Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Neutrinos and the stars.

Post on 26-Mar-2015

221 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

Transcript

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrinos and the starsNeutrinos and the starsSupernova NeutrinosSupernova Neutrinos

Georg Raffelt, MPI for PhysicsLectures at the Topical SeminarNeutrino Physics & Astrophysics1721 Sept 2008, Beijing, China

Georg Raffelt, MPI for PhysicsLectures at the Topical SeminarNeutrino Physics & Astrophysics1721 Sept 2008, Beijing, China

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sanduleak Sanduleak 69 69 202202

Large Magellanic Cloud Large Magellanic Cloud Distance 50 kpcDistance 50 kpc (160.000 light years)(160.000 light years)

Tarantula NebulaTarantula Nebula

Supernova 1987ASupernova 1987A 23 February 198723 February 1987

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987A

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Crab NebulaCrab Nebula

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Helium-burning starHelium-burning star

HeliumHeliumBurningBurning

HydrogenHydrogenBurningBurning

Main-sequence starMain-sequence star

Hydrogen BurningHydrogen Burning

Onion structureOnion structure

Degenerate iron core:Degenerate iron core: 101099 g cm g cm33

T T 10 1010 10 K K

MMFeFe 1.5 M 1.5 Msunsun

RRFeFe 8000 km 8000 km

Collapse (implosion)Collapse (implosion)

Stellar Collapse and Supernova ExplosionStellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Collapse (implosion)Collapse (implosion)ExplosionExplosionNewborn Neutron StarNewborn Neutron Star

~ 50 km~ 50 km

Proto-Neutron StarProto-Neutron Star

nucnuc 3 3 10101414 g cm g cm33

T T 30 MeV 30 MeV

NeutrinoNeutrinoCoolingCooling

Stellar Collapse and Supernova ExplosionStellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Newborn Neutron StarNewborn Neutron Star

~ 50 km~ 50 km

Proto-Neutron StarProto-Neutron Star

nucnuc 3 3 10101414 g cm g cm33

T T 30 MeV 30 MeV

NeutrinoNeutrinoCoolingCooling

Gravitational binding energyGravitational binding energy

EEbb 3 3 10 105353 erg erg 17% M 17% MSUN SUN cc22

This shows up as This shows up as 99% Neutrinos99% Neutrinos 1% Kinetic energy of explosion1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy0.01% Photons, outshine host galaxy

Neutrino luminosityNeutrino luminosity

LL 3 3 10 105353 erg / 3 sec erg / 3 sec

3 3 10 101919 L LSUNSUN

While it lasts, outshines the entireWhile it lasts, outshines the entire visible universevisible universe

Stellar Collapse and Supernova ExplosionStellar Collapse and Supernova Explosion

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Signal of Supernova 1987ANeutrino Signal of Supernova 1987A

Within clock uncertainties,Within clock uncertainties,signals are contemporaneoussignals are contemporaneous

Kamiokande-II (Japan)Kamiokande-II (Japan)Water Cherenkov detectorWater Cherenkov detector2140 tons2140 tonsClock uncertainty Clock uncertainty 1 min1 min

Irvine-Michigan-Brookhaven (US)Irvine-Michigan-Brookhaven (US)Water Cherenkov detectorWater Cherenkov detector6800 tons6800 tonsClock uncertainty Clock uncertainty 50 ms50 ms

Baksan Scintillator TelescopeBaksan Scintillator Telescope(Soviet Union), 200 tons(Soviet Union), 200 tonsRandom event cluster ~ 0.7/dayRandom event cluster ~ 0.7/dayClock uncertainty +2/-54 sClock uncertainty +2/-54 s

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

SN 1987A Event No.9 in Kamiokande SN 1987A Event No.9 in Kamiokande

Kamiokande DetectorKamiokande Detector

Hirata et al., PRD 38 (1988) 448Hirata et al., PRD 38 (1988) 448

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Thermonuclear vs. Core-Collapse SupernovaeThermonuclear vs. Core-Collapse Supernovae

