inglada-AFrameworkfortheSimulationofHighTemporalResolutionImageSeries.pdf

Post on 20-May-2015

281 Views

Category:

Business

0 Downloads

Preview:

Click to see full reader

Transcript

A Framework for the Simulation of HighTemporal Resolution Image Series

J. Inglada, O. Hagolle, G. Dedieu

25/07/2011

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 1 / 33

Outline

1 Introduction

2 Models

3 Example of application

4 Conclusions and future work

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 2 / 33

Introduction

Outline

1 Introduction

2 Models

3 Example of application

4 Conclusions and future work

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 3 / 33

Introduction

New sensors

Ï VenusÏ Sentinel (1,2,3)Ï LDCMÏ New applications . . .

... which require to closely monitor the temporal trajectory of thecharacteristics of land surfaces.

Ï real time classificationÏ evolving nomenclatures

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 4 / 33

Introduction

New sensors

Ï VenusÏ Sentinel (1,2,3)Ï LDCMÏ New applications . . .

... which require to closely monitor the temporal trajectory of thecharacteristics of land surfaces.

Ï real time classificationÏ evolving nomenclatures

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 4 / 33

Introduction

The VENµS mission

Ï France/Israel cooperationÏ 11 spectral bands (VIS, NIR)Ï 10 m. resolutionÏ 2 day revisit cycle (limited number of sites)

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 5 / 33

Introduction

Sentinel-2

Ï Optical HR component of ESA’s Sentinel ProgrammeÏ 13 spectral bands (VIS, NIR, SWIR)Ï 10/20/60. m resolutionÏ Earth coverage every 5 days (with 2 sats)

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 6 / 33

Introduction

Challenges

Ï From the annual classification . . .

Ï ... to the dynamic classification

Inter-crop Stubble disking Deep ploughing

Harrowing Sowing Emergence

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 7 / 33

Introduction

Challenges

Ï From the annual classification . . .

Ï ... to the dynamic classification

Inter-crop Stubble disking Deep ploughing

Harrowing Sowing Emergence

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 7 / 33

Introduction

Focus

Applications

Ï Global coverage every few daysÏ Expectations for land cover change monitoringÏ Real-time: update the land-cover maps for every new acquisition

MethodsÏ Describe temporal evolutionsÏ Choose and combine different data sourcesÏ Integration of prior knowledge

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 8 / 33

Introduction

Objectives

Ï Develop algorithms for high temporal and high spatial resolution imagetime series

Ï Evaluate and compare:Ï algorithmsÏ the sensors

Ï Need for realistic data which are representative of sensors which donot exist

Ï Use physical models as simulation tools

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 9 / 33

Models

Outline

1 Introduction

2 Models

3 Example of application

4 Conclusions and future work

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 10 / 33

Models

Essential Climate Variables

Ï For climate change assessment, mitigation and adaptation:Ï River discharge,Ï Water use,Ï Groundwater,Ï Lakes,Ï Snow cover,Ï Glaciers and ice caps,Ï Permafrost,Ï Albedo,Ï Land cover (including vegetation type),Ï Fraction of absorbed photosynthetically active radiation (FAPAR),Ï Leaf area index (LAI),Ï Above-ground biomass,Ï Fire disturbance

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 11 / 33

Models

Models - Scope

Ï They describe the physical realityÏ Their assumptions/simplifications are clearÏ Naturally use/need ancillary data (meteo, ground measures)

Ï They can be multi-sensor or better . . .. . . Sensor Agnostic

Ï benefit from the synergy between sensorsÏ increase temporal sampling!

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 12 / 33

Models

Models - Scope

Ï They describe the physical realityÏ Their assumptions/simplifications are clearÏ Naturally use/need ancillary data (meteo, ground measures)

Ï They can be multi-sensor or better . . .. . . Sensor Agnostic

Ï benefit from the synergy between sensorsÏ increase temporal sampling!

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 12 / 33

Models

Models - Challenges

Ï Areas of interest:Ï hydrology, agriculture, forestry,

Ï Media:Ï Aerial, terrestrial, aquatic, mixed

Ï How to find the good balanceÏ complexity,Ï number of input parameters and variables,Ï computational cost

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 13 / 33

Models

Open source models - someexamples

Ï Prospect: optical model for estimating leaf-level reflectance andtransmittance

Ï Sail: canopy reflectance modelÏ Daisy: mechanistic simulation model of the physical and biologicalprocesses in an agricultural field

Ï 6s: a basic RT code used for calculation of look-up tables in theMODIS atmospheric correction algorithm

Ï Arts: radiative transfer model for the millimeter and sub-millimeterspectral range.

