Transcript

Continuous-time Systems/Circuits

Example:

+

-x(t)

R

C y(t)

( )( ) ( )

( ) 1 1( ) ( )

dy tRC y t x t

dtdy t

y t x tdt RC RC

Differential/Integral Equation

+

-

Laplace Transform

Continuous-time Systems/Circuits

Time Domain Analysis (Discussed in the last chapter) Zero-input Response

Zero-state Response

Impulse Response

Convolution

Continuous-time Systems ...contd

Frequency Domain Analysis (This chapter) The Laplace Transform Using Laplace Transform to solve

problems Initial Value Theorem Final Value Theorem Transfer Function Relationship between Impulse response

and Transfer Function

Laplace Transform

Gives us a systematic way for relating time domain behavior of a circuit to its frequency domain behavior

Converts integro-differential equations describing a circuit to a set of algebraic equations

Considers transient behavior of circuits with multiple nodes and meshes, with initial conditions

Using Laplace Transform The idea of using a transform is

similar to using logarithms for multiplication

A = BCLog A = Log B + Log C

A = Antilog (Log B + Log C)

The use of Laplace Transform is universal – mechanical systems, electrical circuits and other systems – as long as the behavior is described by ordinary differential equations.

Laplace Transform

The general definition of Laplace Transform i.e. the Two-sided Transform:

And Inverse Transform:

( ) ( ) stX s x t e dt

1( ) ( )

2

c jst

c j

x t X s e dsj

Laplace Transform

But we shall consider a special case – One-Sided Transform:

We shall use the Table 4.1 (Lathi, page 344) to do inverse transform

0

( ) ( ) stX s x t e dt

Laplace Transform: Definition

t represents time s has the units of 1/t since the exponent must be

dimensionless

This is a one-sided, unilateral Laplace Transform – i.e. it ignores negative values of t.

Again, the definition of Laplace Transform is:

0

( ) ( )

( ) ( )

stL x t x t e dt

X s L x t

0

( ) ( ) ( ) stX s L x t x t e dt

Properties of Laplace Transform Linearity of Laplace Transform:

since

Uniqueness of Laplace Transform:

is a one-to-one relationship

1 2 1 2

( ) ( )

( ) ( ) ( ) ( )

L k x t k X s

L x t x t X s X s

1 2

0

1 2

0 0

1 2

( ) ( )

( ) ( )

( ) ( )

st

st st

x t x t e dt

x t e dt x t e dt

X s X s

( ) ( )x t X s

Properties ...contd Question: Does the integral converge?

We avoid functions like The integral converges for all the cases we shall

consider!

Question: What happens if the function is discontinuous at t=0?We choose the lower limit as 0-.In fact, we shall define the Laplace Transform as:

2

, ,t tt e etc

0

( ) stx t e dt

Properties ...contd

In taking Laplace Transform, it becomes important whether one chooses 0- or 0+

Our choice is always 0- for the lower limit!

0

, 0ate t 0, 0t

x(t)

t 0

ate

x(t)

t

Continuous at t=0 Discontinuous at t=0

Laplace Transform of the Unit Step

0

0 0

( ) ( )

1.

1

st

stst

L u t u t e dt

ee dt

s

s

0

0

( ) ( )

0 1

st

a stst

a aas

L u t a u t a e dt

edt e dt

se

s

t

1

0

( )u t

t

1

0

( )u t a

a

Laplace Transform of the Unit Step

0

( )

0( )

0

( )

( )1

at at st

s a t

s a t

L e u t e e dt

e dt

e

s a

s a

0

( ) ( )

1

stL t t e dt

0

( )ate u t

x(t)

t

0

( )tx(t)

t

1

Using Step Functions

Step functions can be used for writing analytical expressions for illustrated functions. Consider:

