHGemissions,weightedbytheir100‐yearGWPs,havegrownby

70%between1970and2004.Asaresultofanthropogenicemissions,atmosphericconcentrationsofN2Onowfarexceedpre‐industrialvaluesspanningmanythousandsofyears,andthoseofCH4andCO2nowfarexceedthenaturalrangeoverthelast650,000years.

• Mostoftheglobalaveragewarmingoverthepast50yearsisverylikelyduetoanthropogenicGHGincreasesanditislikelythatthereisadiscerniblehuman‐inducedwarmingaveragedovereachcontinent

• Uncertaintiesinclude:Climatedatacoverageremainslimitedinsomeregionsandthereisanotablelackofgeographicbalanceindataandliteratureonobservedchangesinnaturalandmanagedsystems,withmarkedscarcityindevelopingcountries.Analyzing and monitoring changes in extreme events are more difficult than for climatic averages as longer data time-series of higher spatial and temporal resolutions are required. The effects of climate changes on human and some natural systems are difficult to detect due to adaptation and non-climatic drivers.

Observed changes in (a) global average surface temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data; and (c)

Northern Hemisphere snow cover for March-April. All differences are relative to corresponding averages for the period 1961-1990. Smoothed curves

represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive

analysis of known uncertainties (a and b) and from the time series (c).

Comparisonofobservedcontinental‐andglobal‐scalechangesinsurfacetemperaturewithresults

simulatedbyclimatemodelsusingeithernaturalorbothnaturalandanthropogenicforcings.Decadalaveragesofobservationsareshownfortheperiod1906‐2005(blackline)plottedagainstthecentreofthedecadeandrelativetothecorrespondingaverageforthe1901‐1950.Linesaredashedwherespatial

coverageislessthan50%.Blueshadedbandsshowthe5to95%rangefor19simulationsfromfiveclimatemodelsusingonlythenaturalforcingsduetosolaractivityandvolcanoes.Redshadedbandsshowthe5to95%rangefor58simulationsfrom14climatemodelsusingbothnaturalandanthropogenicforcings.

Locationsofthesignificantchangesindataseriesofphysicalsystems(snow,iceandfrozenground;hydrology;andcoastalprocesses)andbiologicalsystems(terrestrial,marine,andfreshwaterbiological

systems)areshowntogetherwithsurfaceairtemperaturechangesovertheperiod1970‐2004.Asubsetofabout29,000dataserieswasselectedfromabout80,000dataseriesfrom577studies.

PossibleScenariosfortheFuture

• Thereishighagreementandmuchevidencethatwithcurrentclimatechangemitigationpoliciesandrelatedsustainabledevelopmentpractices,globalGHGemissionswillcontinuetogrowoverthenextfewdecades.o ContinuedGHGemissionsatorabovecurrentrateswouldcausefurtherwarmingandinducemany

changesintheglobalclimatesystemduringthe21stcenturythatwouldverylikelybelargerthanthoseobservedduringthe20thcentury.

o Aerosolshaveanetcoolingeffectandtherepresentationofaerosolandaerosolprecursoremissions,includingsulfurdioxideblackcarbonandorganiccarbon,hasimprovedinthepostSRESscenarios.Generally,theseemissionsareprojectedtobelowerthanreportedinSRES.

• Forthenexttwodecadesawarmingofabout0.2°CperdecadeisprojectedforarangeofSRESemissionsscenarios.EveniftheconcentrationsofallGHGsandaerosolshadbeenkeptconstantatyear2000levels,afurtherwarmingofabout0.1°Cperdecadewouldbeexpected.Afterwards,temperatureprojectionsincreasinglydependonspecificemissionsscenarios.

• SNESScenarios:o SRESreferstothescenariosdescribedintheIPCCSpecialReportonEmissionsScenarios(SRES,

2000).TheSRESscenariosaregroupedintofourscenariofamilies(A1,A2,B1andB2)thatexplorealternativedevelopmentpathways,coveringawiderangeofdemographic,economicandtechnologicaldrivingforcesandresultingGHGemissions.TheSRESscenariosdonotincludeadditionalclimatepoliciesabovecurrentones.Theemissionsprojectionsarewidelyusedintheassessmentsoffutureclimatechange,andtheirunderlyingassumptionswithrespecttosocio‐economic,demographicandtechnologicalchangeserveasinputstomanyrecentclimatechangevulnerabilityandimpactassessments.

o TheA1storylineassumesaworldofveryrapideconomicgrowth,aglobalpopulationthatpeaksinmid‐centuryandrapidintroductionofnewandmoreefficienttechnologies.A1isdividedintothreegroupsthatdescribealternativedirectionsoftechnologicalchange:fossilintensive(A1FI),non‐fossilenergyresources(A1T)andabalanceacrossallsources(A1B).B1describesaconvergentworld,withthesameglobalpopulationasA1,butwithmorerapidchangesineconomicstructurestowardaserviceandinformationeconomy.B2describesaworldwithintermediatepopulationandeconomicgrowth,emphasizinglocalsolutionstoeconomic,social,andenvironmentalsustainability.A2describesaveryheterogeneousworldwithhighpopulationgrowth,sloweconomicdevelopmentandslowtechnologicalchange.NolikelihoodhasbeenattachedtoanyoftheSRESscenarios.