Ï etc.Ï have a look at ecobas.org

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 14 / 33

Example of application

Outline

1 Introduction

2 Models

3 Example of application

4 Conclusions and future work

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 15 / 33

Example of application

Purpose

Which is the best sensor to recognize these:

60

40

20

0

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 2,6

sol nu sec

végétation

eau

visible proche infrarouge moyen infrarouge

Longueur d'onde (µm)

fle

cta

nce

(%

)

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 16 / 33

Example of application

Purpose

Ï Or these

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 17 / 33

Example of application

Principle

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 18 / 33

Example of application

Results

0

0.2

0.4

0.6

0.8

1

Vegetation

Soils

Man-m

ade

Minerals

Acc

urac

y

Spot 5QuickbirdPleiades

Landsat TMIkonos

FormosatMeris

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 19 / 33

Example of application

Results

0

0.2

0.4

0.6

0.8

1

RoadConcretes

Constructions

RoofIgneous

Metam

orphic

Sedimentary

Alfisol

Aridisol

Entisol

Inceptisol

Mollisol

Acc

urac

y

Spot 5QuickbirdPleiades

Landsat TMIkonos

FormosatMeris

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 20 / 33

Example of application

But we said HTR . . .

Ï How to simulate a multi-t mission?Ï Venus, Sentinel-2

Ï Realistic temporal evolutionsÏ Use existing image time series

Ï Formosat-2Ï 8 m., 4 bands (B,V,R,NIR), 3 days

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 21 / 33

Example of application

Example of series

March 14, 2006

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 22 / 33

Example of application

Example of series

July 17, 2006

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 23 / 33

Example of application

Example of series

November 2, 2006

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 24 / 33

Example of application

Available data

Ï 49 images in 2006Ï Orthorectification OKÏ Radiometric corrections OK

Ï TOC and aerosol correctionsÏ Cloud screening

Ï Land-cover map availableÏ Leaf pigments data base for several vegetation types (LOPEX’93)

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 25 / 33

Example of application

Spectral responses

500 1000 1500 2000wavelength

0.0

0.2

0.4

0.6

0.8

1.0Fo

rmos

at-2

Relative Spectral Responses

500 1000 1500 2000wavelength

0.0

0.2

0.4

0.6

0.8

1.0

Venu

s

500 1000 1500 2000wavelength

0.0

0.2

0.4

0.6

0.8

1.0

Sent

inel

-2

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 26 / 33

Example of application

Simulator architecture

Formosat-2 Input Series

LAI (t)

Land Cover Map

Cab

Car

N

PROSPECT+SAIL Full Spectra Venµs RSR

Formosat-2 RSR

Sentinel-2 RSR

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 27 / 33

Example of application

Example of application

Mar 2006

Apr 2006

May 2006

Jun 2006Jul 2006

Aug 2006

Sep 2006

Oct 2006

Nov 20060.0

0.2

0.4

0.6

0.8

1.0

Cloud %40 dates30 dates

0 10 20 30 40 50Number of dates

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Kapp

a In

dex

FSAT-2VenusSentinel-2

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 28 / 33

Conclusions and future work

Outline

1 Introduction

2 Models

3 Example of application

4 Conclusions and future work

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 29 / 33

Conclusions and future work

As a conclusion

Ï New missions in the coming yearsÏ Venus, Sentinel, LDCM

Ï Nowadays: Formosat-2Ï How to prepare the use of future systems

Ï Algorithm design and validationÏ Understanding phenomena

Ï Use of simulationÏ Completely syntheticÏ From very high resolution(s) dataÏ The third way!

Ï Use real time seriesÏ but with lower resolutions

Ï Use physical models

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 30 / 33

Conclusions and future work

What we’ve got

Ï Source code available for many simulatorsÏ Ongoing work for

Ï Prospect, Sail & Daisy integrationÏ new hyper/multi- spectral/temporal algorithm integration

http://www.orfeo-toolbox.org

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 31 / 33

Conclusions and future work

What we need

Engineering - Development

Ï Improve image simulation: MTF, realistic landscapesÏ Hide physical models under common interfaces

ResearchÏ Learn to select the best model set for a given problemÏ Incorporate domain expert knowledge

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 32 / 33

Conclusions and future work

Creative Commons Attribution-ShareAlike 3.0 Unported License

J. Inglada, O. Hagolle, G. Dedieu IGARSS’11, Vancouver 25/07/2011 33 / 33

top related