( ) ( ) ( )x t u t a u t b

t

( )x t

1

a b

Using Step Functions ...contd

Subtracting, it is obvious that

( ) 0,1,

u t a t at a

( ) 0,1,

u t b t bt b

( ) ( ) ( )x t u t a u t b

t

1

a

( )u t a

0 t

1

b

( )u t b

0

t

( )x t

1

a b

Using Step Functions ...contd

Consider:

( ) ( ) ( 1) ( 2) ( 1) ( 2)x t t u t u t t u t u t

( ) ( ) 2 2 ( 1) 2 ( 2)x t tu t t u t t u t

t

t

1

210

2

2t

t

1

210

( )x t

Using Step Functions ...contd

Consider:

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( )

x t u t a u t b u t b u t c

u t a u t b u t c

Alternative way:

( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( )

x t u t a u t c u t b u t c

u t a u t b u t c

( ) 2as bs cse e e

sXs s s

t

( )x t

1

a b c

2

A Reminder

cos sin jj e

cos sin jj e

sin2

j je e

j

cos2

j je e

Laplace Transforms of Sinusoids

0

0( ) ( )

0

2 2

(sin ) ( ) sin

2

2

1 1 1

2

st

j t j tst

s j t s j t

L t u t t e dt

e ee dt

j

e edt

j

j s j s j

s

Laplace Transforms of Sinusoids …contd

0

0( ) ( )

0

2 2

(cos ) ( ) cos

2

2

1 1 1

2

st

j t j tst

s j t s j t

L t u t t e dt

e ee dt

e edt

s j s js

s

Laplace Transform of Ramp

t

2

210

( )x t

3

1

( )u tt

0

0 0

2

0

( )

1

1 1

st

st st

st

L t u t t e dt

e et dt

s s

e dts s

Laplace transform of tu(t) :

Inverse Laplace Transform Most functions of interest to us are rational

functions – ratios of polynomials in s.

Roots of P0(s) are the zeros of X(s) Roots of Q0(s) are the poles of X(s)

Assume the degree of the numerator is less than that of the denominator – Otherwise, divide!

Expand into partial fractions and use the table

0

0

( )( )

( )

P sX s

Q s

0

( )( )

( )NewP s

X s PolynomialQ s

Watch out – I have put subscripts so that it does not conflict with later notation

Roots: Real and Distinct

31 296 5 12

( )8 6 8 6

s s kk kX s

s s s s s s

Multiply both sides by s and let s=0

1

321

0 00

96 5 12

8 6 8

2

6

1 0

s ss

s s k sk sk

s s s s

k

Similarly, for k2 and k3 ,

1 32

8 88

2 72

96 5 12 8 8

6 6s ss

k

s s k s k sk

s s s s

Roots: Real and Distinct ...contd

1 23

6 66

3

96 5

48

12 6 6

8 8s ss

s s k s k sk

s

k

s s s

Therefore,

96 5 12 120 72 48

6 8 8 6

s s

s s s s s s

Identify:

Substitute and the two sides become equal

5s

Inverse: 8 6( ) 120 72 48 ( )t tx t e e u t

Laplace Transform

Linear Systems and Signals – Lectures 10Dr. J. K. AggarwalThe University of Texas at Austin

Another Example

2 12( )

1 2 3

1 2 3

sX s

s s sA B C

s s s

Multiply both sides by (s+1), evaluate at s= -1

1

2 12 105

2 3 (1)(2)s

sA

s s

Multiply both sides by (s+2), evaluate at s= -2

2

2 12 88

1 3 ( 1)(1)s

sB

s s

Another Example ...contd

Multiply both sides by (s+3), evaluate at s= -3

3

2 12 63

1 2 ( 2)( 1)s

sC

s s

5 8 3( )

1 2 3X s

s s s

Therefore,

Inverse:

2 3( ) 5 8 3 ( )t t tx t e e e u t

Still Another Example

2

2

2

2

6 7( )