GlobalGHGemissions(inGtCO2‐eqperyear)intheabsenceofadditionalclimatepolicies:sixillustrativeSRESmarkerscenarios(coloredlines)and80thpercentilerangeofrecentscenariospublishedsinceSRES(post‐SRES)(grayshadedarea).Dashedlinesshowthefullrangeofpost‐SRESscenarios.Theemissions

includeCO2,CH4,N2OandF‐gases.

Case Temperature Change

(°C at 2090-2099 relative to 1980-1999) a

Sea Level Rise (M at 2090-2099 relative to 1980-1999)

Best estimate Likely range Model-based range excluding future rapid

dynamical changes in ice flow Constant Year 2000

concentrations^b 0.6 0.3 – 0.9 NA

B1 scenario 1.8 1.1 – 2.9 0.18 – 0.38 A1T scenario 2.4 1.4 – 3.8 0.20 – 0.45 B2 scenario 2.4 1.4 – 3.8 0.20 – 0.43

A1B scenario 2.8 1.7 – 4.4 0.21 – 0.48 A2 scenario 3.4 2.0 – 5.4 0.23 – 0.51

A1FI scenario 4.0 2.4 – 6.4 0.26 – 0.59

HowWeCanChange

• Someplannedadaptation(ofhumanactivities)isoccurringnow;moreextensiveadaptationisrequiredtoreducevulnerabilitytoclimatechange.

• Unmitigatedclimatechangewould,inthelongterm,belikelytoexceedthecapacityofnatural,managedandhumansystemstoadapt.

• Awiderangeofmitigationoptionsiscurrentlyavailableorprojectedtobeavailableby2030inallsectors.Theeconomicmitigationpotential,atcoststhatrangefromnetnegativeuptoUS$100/tCO2‐equivalent,issufficienttooffsettheprojectedgrowthofglobalemissionsortoreduceemissionstobelowcurrentlevelsin2030.

• Manyimpactscanbereduced,delayedoravoidedbymitigation.Mitigationeffortsandinvestmentsoverthenexttwotothreedecadeswillhavealargeimpactonopportunitiestoachievelowerstabilizationlevels.Delayedemissionsreductionssignificantlyconstraintheopportunitiestoachievelowerstabilizationlevelsandincreasetheriskofmoresevereclimatechangeimpacts.

• TherangeofstabilizationlevelsforGHGconcentrationsthathavebeenassessedcanbeachievedbydeploymentofaportfoliooftechnologiesthatarecurrentlyavailableandthosethatareexpectedtobecommercializedincomingdecades,providedthatappropriateandeffectiveincentivesareinplaceandbarriersareremoved.Inaddition,furtherRD&Dwouldberequiredtoimprovethetechnicalperformance,reducethecostsandachievesocialacceptabilityofnewtechnologies.Thelowerthestabilizationlevels,thegreatertheneedforinvestmentinnewtechnologiesduringthenextfewdecades.

• Makingdevelopmentmoresustainablebychangingdevelopmentpathscanmakeamajorcontributiontoclimatechangemitigationandadaptationandtoreducingvulnerability.

• Decisionsaboutmacro‐economicandotherpoliciesthatseemunrelatedtoclimatechangecansignificantlyaffectemissions.

EnergySupply:Energyinfrastructureinvestmentsdecisionswillhavelongtermimpactsongreenhousegasemissions,becauseofthelonglife‐timesofenergyinfrastructure.Theycancreateopportunitiestoachieveemissionreductionsby2030,notablythrough:

• investinginthereductionofenergyconsumptionratherthaninnewenergysupplyinfrastructure• switchingfromcoaltogas;• nuclearpower,althoughsafety,weaponsproliferationandwastemanagementremainasconstraints;• renewableenergy(hydro,solar,wind,geothermalandbioenergy);• combinedheatandpowergeneration,• applicationofCarbonCaptureandSequestration(CCS)technologies.• Anincreaseinthepriceoffossilfuelcouldmakelow‐carbonalternativemorecompetitive,butcould

alsoleadtotheuseofhigh‐carbonalternativessuchasoilsandsandheavyoils.

