Lecture 19 Gravitational Potential Energy; Conservation of Energy; Conservative and Non- Conservative Forces

Post on 11-Dec-2015

220 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

re-up only! not mine!

Transcript

Lecture  19:  Gravita/onal  Poten/al  Energy;  Conserva/on  of  Mechanical  Energy;  

Conserva/ve  and  non-­‐  conserva/ve  forces

Lecture  Objectives  1. Define  the  gravitational  potential  energy  in  terms  of  

the  work  done  on  an  object  by  a  uniform  gravitational  force.  

2. Apply  the  conservation  of  mechanical  energy  to  analyze  motion  of  an  object  (or  a  system  of  objects)  subject  to  uniform  gravitational  force.  

3. Differentiate  conservative  from  non-­‐conservative  forces.  

4. Calculate  the  work  done  by  a  non-­‐conservative  force.  

 

The  property  of  an  object  or  system  that  enables  it  to  do  work  is  energy.    Like  work,  energy  is  measured  in  joules.    

Mechanical  energy  is  the  energy  due  to  the  position  or  movement  of  an  object.  

Mechanical  energy

Kinetic  energy Potential  energyIn  motion:  K  or  KE Position:  U  or  PE

Potential  energy  is  stored  energy.

4

Potential  energy  is  associated  with  position.  

Potential  energy  is  the  measure  of  the  change  in  the  state  of  motion  of  the  particle

There  are  many  types  of  potential  energy;      -­‐  due  to  Earth’s  gravity    -­‐  elasticity  of  a  spring

Gravitational  potential  energy  is  associated  with  a  body’s  weight  and  height  above  the  ground.

5

 

 

   

Gravitational  potential  energy  is  energy  stored  by  raising  a  mass  from  the  Earth.

6

 

 

Example  You  lift  a  100-­‐N  boulder  1  m.  1.  How  much  work  is  done  on  the  boulder?  2.  What  power  is  expended  if  you  lift  the  boulder  in  a  time  of  2  s?  3.  What  is  the  gravitational  potential  energy  of  the  boulder  in  the  lifted  position?    

Answer:    1.  W  =  Fd  =  100  N·∙m  =  100  J  2.  Power  =  100  J  /  2  s  =  50  W  3.  Relative  to  its  starting  position,  the  boulder’s  PE  is    PE  =  mgh  =  (100N)(1m)  =100  J.  

What  is  the  potential  energy?  a. The  boulder  is  lifted  with  100  N  of  force.  b. The  boulder  is  pushed  up  the  4-­‐m  incline  with  50  N  

of  force.  c. The  boulder  is  lifted  with  100  N  of  force  up  each  0.5-­‐

m  stair.  

Conservation  of  Mechanical  Energy

9

Energy  cannot  be  created  nor  destroyed  but  converted  another  form  

http://www.physicsclassroom.com/mmedia/energy/ie.cfm

Conservation  of  Mechanical  Energy

10

 

 

When  the  woman  leaps  from  the  burning  building,  the  sum  of  her  PE  and  KE  remains  constant  at  each  successive  position  all  the  way  down  to  the  ground.

Conservation  of  Mechanical  Energy

Problem  Solving:  Conservation  of  Energy1.  Identify  initial  and  final  point  (1  or  2)2.  Set-­‐up  the  (total)  initial  and  final  kinetic  (K1  and  K2)  and  potential  energies  (U1  and  U2) 3.  Set-­‐up  energy  conservation  (E1  =  E2) 4.  Solve  for  the  unknown

Given:  m  =  0.145kg  v  =  20.0m/s  Required:  h

Sample  Problem:  Young  and  Freedman  You  throw  a  0.145-­‐kg  baseball  straight  up  in  the  air,  giving  it  an  initial  upward  velocity  of  magnitude  20.0m/s.  Find  how  high  it  goes,  ignoring  air  resistance.

