J. Frieman et al- Dark Energy

Post on 06-Apr-2018

223 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

  • 8/3/2019 J. Frieman et al- Dark Energy

    1/35

    Dark Energy

    J. Frieman: Overview 30

    A. Kim: Supernovae 30

    B. Jain: Weak Lensing 30

    M. White: Baryon Acoustic Oscillations 30

    P5, SLAC, Feb. 22, 2008

  • 8/3/2019 J. Frieman et al- Dark Energy

    2/35

    Progress since last P5 ReportBEPAC recommends JDEM as highest-priority

    for NASAs Beyond Einstein program: joint AO

    expected 2008DES recommended for CD2/3a approval

    LSST successful Conceptual Design Review

    ESA Cosmic Visions Program: DUNE, SPACEConcept Advisory Team studying possible

    merger

  • 8/3/2019 J. Frieman et al- Dark Energy

    3/35

    3

    What is causing cosmic acceleration?

    Dark Energy:

    Gravity:

    Key Experimental Questions:

    1. Is DE observationally distinguishable from a cosmologicalconstant, for which w =1?

    2. Can we distinguish between gravity and dark energy?

    Combine distance with structure-growth probes

    3. Does dark energy evolve: w=w(z)?

    G"= 8#G[T

    "(matter)+ T

    "(dark energy)]

    DE equation of state : w = Tii /T0

    0< $1/ 3

    G"+ f(g

    ") = 8#GT

    "(matter)

  • 8/3/2019 J. Frieman et al- Dark Energy

    4/35

    4

    Probe dark energy through the history of the expansion rate:

    and the growth of large-scale structure:

    Four Primary Probes (DETF):

    Weak Lensingcosmic shear Distance r(z)+growth

    Supernovae Distance

    Baryon Acoustic Oscillations Distance+H(z)

    Cluster counting Distance+growth

    What is the nature of Dark Energy?

    H2 (z)

    H02

    ="m

    (1+ z)3+"

    DEexp 3 (1+ w(z))dln(1+ z)#[ ] + 1$"m $"DE( ) 1+ z( )

    2

    "# a( )#

    r(z) = Fdz

    H z( )"#

    $%

    &

    '(

    dV

    dzd)=

    r2(z)

    H(z)

  • 8/3/2019 J. Frieman et al- Dark Energy

    5/35

    5

    Probe dark energy through the history of the expansion rate:

    and the growth of large-scale structure:

    Four Primary Probes (DETF):

    Weak Lensingcosmic shear Distance r(z)+growth

    Supernovae Distance

    Baryon Acoustic Oscillations Distance+H(z)

    Cluster counting Distance+growth

    What is the nature of Dark Energy?

    H2 (z)

    H02

    ="m

    (1+ z)3+"

    DEexp 3 (1+ w(z))dln(1+ z)#[ ] + 1$"m $"DE( ) 1+ z( )

    2

    "# a( )#

    r(z) = Fdz

    H z( )"#

    $%

    &

    '(

    dV

    dzd)=

    r2(z)

    H(z)

  • 8/3/2019 J. Frieman et al- Dark Energy

    6/35

    6

    Model Assumptions

    Most current data analyses assume a simplified, two-

    parameter class of models:

    Future experiments aim to constrain (at least) 4-

    parameter models:

    Higher-dimensional EOS parametrizations possible

    Other descriptions possible (e.g., kinematic)

    "m,"

    DE,w(z) # either : "

    m,"

    DE(w = $1)

    or : "m, w (constant), flat : "

    m+"

    DE=1

    "m,"

    DE,w(a)= w

    0+ w

    a (1# a

    )

  • 8/3/2019 J. Frieman et al- Dark Energy

    7/35

    7

    Current

    Constraints onConstantDark

    Energy Equation

    of State

    2-parameter model:

    Data consistent with

    w=10.1

    Allen et al 07

    w, "m

  • 8/3/2019 J. Frieman et al- Dark Energy

    8/35

    8

    Current

    Constraints onConstantDark

    Energy Equation

    of State

    2-parameter model:

    Data consistent with

    w=10.1

    Allen et al 07

    Kowalski et al 08

    w, "m

  • 8/3/2019 J. Frieman et al- Dark Energy

    9/35

    9

    Curvature and Dark Energy

    WMAP3+

    SDSS+2dF+SN

    w(z)=constant

    3-parametermodel:

    Spergel etal 07

    w, "m

    , "k

  • 8/3/2019 J. Frieman et al- Dark Energy

    10/35

    10

    Much weaker

    current

    constraints on

    Time-varying

    Dark Energy

    3-parameter model

    marginalized overm

    Kowalski et al 08 Assumes flat Universe

    w(z) = w0 + wa (1" a)+ ...