1 2

6 7

3 23 5

13 2

3 51

1 2

s sX s

s s

s s

s ss

s ss

s s

3 5

1 2 1 2

s A B

s s s s

Still Another Example ...contd

1

2

3 5 22

2 1

3 5 11

1 1

s

s

sA

s

sB

s

2 1( ) 1

1 2X s

s s

Therefore,

Inverse: 2( ) ( ) 2 ( )t tx t t e e u t

Roots: Complex and Distinct

2 6 25 3 4 3 4s s s j s j

2

100 3( )

6 6 25

sX s

s s s

31 22

100 3

6 3 4 3 46 6 25

s kk k

s s j s js s s

1

2

3 4

3

12

100 3

6 3 4

100 46 8

3 4 8

6 8

s j

k

sk

s s j

jj

j j

k j

Roots: Complex and Distinct …contd

2

100 3 12 6 8 6 8

6 3 4 3 46 6 25

12 10 53.13 10 53.13

6 3 4 3 4

o o

s j j

s s j s js s s

s s j s j

Substituting k1, k2, k3 :

Inverse: 3 46 53.13 53.13 (3 4)( ) 12 10 10 ( )

o oj tt j j j tx t e e e e e u t

Simplifying,

6 3( ) 12 20 cos 4 53.13 ( )t t ox t e e t u t

Generalization

1

( ) ( )

( ) ( )

2cos ( )

*

( )j j t j j t

t j t t

t t u t

k kL

s j s j

k e e k e e u t

k e e e

k e

For complex root pairs,

jwhere k k e

1 *2 cos ( )tk k

L k e t u ts j s j

Another Example

2

2

6 100 4150( )

14 625

s sX s

s s

2

1

16 400( ) 6

14 625*

67 24 7 24

*( )

7 24 7 24

sX s

s sk k

s j s j

k kLet F s

s j s j

Complete the problem!

7 24 7 24

16 400 16 400*

7 24 7 24s j s j

s sk k

s j s j

Repeated Roots

31 2 42 2

180 30

5 35 3 3

s kk k k

s s ss s s s

1

2

120

225

k

k

...as before

For k3, multiply by (s+3)2 and evaluate at s=-3

2 2

1 23 4 3

3 3 3

3

180 30 3 33

5 5

810

ss s s

s k s k sk k s

s s s s

k

Repeated Roots ...contd

Multiply by (s+3)2, differentiate with respect to s and evaluate at s=-3

4

3

422

3

180 30

5

5 1 30 2 5180 105

5

s

s

sdk

ds s s

s s s sk

s s

Now, for k4 :

Therefore, 2 2

180 30 120 225 810 105

5 35 3 3

s

s s ss s s s

1 5 3 32

180 30120 225 810 105 ( )

5 3t t ts

L e te e u ts s s

Repeated Roots ...contd

Another method:

31 2 4

2 2

180 30

5 35 3 3

s kk k k

s s ss s s s

4

4

4

4

4

1 0, 5, 3

180 31 120 225 810

1 6 16 1 6 16 4

5580 120 96 225 16 810 6 6 4

5580 11520 3600 4860 24

2520 24

105

Let s

k

k

k

k

k

Laplace Transform

Linear Systems and Signals – Lectures 11Dr. J. K. AggarwalThe University of Texas at Austin

Properties of Laplace Transform

Again, Definition:

Uniqueness:

Linearity :

0

( ) ( ) stX s x t e dt

( ) ( )x t X s

1 1

2 2

1 2 1 2

( ) ( )

( ) ( )

( ) ( ) ( ) ( )where X s x t

X s x t

X s X s L x t x t

Shifting in Time We have already noticed

In general,

t

1

0

( )u t

t

1

a

( )u t a

0

1s

1 ases

00( ) ( )

( ) ( )stx t t

x t X s

X s e

Shifting in Time …contd

It is better to carry u(t)

00 0

( ) ( ) ( )

( ) ( ) ( ) st

x t u t X s

x t t u t t X s e

0

0

0

0

0

0 0 0 0

0

0

;

( ) ( )

