IST Project LION

Post on 12-Jan-2016

42 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

IST Project LION. Outline. IST-project LION Layers Interworking in Optical Networks Overview – objectives Testbed Progress: 2 examples Recovery experiments on testbed Design of survivable multilayer IP over Optical Network. IST Project LION. Telecom Italia Lab - Prime Contractor. - PowerPoint PPT Presentation

Transcript

IST Project LION

2

Outline

• IST-project LION

– Layers Interworking in Optical Networks

– Overview – objectives

– Testbed

• Progress: 2 examples

– Recovery experiments on testbed

– Design of survivable multilayer IP over Optical Network

3

Telecom Italia Lab - Prime Contractor

Agilent Technologies Italia

Universitat Politecnica de Catalunya

Cisco Systems International

T - NOVA - Deutsche Telekom

Interuniversity Microelectronics Centre

Siemens ICN

Nippon Telegraph and Telephone

National Technical University of Athens

Sirti

The University of Mining and

Metallurgy

Telekomunikacja Polska

Tellium

IST Project LION

4

IST Project LION• Context

– Evolution of current transport networks towards next generation optical networks

• Main Objective

– Study, development and experimental assessment of an Automatic Switched Optical Network (ASON)

• Project Data

– Starting date : Jan-2000

– Duration : 36 months

– Total Cost : 10,686,236 EURO

– EC Contribution : 5,499,951 EURO

5

Objectives of the Project• Definition of architecture and functional requirements for

next generation optical networks (e.g. ASON and G-MPLS)

• Identification of resilience strategies for multi-layer networks

• Cost evalutation of IP over ASON solutions (case studies)

• Definition of a network management view for ASONs

• Design and implementation of two interworking Network Managers via a CORBA interface

• Design and implementation of UNI and NNI

• Design and implementation of Optical Control Planes

• Development of a test bed IP over ASON

6

Emerging Network Requirements

• Convergence of voice-video-data applications over the same infrastructure

• Reduced complexity and de-layering

• Higher penetration of opt. transport services

• Flexible and cost-effective end-to-end provisioning of optical connections

• Optical re-routing and restoration

• Support of multiple clients (metro)

• Multiple levels of QoS

• Optical Virtual Private Networks (OVPN)

7

ASON Test bedT-Nova

NMS

OXC2

OXC3

SiemensDomain

ci@oNetNMS

OXC4

Tellium Domain

OXC1

OADM2OADM3

OADM1

TILABDomain

GSR5

GSR2

GSR1

GSR4

GSR3

Siemens OXCs with NNI signaling Siemens OXCs with NNI signaling

TILAB UNI/NNI signalingG.709 interfacesTILAB UNI/NNI signalingG.709 interfaces

Tellium OXCTellium OXC

UNI (data)

NNI (data & signaling)

UNI (data & signaling)

Cisco GSRs with UNI signaling Cisco GSRs with UNI signaling

Interdomain NMS interworking via a CORBA-based interfaceInterdomain NMS interworking via a CORBA-based interface

8

Outline

• IST-project LION

– Layers Interworking in Optical Networks

– Overview – objectives

– Testbed

• Progress: 2 examples

– Recovery experiments on testbed

– Design of survivable multilayer IP over Optical Network

9

ADM C

ADM D

ADM B

Traffic generator

GSR2

GSR5

GSR1

GSR3SW1SW3

SW4

SW2

OXC1

GSR4

AR1

AR2

Client

Server

GbE

STM-1 / POS-1

STM-16 / POS-16

Eth 10/100

POTS

2R transponder

WDM

OADM2OADM3

OADM1

LSP 2 -> 5 (working)

LSP 2 -> 5 (backup)

LSP 5 -> 2 (working)

LSP 5 -> 2 (backup)

Measurements: MPLS rerouting

10

ADM C

ADM D

ADM B

Traffic generator

GSR2

GSR5

GSR1

GSR3SW1SW3

SW4

SW2

OXC1

GSR4

AR1

AR2

Client

Server

GbE

STM-1 / POS-1

STM-16 / POS-16

Eth 10/100

POTS

2R transponder

WDM

OADM2OADM3

OADM1

LSP 2 -> 5 (working)

LSP 2 -> 5 (backup)

LSP 5 -> 2 (working)

LSP 5 -> 2 (backup)

Measurements: Optical Protection

11

Optical protection

GSR2 GSR5(250 Byte) 831 1140

MPLS rerouting

GSR5 GSR2(250 Byte)

GSR2 GSR5(1500 Byte)

GSR5 GSR2(1500 Byte)

936

Lost Packets min ave max

375 152 1 796 002711 490

0 00 321 236 574 654378 746

190 353232 64 131 310 154168 622

0 00 45 441 122 77073 707

min ave max

25 ms 7 39 s

GbE does not allow fast failure detection--> HELLO detection scheme (+/- 40 sec)

Packet Loss Measurement

12

Outline

• IST-project LION

– Layers Interworking in Optical Networks

– Overview – objectives

– Testbed

• Progress: 2 examples

– Recovery experiments on testbed

– Design of survivable multilayer IP over Optical Network

13

IP-MPLS

OTN

MPLS LSP(working)

Optical node failure optical recovery can only restore transit lightpaths

Backup MPLS LSP

Some actions at the IP-MPLS layer is needed.

MPLS LSP(protected in OTN)

Multilayer survivability: bottom-up strategy

14

• Recovery scheme at the IP-MPLS layer (MPLS rerouting, local protection,…) -> IP topology has to be biconnected

– Assumption: MPLS rerouting

OTN

IP-MPLS

Some working and spare LSPs shown. Topology has to be biconnected to allow IP-MPLS recovery of router failures

2

3

OTN

Capacity needed onOTN links

2

Static multilayer resilient scheme

• Recovery scheme at the OTN layer (1+1 protection, link restoration,…)– Assumption: dedicated path

protection

• Multilayer scheme– Options to support IP

spare capacity• double protection• IP spare not protected• common pool

– Assumption: bottom-up escalation strategy

Static recovery schemes

15

Dynamic ASON-based recovery schemes

• Dimensioning of multiple IP layer topologies

– 1 for nominal (fault-free) scenario

– 1 for each topology related with a single IP router failure

Single IP router failure scenarios

IP-MPLS

Failure-free scenario

OTN

IP-MPLS

OTN

IP-MPLS

OTN

11

2

OTN

Worst case capacity and resource requirements over all scenarios

Dynamic, ASON-based multilayer resilience scheme

• Capacity needed in OTN is calculated for each dimensioning, taking into account capacity needed to recover from OTN failures (by means of 1+1 path protection)

• Resources needed in OTN to recover from all possible single IP or OTN failures are the worst case resource requirements of the OTN taken over the failure-free scenario and all IP failure scenarios

16

• ASON local reconfiguration needs fewest capacity• ASON global reconfiguration double protection

Note: ASON reconfiguration schemes have better fault coverage

Relative Optical Layer Cost (%-age of nominal case)

0%

20%

40%

60%

80%

100%

120%

140%

160%

ASON globalreconfiguration

double protection IP spare notprotected

common pool ASON localreconfiguration

Multilayer resilience scheme

Line Cost Node Cost Tributary Cost

Cost comparison

17

For Further ContactsProject Leader of IST LION

antonio.manzalini@tilab.com

Phone: +39 011 2285 817

top related