  • 8/3/2019 J. Frieman et al- Dark Energy

    11/35

    11

    Dark Energy Task Force Report (2006)

    Defined Figure of Merit to compare expts andmethods:

    Highlighted 4 probes: SN, WL, BAO, CL

    Envisioned staged program of experiments:

    Stage II: on-going or funded as of 2006Stage III: intermediate in scale + time

    Stage IV: longer-term, larger scale

    LSST, JDEM

    FoM" 1

    #(w0)#(wa )

    "3

    "10

  • 8/3/2019 J. Frieman et al- Dark Energy

    12/35

    12

    Much weaker

    current

    constraints on

    Time-varying

    Dark Energy

    3-parameter model

    marginalized overm

    Kowalski et al 08

    w(z) = w0 + wa (1" a)

    ``Stage III

    ``Stage IV

    Theoretical

    prejudice

  • 8/3/2019 J. Frieman et al- Dark Energy

    13/35

    13

    Growth of Large-

    scale Structure

    Robustness of the

    paradigm recommends

    its use as a Dark

    Energy probe

    Price:additional

    cosmological and

    structure formation

    parameters

    Bonus:additional

    structure formation

    parameters

  • 8/3/2019 J. Frieman et al- Dark Energy

    14/35

    14

    Expansion History vs. Perturbation Growth

    Growth ofPerturbations

    probesH(z)

    and gravitymodifications

    Linder

  • 8/3/2019 J. Frieman et al- Dark Energy

    15/35

    15

    Expansion History vs. Perturbation Growth

    Growth ofPerturbations

    probesH(z)

    and gravitymodifications

    Linder

  • 8/3/2019 J. Frieman et al- Dark Energy

    16/35

    16

    Probing Dark Energy

    Primary Techniques identified by the

    Dark Energy Task Force report:

    Supernovae

    Galaxy Clusters

    Weak Lensing

    Baryon Acoustic Oscillations

    Multiple Techniques needed: complementary in systematics

    and in science reach

  • 8/3/2019 J. Frieman et al- Dark Energy

    17/35

    17

    Caveat:

    Representative list,

    not guaranteed to be

    complete or accurate

  • 8/3/2019 J. Frieman et al- Dark Energy

    18/35

    18

    Type Ia SN

    Peak Brightness

    as calibratedStandard Candle

    Peak brightness

    correlates with

    decline rate

    Variety of algorithms

    for modeling these

    correlations

    After correction,~ 0.15 mag(~7% distance error)

    Lumino

    sity

    Time

  • 8/3/2019 J. Frieman et al- Dark Energy

    19/35

    19

    2007

    Wood-Vasey etal 07

  • 8/3/2019 J. Frieman et al- Dark Energy

    20/35

    Large-scale Correlations of

    SDSS Luminous Red Galaxies

    Acoustic series in

    P(k) becomes a

    single peak in (r)

    Pure CDM model

    has no peak

    Eisenstein, etal

    05

    Redshift-

    space

    Correlation

    Function

    Baryon

    Acoustic

    Oscillations

    seen in

    Large-scale

    Structure

    "(r) =

    #(r

    x)#(r

    x+

    r

    r)

  • 8/3/2019 J. Frieman et al- Dark Energy

    21/35

    Cold Dark

    Matter Models

    Power Spectrum

    of the Mass

    Density

    " k( ) = d3# x $ eir

    k$r

    x"%x( )

    %

    " k1( )" k2( ) =

    2#( )3

    P k1( )"

    3r

    k1+

    r

    k2( )

  • 8/3/2019 J. Frieman et al- Dark Energy

    22/35

    22Tegmark etal 06

    SDSS

  • 8/3/2019 J. Frieman et al- Dark Energy

    23/35

    23

    Weak lensing: shear and mass

    Jain

  • 8/3/2019 J. Frieman et al- Dark Energy

    24/35

    Cosmic Shear Correlations

    Shear

    Amplitude

    VIRMOS-Descart Survey

    Signal

    Noise+systematics

    2x10-4

    10-4

    0

    ,()