( )

st

s t

t

st s

st

Let t t dt d

L x t t u t t x t t u t t e dt

x u e d

e u x e d

e X s

Example 1 Exercise E 4.3, Lathi, page 363

slope = -2( ) 2

0 66

x t t cc

c

( ) ( ) ( 2) 2 6 ( 2) ( 3)

( ) ( ) ( 2) 2 ( 2) 6 ( 2)

2 ( 3) 6 ( 3)

x t t u t u t t u t u t

x t t u t t u t t u t u t

t u t u t

t

2

210

( )x t

3

Expanding the expression,

Example 1 ...contd

2 32 2 2

1 3 2( ) s sX s e e

s s s

( ) ( ) ( 2) 2 ( 2) 6 ( 2)

2 ( 3) 6 ( 3)

x t t u t t u t t u t u t

t u t u t

= t u(t) - (t-2) u(t-2) -2 u(t-2)

- 2 (t - 2) u (t - 2) + 2 u (t - 2)

+ 2 (t - 3) u (t - 3)

= t u(t) – 3(t-2) u (t - 2)+ 2 (t - 3) u (t - 3)

Example 2

Linear segments with breakpoints at 1,3 and 4 seconds Slope of line at t=0 is 2; (0,0) Slope of line at t=1 is -2; (2,0) Slope of line at t=3 is 2; (4,0)

t

2

210

( )x t

3 4

22 42 8

ttt

( )x t

Example 2 ...contd

( ) 2 ( ) ( 1)2 4 ( 1) ( 3)

2 8 ( 3) ( 4)

x t t u t u tt u t u t

t u t u t

2 ( ) 4 1 1 4 3 32 4 4

t u t t u t t u tt u t

3 4

2 2 2 2

1( ) 2 4 4 2

s s se e eX s

s s s s

Laplace Transform:

Collecting terms

Example 2 ...contd

Another way of looking at the expression for x(t):

t

2

210

( )x t

3 4

2 ( )t u t 4 3 3t u t

4 1 1t u t 2 4 4t u t

Example 3

( ) 10sin ( ) ( 2)

10sin ( ) 10sin ( 2)

10sin ( ) 10sin ( 2) ( 2)

x t t u t u t

t u t t u t

t u t t u t

10

0 1 2 t

( )x t

22 2 2 2

( ) 10 10 sX s es s

Laplace Transform:

Frequency Shifting

Proof:

Examples:

00

( ) ( )

( ) ( )s t

x t X s

x t e X s s

0 0

0

0

0

0

( ) ( )

( )

( )

s t s t st

s s t

L x t e x t e e dt

x t e dt

X s s

2 2

2 2

cos ( )

cos ( )( )

at

sbt u t

s bs a

e bt u ts a b

Time Differentiation Property

( ) ( )

( ) (0 )

x t X s

dxsX s x

dt

0

00

( )

( ) ( )

(0 ) ( ) ( ) 0

st

st st

s

dx dx tL e dt

dt dt

x t e s x t e dt

x sX s x e

Example: Time Differentiation Property

2H

+-3u(t)

i(t)4

( )2 4 ( ) 3 ( )

32 ( ) (0 ) 4 ( )

di ti t u t

dt

sI s i I s s

Taking LT:

(0 ) 5i A Initial conditions:

32 ( ) 10 4 ( )

3( ) 2 4 10

s I s I ss

I s s s

Solving,

Example ...contd1.5 5 1.5 1 1 5

( )2( 2) 2 2 2

0.75 4.25( )

2

I ssss s s s

I ss s

Inverse:

Supposing the input was ,3 ( ) ( )u t t

( )2 4 ( ) 3 ( ) ( )

32 ( ) (0 ) 4 ( ) 1

3 3 11( ) 2 4 10

1.5 5.5( )

( 2) 2

di ti t u t t

dt

s I s i I ss

s sI s s

s s

I ss s s

2( ) 0.75 ( ) 4.25 ( )ti t u t e u t

…Complete the problem!

