IGARSS 2011 Esteban Aguilera Compressed Sensing for Polarimetric SAR Tomography E. Aguilera, M. Nannini and A. Reigber.

Post on 05-Jan-2016

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

IGARSS 2011Esteban Aguilera

Compressed Sensing forPolarimetric SAR Tomography

E. Aguilera, M. Nannini and A. Reigber

IGARSS 2011Esteban Aguilera

1. Polarimetric SAR tomography

2. Compressive sensing of single signals

3. Multiple signals compressive sensing: Exploiting correlations

4. Compressive sensing for volumetric scatterers

5. Conclusions

Overview

IGARSS 2011Esteban Aguilera

azimuthground range

M parallel tracks for 3D imaging

Tomographic SAR data acquisition

Side-looking illumination at L-Band

IGARSS 2011Esteban Aguilera

The tomographic data stack

Our dataset is a stack of M two-dimensional SAR images per polarimetric channel

M images

azimuthrange

IGARSS 2011Esteban Aguilera

The tomographic data stack

Projections of the reflectivity in the elevation direction are encoded in M pixels (complex valued)

azimuthrange

1

2

M

b

bB

b

IGARSS 2011Esteban Aguilera

The tomographic signal model: B = AX

11,1 1,2 1,3 1,1

22,1 2,2 2,3 2,2

33,1 3,2 3,3 3,

,1 ,2 ,3 ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

N

N

N

MM M M M N N

xa r a r a r a rb

xa r a r a r a rb

xa r a r a r a r

ba r a r a r a r x

,4

,( )i jj r

i ja r e

height

B : measurementsA : steering matrixX : unknown reflectivity

IGARSS 2011Esteban Aguilera

What’s the problem?

High resolution and low ambiguity require a large number of tracks:

1. Expensive and time consuming

2. Sometimes infeasible

3. Long temporal baselines affect reconstruction

IGARSS 2011Esteban Aguilera

Where does this work fit?

Beamforming (SAR tomography):

1. Beamforming (Reigber, Nannini, Frey)

2. Adaptive beamforming (Lombardini, Guillaso)

3. Covariance matrix decomposition (Tebaldini)

Physical Models (SAR interferometry):1. PolInSAR (Cloude, Papathanassiou)2. PCT (Cloude)

Compressed sensing (SAR tomography)1. Single signal approach (Zhu, Budillon)2. Multiple signal/channel approach

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

B AX

AMxN : steering matrix

XN : unknown reflectivityBM : stack of pixels

height

gnd. rangeazimuth

IGARSS 2011Esteban Aguilera

The compressive sensing approach

We look for the sparsest solution that matches the measurements

minX 1

X

2AX B subject to

Convex optimization problem

IGARSS 2011Esteban Aguilera

How many tracks?

In theory:

take

measurements

frequencies selected at random

In practice:

we can use our knowledge about the signal and sample less:

low frequency components seem to do the job!

0 log( )M C S N

2M S

IGARSS 2011Esteban Aguilera

CS for vegetation mapping ?

The elevation profile can be approximated by a summation of sparse profiles

Different to conventional models (non-sparse). And probably a bad one…

elevation

amplitude

= + + … +

IGARSS 2011Esteban Aguilera

Tomographic E-SAR Campaign

Testsite: Dornstetten, GermanyHorizontal baselines: ~ 20mVertical baselines: ~ 0mAltitude above ground: ~ 3800m# of baselines: 23

3,5 m

2 corner reflectors in layover and ground

IGARSS 2011Esteban Aguilera

CAPON using 23 tracks (13x13 window) = ground truth

40 m

2 corner reflectors in layover

Canopy and groundGround

40 m

Single Channel Compressive Sensing

CS using only 5 tracks

IGARSS 2011Esteban Aguilera

Normalized intensity – 40 m

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

IGARSS 2011Esteban Aguilera

Multiple Signal Compressive Sensing

Assumption: adjacent azimuth-range positions are likely to have targets at about the same elevation

1 1 1

2 2 2...

M M M

b c d

b c d

b c d

L columns

azimuthrange

range

azimuthM images

GHH

IGARSS 2011Esteban Aguilera

Polarimetric correlations

We can further exploit correlations between polarimetric channels

G

3L columns

GHH GHV GVV

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

A

G AY

AMxN : steering matrixYNx3L : unknown reflectivities

HH HV VV Mx3L : stacks of pixelsG

IGARSS 2011Esteban Aguilera

YNx3L : unknown reflectivity

Y

minY

2AY G subject to

2,1Y

Elevation profile reconstruction

We look for a matrix with the least number of non-zero rows that matches the measurements

IGARSS 2011Esteban Aguilera

Mixed-norm minimization

minY

2AY G subject to

0

Number of columns in Y (window size + polarizations)

Probability of recovery failure

(Eldar and Rauhut, 2010)

2,1Y

IGARSS 2011Esteban Aguilera

SSCS (saturated) MSCS (span saturated)

MSCS (polar) MSCS (span)

Layover recovery with CS

IGARSS 2011Esteban Aguilera

Beamforming (23 passes, 3x3)

SSCS (5 passes, 3x3)

MSCS (5 passes, 3x3)

MSCS (pre-denoised) (5 passes, 3x3)

Layover recovery with CS

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Single signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Single signal CS (5 tracks)

Multiple signal CS (5 tracks)

40 m

IGARSS 2011Esteban Aguilera

Volumetric Imaging

Polarimetric Capon beamforming (5 tracks)

Multiple signal CS (5 tracks)

40 m

IGARSS 2011Esteban Aguilera

Towards a “realistic” sparse vegetation model

elevation

amplitude

Canopy and ground component

Possible sparse description in wavelet domain!

IGARSS 2011Esteban Aguilera

Sparsity in the wavelet domain

Daubechies wavelet example: 4 vanishing moments 3 levels of decomposition

groundcanopy ground

canopy

0.5

1

0

0.5

1

0

IGARSS 2011Esteban Aguilera

Elevation profile reconstruction

minY 1

WY

( )AY D Gs.t.

Additional regularization

1

L1 norm of wavelet expansion

(W: transform matrix)

synthetic aperture

2,1Y

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet Domain

Fourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

IGARSS 2011Esteban Aguilera

Volumetric Imaging in Wavelet Domain

Fourier beamforming using 23 tracks (23x23 window)

Wavelet-based CS (5 tracks)

40 m

IGARSS 2011Esteban Aguilera

Conclusions

Single signal CS:

1. High resolution with reduced number of tracks2. Recovers complex reflectivities but polarimetry problematic3. Model mismatch is not catastrophic (CS theory)4. It’s time-consuming (Convex optimization)

Multiple signal CS:

1. Polarimetric extension of CS2. Higher probability of reconstruction, less noise3. More robust for distributed targets4. Vegetation reconstruction in the wavelet domain

IGARSS 2011Esteban Aguilera

Convex optimization solvers

CVX (Disciplined Convex Programming): http://cvxr.com/cvx/

SEDUMI: http://sedumi.ie.lehigh.edu/

top related