To  solve  the  problem:  calculate  the  mechanical  energy  at  point  1  and  2  ☺

Calculate  the  mechanical  energy  at  point  1  and  2

At  point  1:  m  =  0.145kg  y1  =  0  v1  =  20.0m/s

E1  =  U1  +  K1  E1  =  mgy1  +  ½  mv12  

E1  =  0  +  ½  (0.145kg)(20m/s)2  

Calculate  the  mechanical  energy  at  point  1  and  2

At  point  2:  m  =  0.145kg  y2  =  ???  v2  =  0

E2  =  U2  +  K2  E2  =  mgy2  +  ½  mv22  

E2  =  (0.145kg)(9.8m/s2)(y2)  +  0  

Conservation  of  energy  says  that:  E1  =  E2  

Therefore;    ½  (0.145kg)(20m/s)2    =  (0.145kg)(9.8m/s2)(y2)  

Do  the  math  and  solve  for  y2:

y2  =  20.04m

18

Sample  Problem:  Young  and  Freedman  Throcky  skateboards  down  a  curved  playground  ramp.  If  we  treat  Throcky  and  his  skateboard  as  a  particle,  he  moves  through  a  quarter-­‐circle  with  radius  R  =  3.00m.  The  total  mass  of  Throcky  and  his  skateboard  is  25kg.  He  starts  from  at  rest  and  there  is  no  friction.  (a)  Find  his  speed  at  the  bottom  of  the  ramp.  (b)  Find  the  normal  force  that  acts  on  him  at  the  bottom  of  the  curve.

Given:    R  =  y1  =  3.00m  y2    =  0          v1  =  0  m  =  25kg  Required:  v2  &  n2

The  initial  and  final  kinetic  and  potential  energies  are:

Given:    R  =  y1  =  3.00m  y2    =  0          v1  =  0  m  =  25kg  Required:  v2  &  n2

To  solve  for  n2:  calculate  for  the  radial  acceleration  at  point  2:

Using  the  free-­‐body  diagram  at  point  2,  we  can  calculate  n2  as:

From  conservation  of  mechanical  energy:

Conservative  forces

21

Conservative  forces  offer  the  opportunity  of  direct  conversion  between  kinetic  and  potential  energies.  

The  work  done  by  this  force  is  zero  if  the  particle  returns  to  the  initial  position.  

The  work  done  by  these  forces  is  independent  of  the  path.  

When  the  only  forces  that  do  work  in  a  system  are  conservative,  the  total  mechanical  energy  of  the  system  

is  conserved  :  Ei  =  Ef  

Non-­‐conservative  forces

22

Non-­‐conservative  forces  are  referred  to  as  dissipative  forces  (cause  mechanical  energy  to  be  lost  or  dissipated.  

Work  done  by  non-­‐conservative  forces  cannot  be  represented  by  a  potential  energy  function.  

The  process  is  irreversible.  

In  non-­‐conservative  forces  are  present  in  the  system,  the  

total  mechanical  energy  is  not  conserved.  Ei  >  Ef

Conservative  forces  Examples:  gravitational  force,  spring  force  

Non-­‐conservative  force  Examples:  friction,  fluid  resistance  

Seatwork

•  

Seatwork  Problem:  Young  and  Freedman  A   baseball   is   thrown   from   the   roof   of   a   22.0   m   tall  building  with  an  initial  velocity  of  magnitude  12.0  m/s.

Seatwork  Questions:  2)  what  is  the  velocity  of  the  baseball  just  before  it  hits  the  ground?  3)  what  is  the  velocity  of  the  baseball  just  before  it  hits  the  ground  if  the  initial  velocity  is  aimed  at  an  angle  53.1o  below  the  horizontal

 

Seatwork  Problem:  Young  and  Freedman  A   baseball   is   thrown   from   the   roof   of   a   22.0   m   tall  building  with  an  initial  velocity  of  magnitude  12.0  m/s.

Seatwork  Questions:  2)  what  is  the  velocity  of  the  baseball  just  before  it  hits  the  ground?  3)  what  is  the  velocity  of  the  baseball  just  before  it  hits  the  ground  if  the  initial  velocity  is  aimed  at  an  angle  53.1o  below  the  horizontal

At  point  1:  y1  =  22.0m  v1  =  12.0m/s

E1  =  U1  +  K1  E1  =  mgy1  +  ½  mv12  

E1  =  m(9.8m/s2)(22.0m)  +  ½  m(12.0m/s)2  

At  point  2:  y2  =  0  v2  =  ???

E2  =  U2  +  K2  E2  =  mgy2  +  ½  mv22  

E2  =  0  +  ½  mv22  

E2  =    ½  mv22

Conservation  of  energy  says:  E1  =  E2    

Therefore:  m(9.8m/s2)(22.0m)  +  ½  m(12.0m/s)2  =  ½  mv22  

(Notice  that  m  will  be  cancelled  here)  Do  the  math  and  solve  for  v2           (2)  v2  =    24.0m/s  

Since  the  angle  did  not  matter  (3)  v2  =    24.0m/s

top related