Higher Order Derivatives

Similarly for nth order derivative

( )( )

( ) ( ) (0 )

dx tg t

dt

G s s X s x

2

2

( ) ( )dg t d x t

dt dt

2

( )( ) (0 )

( ) (0 ) '(0 )

dg tL sG s g

dt

s X s s x x

Properties: Integration

0 0 0

0 00

( ) ( )

( ) ( )

( )

t tst

tst st

L x d x d e dt

e e

X s

s

x d x t dts s

uv v du

Scale Change

1( )

( ) ( )s

x a

x t X

t

s

Xa a

for a>0

0

0

0

( ) (

1

)

( )

1( )

st

s

a

s

a

L x at x at e dt

de x

a

e x da

sX

a a

Convolution

Time Convolution:

Frequency Convolution:

1 2 1 2

1 1 2 2( ) ( ) , ( ) ( )

( )* ( ) ( ) ( )

x t X s x t X s

x t x t X s X s

If

then

convolution product

1 2 1 2

1( ) ( ) ( )* ( )

2x t x t X s X s

j

convolutionproduct

Review

Definition:

Step function:

Delta function:

Exponential function:

0

( ) ( ) stL x t x t e dt

1( )L u t

s

( ) 1L t

1( )atL e u t

s a

Review ...contd

Differentiation:

Integration:

Time Shifting:

Frequency Shifting:

( )( ) (0 )

d x tL s X s x

dt

0

( )( )

t X sL x t dt

s

( ) ( ) ( )asL x t a u t a e X s

( ) ( )atL e x t X s a

Zero-Input/Zero-State Response Consider the system

2H

+-3u(t)

i(t)4

( )2 4 ( ) 3 ( )

( ) 32 ( ) ( )

23 1

( ) (0 ) 2 ( )2

(0 ) 3 1( )

2 2 ( 2)

di ti t u t

dtdi t

or i t u tdt

s I s i I ss

iI s

s s s

Taking LT:

Part due to initial conditions : Zero-Input Response

Part due to input : Zero-State Response

Laplace Transform

Linear Systems and Signals – Lectures 12-??Dr. J. K. AggarwalThe University of Texas at Austin

Transfer Functions Consider the system

If the initial conditions are zero,

i.e.

and x(t) is causal so that

and

Then,

11 1

10 1 1

( ) ( ) ( ) ( )

( )

( )

N NN N

N NN N

Q D y t P D x t

D a D a D a y t

b D b D b D b x t

1(0 ) (0 ) (0 ) 0Ny yy

1(0 ) (0 ) (0 ) 0Nx xx ( ) ( ) ( ) ( )y t Y s x t X s

( )( ) ( )

( )

P sY s X s

Q s

Transfer Functions ...contd

A Transfer Function is a ratio of Laplace Transform of to the Laplace Transform of

( ) ( )y t Y s( ) ( )x t X s

( )LT of Output

H sLT of Input

When the initial conditions are all zero

Transfer Functions: An Example

2

( )2 4 ( ) ( )

( ) 12 ( ) ( )

21

( ) 2 ( ) ( )

1( ) 2( )( )

2

1( ) ( )

2

2

t

di ti t x t

dtdi t

P sH s

Q s

i t x tdt

s I s I s X s

h t e u

s

t

Taking LT:

Transfer function:

In time-domain:

Transfer Functions ...contd If x(t) is the input and y(t) is the output

(assuming zero initial conditions)then,

Also, if the input isthen the output is

( ) ( ) ( )( )

( )( )

Y s H s X sP s

H sQ s

( ) 1t ( ) ( )y t h t

0

( ) ( )

( ) ( ) st

L h t H s

H s h t e dt

1 1 ( )

( ) ( )( )

P sh t L H s L

Q s

Laplace Transform & Circuit Analysis

The Laplace Transform provides a systematic method for analyzing circuits.

It converts integro-differential equations into algebraic equations.