Sector Adaptationoption/strategy Underlyingpolicyframework

(Constraints=blackfont;Opportunities=reditalicfont

Water Expandedrainwaterharvesting;waterstorageandconservation

techniques;waterre‐use;desalination;water‐useand

irrigationefficiency

Nationalwaterpoliciesandintegratedwaterresourcesmanagement;water‐related

hazardsmanagement

Financial,humanresourcesandphysicalbarriers;integratedwaterresourcesmanagement;synergieswithothersectors

Agriculture Adjustmentofplantingdatesandcropvariety;croprelocation;

improvedlandmanagement,e.g.erosioncontrolandsoilprotection

throughtreeplanting

R&Dpolicies;institutionalreform;landtenureandlandreform;training;capacitybuilding;cropinsurance;financialincentives,e.g.subsidiesandtaxcredits

Technological&financialconstraints;accesstonewvarieties;markets;longergrowingseasoninhigher

latitudes;revenuesfrom‘new’products

Infrastructure/settlem

ent

Relocation;seawallsandstormsurgebarriers;dune

reinforcement;landacquisitionandcreationofmarshlands/wetlandsasbufferagainstsea

levelriseandflooding;protectionofexistingnaturalbarriers

Standardsandregulationsthatintegrateclimate

changeconsiderationsintodesign;landusepolicies;buildingcodes;insurance

Financialandtechnologicalbarriers;availabilityof

relocationspace;integratedpoliciesandmanagements;synergieswithsustainable

developmentgoals

Humanhealth

Heat‐healthactionplans;emergencymedicalservices;improvedclimate‐sensitive

diseasesurveillanceandcontrol;safewaterandimproved

sanitation

Publichealthpoliciesthatrecognizeclimaterisk;strengthenedhealthservices;regionaland

internationalcooperation

Limitstohumantolerance(vulnerablegroups);knowledgelimitations;financialcapacity;upgradedhealthservices;improvedqualityoflife

Tourism Diversificationoftourismattractions&revenues;shiftingskislopestohigheraltitudesandglaciers;artificialsnow‐making

Integratedplanning(e.g.carryingcapacity;linkageswithothersectors);financialincentives,e.g.subsidiesand

taxcredits

Appeal/marketingofnewattractions;financialand

logisticalchallenges;potentialadverseimpactonothersectors(e.g.artificialsnow‐makingmayincreaseenergyuse);revenues

from‘new’attractions;Transport Realignment/relocation;design

standardsandplanningforroads,rail,andotherinfrastructuretocopewithwarminganddrainage

Integratingclimatechangeconsiderationsintonationaltransportpolicy;investmentinR&Dforspecialsituations,

e.g.permafrostareas

Financial&technologicalbarriers;availabilityoflessvulnerableroutes;improvedtechnologiesandintegrationwithkeysectors(e.g.energy)

Energy Strengtheningofoverheadtransmissionanddistributioninfrastructure;undergroundcablingforutilities;energyefficiency;useofrenewable

sources;reduceddependenceonsinglesourcesofenergy

Nationalenergypolicies,regulations,andfiscalandfinancialincentivesto

encourageuseofalternativesources;incorporatingclimatechangeindesign

standards

Accesstoviablealternatives;financialandtechnologicalbarriers;acceptanceofnew

technologies;stimulationofnewtechnologies;useoflocal

resources

Sector Keymitigationtechnologiesandpracticescurrentlycommerciallyavailable.

Keymitigationtechnologiesand

practicesprojectedtobecommercializedbefore

2030.

EnergySupply[4.3,4.4]

Improvedsupplyanddistributionefficiency;fuelswitchingfromcoaltogas;nuclearpower;renewableheatandpower(hydropower,solar,wind,geothermalandbioenergy);combinedheatandpower;earlyapplicationsofCCS(e.g.storageofremovedCO2fromnaturalgas)

CarbonCaptureandStorage(CCS)forgas,biomassandcoal‐firedelectricitygeneratingfacilities;advancednuclearpower;advancedrenewableenergy,includingtidalandwavesenergy,concentratingsolar,andsolarPV.

Transport[5.4]

Morefuelefficientvehicles;hybridvehicles;cleanerdieselvehicles;biofuels;modalshiftsfromroadtransporttorailandpublictransportsystems;non‐motorizedtransport(cycling,walking);land‐useandtransportplanning

Secondgenerationbiofuels;higherefficiencyaircraft;advancedelectricandhybridvehicleswithmorepowerfulandreliablebatteries

Buildings[6.5]

Efficientlightinganddaylighting;moreefficientelectricalappliancesandheatingandcoolingdevices;improvedcookstoves,improvedinsulation;passiveandactivesolardesignforheatingandcooling;alternativerefrigerationfluids,recoveryandrecycleoffluorinatedgases

Integrateddesignofcommercialbuildingsincludingtechnologies,suchasintelligentmetersthatprovidefeedbackandcontrol;solarPVintegratedinbuildings

Industry[7.5]

Moreefficientend‐useelectricalequipment;heatandpowerrecovery;materialrecyclingandsubstitution;controlofnon‐CO2gasemissions;andawidearrayofprocess‐specifictechnologies

Advancedenergyefficiency;CCSforcement,ammonia,andironmanufacture;inertelectrodesforaluminummanufacture

Agriculture[8.4]

Improvedcropandgrazinglandmanagementtoincreasesoilcarbonstorage;restorationofcultivatedpeatysoilsanddegradedlands;improvedricecultivationtechniquesandlivestockandmanuremanagementtoreduceCH4emissions;improvednitrogenfertilizerapplicationtechniquestoreduceN2Oemissions;dedicatedenergycropstoreplacefossilfueluse;improvedenergyefficiency

Improvementsofcropsyields

top related