    0.6Mpc/h 6Mpc/h 30Mpc/h

    CDM

    55 sq deg

    z= 0.8

    Van

    Waerbeke

    etal 05

  • 8/3/2019 J. Frieman et al- Dark Energy

    25/35

    25

    Clusters and Dark Energy

    MohrVolume Growth

    (geometry)

    Number of clusters above observable mass threshold

    Dark Energy

    equation of state

    dN(z)

    dzd"=

    dV

    dz d"n z( )

    Requirements1.Understand formation of darkmatter halos

    2.Cleanly select massive dark matterhalos (galaxy clusters) over a range

    of redshifts3.Redshift estimates for each cluster

    4.Observable proxy O that can beused as cluster mass estimate:

    p(O|M,z)

    Primary systematic:

    Uncertainty in bias & scatter ofmass-observable relation

  • 8/3/2019 J. Frieman et al- Dark Energy

    26/35

    26

    Clusters form hierarchically

    z = 7 z = 5 z = 3

    z = 1 z = 0.5 z = 0

    5 Mpc

    dark matterdark matter

    timetime

    Kravtsov

  • 8/3/2019 J. Frieman et al- Dark Energy

    27/35

    27

    Theoretical Abundance of Dark Matter Halos

    Warren et al 05

    Warren etal

    n(z) = (dn /dlnM)dlnMMmin

    "

    #

  • 8/3/2019 J. Frieman et al- Dark Energy

    28/35

    28

    Cluster Selection

    4 Techniques for Cluster Selection:

    Optical galaxy concentration

    Weak Lensing

    Sunyaev-Zeldovich effect (SZE)

    X-ray

    Cross-compare selection to controlsystematic errors

  • 8/3/2019 J. Frieman et al- Dark Energy

    29/35

    29

    Photometric Redshifts

    Measure relative flux in

    multiple filters:

    track the 4000 A break

    Precision is sufficient

    for Dark Energy probes,

    providederror distributions

    well measured.

    Need deep spectroscopic galaxy

    samples to calibrate

    Redshifted Elliptical galaxy spectrum

  • 8/3/2019 J. Frieman et al- Dark Energy

    30/35

    30

    Photometric Redshifts

    Measure relative flux in

    multiple filters:

    track the 4000 A break

    Precision is sufficient

    for Dark Energy probes,

    providederror distributions

    well measured.

    Need deep spectroscopic galaxy

    samples to calibrate

    Redshifted Elliptical galaxy spectrum

  • 8/3/2019 J. Frieman et al- Dark Energy

    31/35

    31

    Cluster Mass Estimates

    4 Techniques for Cluster Mass Estimation:

    Optical galaxy concentration

    Weak Lensing

    Sunyaev-Zeldovich effect (SZE)

    X-ray

    Cross-compare these techniques to

    reduce systematic errors

    Additional cross-checks:

    shape of mass function; cluster

    correlations

  • 8/3/2019 J. Frieman et al- Dark Energy

    32/35

    32

    Calibrating the Cluster Mass-

    Observable Relation

    Weak Lensing by

    stacked SDSS Clusters

    insensitive toprojection effects

    Calibrate mass-

    richness

    Johnston, Sheldon, etal 07

  • 8/3/2019 J. Frieman et al- Dark Energy

    33/35

    33

    Current Constraints: X-ray clusters

    Mantz, et al 2007

  • 8/3/2019 J. Frieman et al- Dark Energy

    34/35

    34

    Systematic Errors

    Supernovae: uncertainties in dust and SN colors;

    selection biases; ``hidden luminosity evolution;

    limited low-z sample for training & anchoring

    BAO: redshift distortions; galaxy bias; non-

    linearities; selection biases

    Weak Lensing: additive and multiplicative shear

    errors; photo-z systematics; small-scale non-linearity

    & baryonic efffects

    Clusters: scatter & bias in mass-observable relation;

    uncertainty in observable selection function; small-

    scale non-linearity & baryonic effects

  • 8/3/2019 J. Frieman et al- Dark Energy

    35/35

    35

    Conclusions

    Excellent prospects for increasing the precision on DarkEnergy parameters from a sequence of increasingly complex

    and ambitious experiments over the next 5-15 years

    Exploiting complementarity of multiple probes will be key:

    we dont know what the ultimate systematic errorfloors for

    each method will be. Combine geometric with structure-

    growth probes to help distinguish modified gravity from dark

    energy.

    What parameter precision is needed to stimulate theoretical

    progress? It depends in large part on what the answer is.

top related