In addition, it takes into account the initial conditions.

One may write differential equations or go directly to the algebraic equations. The latter is the desirable route.

Circuit Elements in s-Domain

Resistorv R i

R is constant

Taking Laplace Transform,

( )( )

( ) ( )

where V L v tI L i t

V s R I sor V R I

I(s)R

+

-

V(s)

iR

+

-

v

( ) ( )v and i are really v t and i t

Circuit Elements in s-Domain ..contd

Inductordi

v Ldt

Taking Laplace Transform,

0

( ) ( ) (0 )V s sL I s L i

or V sLI LI

-

I

+

V-+

sL

LI0

i

+

-

I0

Lv

0

0IVI

s I V L I

s

L

s L

Rewriting,

i

+

-

Lv

When initial condition I0 is zeroI

sL 0Is

I0: initial current

Circuit Elements in s-Domain ..contd

Capacitordv

i Cdt

Taking Laplace Transform,

0

( ) ( ) (0 )I s s CV s CV

or I sCV CV

0

0VIV

s V I CV

s

C

s C

Rewriting,

i+

-CV0

+

-

V

I

+-

1sC

0Vs

0CV1sC

+

-V

When initial condition V0 is zero

I+

-

V 1sC

V0: initial voltage

Ohm’s Law for s-Domain

If no “initial” energy is stored in a capacitor or inductor,

Kirchoff’s Laws

where V is voltage transformI is current transform

V Z I

Z is the s domain impedance1, ,R s L sC -All rules as before for combining, etc

0 0I V

Ohm’s Law for s-Domain ...contd

I(s)R

+

-

V(s)

iR

+

-

v

i

+

-

I0

Lv

I

sL 0Is

( ) ( )

v R i

V s R I s

0

0

( )

( ) ( )( )

( )

di tv L

dtV s s L I s L I

IV sI s

s L s

I

+

V-+

sL

LI0

-I0: initial current

Ohm’s Law for s-Domain ...contd

i+

-

CV0

+

-

V

I

+-

1sC

0Vs

V0: initial voltage

0

0

( ) ( )

( )( )

dvi C

dtI s s CV s CV

VI sV s

s C s

0CV1sC

+

-V

I

Example 1

Equivalent circuit:0

00

0

1( ) ( ) 0

( )11

( ) ( )tRC

VI s R I s

s s CV

CV RI ssRC s RC

Vi t e u t

R

C R

+

-

t=0+

-

V0 ˆ( )i t

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

ˆ 0v v for t

Example 1 ...contd

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

0

1

0

0

0

0

1 ˆ ˆ( ) ( )

1ˆ( )

1

1

ˆ( ) ( )tRC

VI s R I s

s sCV

I s RsC sCV

s RCV R

s RC

Vi t e u t

R

Example 1 ...contd

ˆ( )I s

ˆ( )V sR

+

-

+

-0V

s

+-

1sC

0VIV

s C s

( )I s

( )V s

0 0

0 0

0

0

1( )

1

1

1

1

( ) ( )tRC

V V RV s

s s C s RC

V V

s s s RC

V

s RC

v t V e u t

Notice ˆ( ) ( )I s I s

Example 2 For the circuit below, switch is in position

‘a’ for a long time. At t=0, switch is changed to position ‘b’

1 2

1 1 2 2

1 2

1 2

60

0.5

2

V V

C V C V

V V

V V

60 V +-

t=0

a b10 k

3k1V

2V-+

-+

1C

2C1

2

0.51.0

C FC F

1

2

0

0

40

20

,Before the switchV V

V V

Example 2 ...contdi

3k10 40V V

20 20V V-+

1C

2C

-+

1( )v t

2 ( )v t

1

2

1 21 2

1 1 0

2 2 0

,

( ) ( )

( ) ( )

dv dvC i C i

dt dtC sV s v I s

C sV s v I s

1 2( ) ( ) ( )V s V s R I s

1 2

1 2

0 0

1 21 2

0 0

1 2

1 1

V VI IV V

s C s s C s

V VI I R

s s s C s C

Example 2 ...contd

6 3

63

3 3

3

60 11 10 3 10 ( )

