Lesson 23: Areas and Distances (Section 10 version)

Post on 04-Jul-2015

785 Views

Category:

Education

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

We trace the computation of area through the centuries. The process known known as Riemann Sums has applications to not just area but many fields of science.

Transcript

. . . . . .

Section5.1AreasandDistances

V63.0121, CalculusI

April13, 2009

Announcements

I Movingto624today(noOH)I Quiz5thisweekon§§4.1–4.4I BackHW returnedinrecitationthisweek

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

. . . . . .

.

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A =

1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

. . . . . .

.

.1

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1

+ 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

. . . . . .

.

.1.18 .18

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4

→ 13/4

=43

as n → ∞.

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

. . . . . .

Cavalieri

I Italian,1598–1647

I Revisitedtheareaproblemwithadifferentperspective

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

1625

=30125

Ln =?

. . . . . .

Cavalieri’smethod

.

.y = x2

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

1625

=30125

Ln =?

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3

→ 13

as n → ∞.

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)

=1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2

So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.

Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

. . . . . .

Cavalieri’smethodingeneralLet f beapositivefunctiondefinedontheinterval [a,b]. Wewanttofindtheareabetween x = a, x = b, y = 0, and y = f(x).Foreachpositiveinteger n, divideuptheintervalinto n pieces.

Then ∆x =b− an

. Foreach i between 1 and n, let xi bethe nth

stepbetween a and b. So

..a .b. . . . . . ..x0 .x1 .x2 .xi.xn−1.xn

x0 = a

x1 = x0 + ∆x = a +b− an

x2 = x1 + ∆x = a + 2 · b− an

· · · · · ·

xi = a + i · b− an

· · · · · ·

xn = a + n · b− an

= b

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

. . . . . .

TheoremoftheDay

TheoremIf f isacontinuousfunctionon [a,b] orhasfinitelymanyjumpdiscontinuities, then

limn→∞

Sn = limn→∞

{f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x}

existsandisthesamevaluenomatterwhatchoiceof ci wemade.

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

. . . . . .

Distances

Justlike area = length×width, wehave

distance = rate× time.

SohereisanotheruseforRiemannsums.

. . . . . .

ExampleA sailingshipiscruisingbackandforthalongachannel(inastraightline). Atnoontheship’spositionandvelocityarerecorded, butshortlythereafterastormblowsinandpositionisimpossibletomeasure. Thevelocitycontinuestoberecordedatthirty-minuteintervals.

Time 12:00 12:30 1:00 1:30 2:00Speed(knots) 4 8 12 6 4Direction E E E E W

Time 2:30 3:00 3:30 4:00Speed 3 3 5 9Direction W E E E

Estimatetheship’spositionat4:00pm.

. . . . . .

SolutionWeestimatethatthespeedof4knots(nauticalmilesperhour)ismaintainedfrom12:00until12:30. Sooverthistimeintervaltheshiptravels (

4 nmihr

) (12hr

)= 2 nmi

Wecancontinueforeachadditionalhalfhourandget

distance = 4× 1/2 + 8× 1/2 + 12× 1/2

+ 6× 1/2− 4× 1/2− 3× 1/2 + 3× 1/2 + 5× 1/2

= 15.5

Sotheshipis 15.5 nmi eastofitsoriginalposition.

. . . . . .

Analysis

I Thismethodofmeasuringpositionbyrecordingvelocityisknownas deadreckoning.

I Ifwehadvelocityestimatesatfinerintervals, we’dgetbetterestimates.

I Ifwehadvelocityateveryinstant, alimitwouldtellusourexactpositionrelativetothelasttimewemeasuredit.

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

. . . . . .

OtherusesofRiemannsums

Anythingwithaproduct!I Area, volumeI Anythingwithadensity: Population, massI Anythingwitha“speed:” distance, throughput, powerI ConsumersurplusI Expectedvalueofarandomvariable

. . . . . .

Summary

I Riemannsumscanbeusedtoestimateareas, distance, andotherquantities

I ThelimitofRiemannsumscangettheexactvalueI Comingup: givingthislimitanameandworkingwithit.

top related