0.560

3 103 10

60 1

3 10 100.02

10

II

s s

sI

s

s

s

1000( ) 0.02 ( )ti t e u t A

-+

-+

R

1

1s C

2

1s C

10Vs

20Vs

( )i t

Example 2 ...contd

3

1

60

1 3

3

3

10

3

1

0.02 10

102

40 101

10

40

1

( ) 40

0

( )t

VV

ss s

s s

s

v t e u t

-+

-+

R

1

1s C

2

1s C

10Vs

20Vs

( )i t

Example 3

i

+ -t=0

-+ 42

+

-

8.4 H

336 ( )V u t

336 ( )

3368.4 ( ) (0 ) 42 ( )

336( ) 42 8.4

diu t L i R

dt

s I s i I ss

I s ss

336 40

( )42 8.4 (5 )

I ss s s s

Let (0 ) 0,i

Example 3 ...contd

40( )

( 5) 5

A BI s

s s s s

0

5

408

540

8

s

s

As

Bs

5

40 8 8

( 5) 5

( ) 8 ( ) 8 ( )t

s s s s

i t u t e u t A

Example 3 ...contd

Suppose the current 0(0 )i I

0

0

0

5 50

3368.4 ( ) (0 ) 42 ( )

3368.4 ( ) 42 8.4

8.4336( )

(42 8.4 ) 42 8.4

40

( 5) 5

( ) 8 ( ) 8 ( ) ( )t t

s I s i I ss

I I s ss

II s

s s s

I

s s s

i t u t e u t I e u t

Notice initial current changes

Example 4

1

2

(0 ) 0(0 ) 0

i Ampi Amp

Given:

1 2

1 2

336 (42 8.4 ) 42

0 42 (90 10 )

s I IsI s I

Solving for I1 and I2 :

i2i1

t=0

-+ 42

8.4 H

336 ( )V u t 48

10 H

1( )I s2 ( )I s

1 2

2 12 2 121 2

40 9 168

( 2)( 12) ( 2)( 12)

15 14 ( ) 7 8.4 1.4 ( )t t t t

sI I

s s s s s s

i e e u t i e e u t

Example 4 ...contd Writing these equations

Are these the currents that should be there?

1 1 2

1 2 2 2

3368.4 42

0 42 10 48

I s I Is

I I s I I

1

2

1

2

(0 ) 0

(0 ) 0

( ) 15

( ) 7

i

i

i A

i A

Example 4A

1

2

(0 ) 5(0 ) 3

i Ampi Amp

Given:

1 2

1 2

336 (42 8.4 ) 8.4(5) 42

0 42 (90 10 ) 10(3)

s I IsI s I

Solving for I1 and I2 :

i2i1

t=0

-+ 42

8.4 H

336 ( )V u t 48

10 H

1( )I s2 ( )I s

2 2

1 2

2 12 2 121 2

5 20 72 168 36 3

( 2)( 12) ( 2)( 12)

15 9 ( ) 7 5.4 1.4 ( )t t t t

s s s sI I

s s s s s s

i e e u t i e e u t

Example 4A ...contd Writing these equations

Are these the currents that should be there?

1 1 2

1 2 2 2

3368.4 8.4(5) 42

0 42 10 10(3) 48

I s I Is

I I s I I

1

2

1

2

(0 ) 5

(0 ) 3

( ) 15

( ) 7

i

i

i A

i A

Initial and Final Value Theorems

Again, the definition:

One can examine the limiting behavior of x(t) by observing the behavior of sX(s) at and at 0

These results are called Initial Value and Final Value Theorems

0

( ) ( ) ( ) stX s L x t x t e dt

Initial Value Theorem

Taking limit

Since is independent of s, subtracting

0

( ) (0 ) stdx dxL s X s x e dt

dt dt

00

0

0 0

lim ( ) (0 )

lim

lim

(0 ) (0 )

s

st

s

st

s

sX s x

dxe dt

dt

dx dxe dt e dt

dt dt

x x

,s

(0 )x (0 ),x

0lim ( ) (0 ) lim ( )s t

s X s x x t

Final Value Theorem

This is useful only if as exists

0 00

lim ( ) (0 ) lim st

s s

dxs X s x e dt

dt

00

0

lim

lim ( ) (0 )

st

s

t

dxRHS e dt

dt

dx

x t x

0

0

lim ( ) (0 ) lim ( ) (0 )

lim ( ) lim ( )s t

s t

sX s x x t x

sX s x t

Thus,

, ( )t x

Initial and Final Value Theorems

Initial Value Theorem:

Final Value Theorem:

Example:

0lim ( ) lim ( )

stx t sX s

0lim ( ) lim ( )t s

x t sX s

0

0

1( )

1lim ( ) 1 lim 1

1lim ( ) 1 lim 1

st

t s

L u t s

x t s s

x t s s

Initial & Final Value Theorems: Example

1 6 896 5 12

120 48 72 ( )8 6

t ts sL e e u t

s s s

5 1296 1 1

lim ( ) 968 6

1 1

0 , ( ) 120 48 72 96

s

s ssX s

s s

As t x t

0

96 5 12lim ( ) 120

8 6, ( ) 120

ssX s

As t x t

In earlier example,

For steady state, is the current correct?

( ) 8

(0 ) 0

i A

i

0

40 40( )

( 5) 5

lim ( ) 8

lim ( ) 0s

s

s I s ss s s

s I s A

s I s

Example 3A

+ -

-+ 42

+

-

8.4 H

336 ( )V u t

1 2

0

0

336 ( )

3368.4 ( ) (0 ) 8.4 ( ) 42 ( )

3368.4 ( ) 16.8 42

8.4336( )

16.8 42 16.8 42

di diu t L L i R

dt dt

s I s i s I s I ss

I I s ss

II s

s s s

8.4 H

I0-+

Example 3A ...contd

2.5 2.50

0

0

120 2 ( )2.5 2.5

120 1 1 2 ( )2.5

18 ( )

2.5 2.5

8 ( )2t tu t e I e i t

II s

s s s

II s

s s s

00

00 0

00 , 8.4

0

, 0

1( )

2, 16.8

2

8.4

8.4

i I i

i I for bo

At t Fl

th

u I

I

x I

IAt t Flux

Therefore,

Example 5

iL

t=0

dcI C R L

ILdcI R sL1sC

242562525

dcI mAC nFRL mH

2 1

L

dc

dc

VI

sLIV V

s CVsR s L

I CV

ss

RC LC

Example 5 ...contd

2

5

2 8

5

1 2 2

1

384 10

( 64000 16 10 )384 10

( 32000 24000)( 32000 24000)*

dcL

I LCI

ss s

RC LC

s s s

s s j s jk k ks s a jb s a jb

3 31 224 10 ; 24 10 126.87k k

Solving,

3200024 40 cos 24000 126.87 ( )tLi e t u t mA

Example 6

iL

t=0

gi C R L

ILgI R sL1sC

cos24

40000 /2562525

g m

m

i I tI mA

rad sC nFRL mH

2 2

2 2

2

2 2 2

/

1

mg

m

m

s II

ss IV V

sCVR s L s

s I CV

ss s

RC LC

Example 6 ...contd

2 2 2

5

2 8 2 8

1 1

2 2

/

1

384 10

16 10 64000 16 10

*

40000 40000*

32000 24000 32000 24000

mL

s I CVI

ssL s sRC LC

s

s s s

k k

s j s jk k

s j s j

3 31 27.5 10 90 ; 12.5 10 90k k

3200015sin 40000 25 sin 24000 ( )tLi t e t u t mA

Solving,

top related