Core collapse (Type II, Ib/c)Core collapse (Type II, Ib/c)Thermonuclear (Type Ia)Thermonuclear (Type Ia)

Chandrasekhar limit is reached Chandrasekhar limit is reached M MChCh 1.5 M 1.5 Msunsun (2Y (2Yee))22

C O L L A P S E S E T S I NC O L L A P S E S E T S I N

Nuclear burning of C and O ignitesNuclear burning of C and O ignites Nuclear deflagrationNuclear deflagration (“Fusion bomb” triggered by collapse)(“Fusion bomb” triggered by collapse)

Collapse to nuclear densityCollapse to nuclear density Bounce & shock Bounce & shock Implosion Implosion Explosion Explosion

Gain of nuclear binding energyGain of nuclear binding energy ~ 1 MeV per nucleon ~ 1 MeV per nucleon

Gain of gravitational binding energyGain of gravitational binding energy ~ 100 MeV per nucleon~ 100 MeV per nucleon 99% into neutrinos 99% into neutrinos

Powered by gravityPowered by gravityPowered by nuclear binding energyPowered by nuclear binding energy

Comparable “visible” energy release of ~ 3 Comparable “visible” energy release of ~ 3 10 105151ergerg

• Carbon-oxygen white dwarfCarbon-oxygen white dwarf (remnant of(remnant of low-mass star)low-mass star)• Accretes matterAccretes matter from companionfrom companion

• Degenerate iron coreDegenerate iron core of evolved massive starof evolved massive star• Accretes matter Accretes matter by nuclear burningby nuclear burning at its surfaceat its surface

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987A

Explosion Mechanismfor Core-Collapse SNeExplosion Mechanismfor Core-Collapse SNe

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Collapse and Prompt ExplosionCollapse and Prompt Explosion

Supernova explosion primarily a hydrodynamical phenomenonSupernova explosion primarily a hydrodynamical phenomenon

Movies by J.A.Font, Numerical Hydrodynamics in General RelativityMovies by J.A.Font, Numerical Hydrodynamics in General Relativityhttp://www.livingreviews.orghttp://www.livingreviews.org

VelocityVelocity DensityDensity

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Why No Prompt Explosion?Why No Prompt Explosion?

DissociatedDissociatedMaterialMaterial

(n, p, e, (n, p, e, ))

• 0.1 M0.1 Msunsun of iron has a of iron has a

nuclear binding energynuclear binding energy 1.7 1.7 10 105151 erg erg• Comparable toComparable to explosion energyexplosion energy

• Shock wave forms Shock wave forms within the iron corewithin the iron core• Dissipates its energy Dissipates its energy by dissociating the by dissociating the remaining layer of iron remaining layer of iron

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrinos to the RescueNeutrinos to the Rescue

Picture adapted from Janka, astro-ph/0008432Picture adapted from Janka, astro-ph/0008432

Neutrino heatingNeutrino heatingincreases pressureincreases pressurebehind shock frontbehind shock front

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Delayed Explosion ScenarioSupernova Delayed Explosion Scenario

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Standing Accretion Shock Instability (SASI)Standing Accretion Shock Instability (SASI)

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.htmlMezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Gravitational Waves from Core-Collapse Gravitational Waves from Core-Collapse SupernovaeSupernovae

MMüüller, Rampp, Buras, Janka, & Shoemaker,ller, Rampp, Buras, Janka, & Shoemaker, “ “Towards gravitational wave signals fromTowards gravitational wave signals from realistic core collapse supernova models,”realistic core collapse supernova models,” astro-ph/0309833astro-ph/0309833

The gravitational-wave signal from convectionThe gravitational-wave signal from convectionis a generic and dominating featureis a generic and dominating feature

BounceBounce

ConvectionConvection

Asymmetric neutrino emissionAsymmetric neutrino emission

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987ASome Particle-Physics

Lessons from SN 1987A

Some Particle-PhysicsLessons from SN

1987A

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Mass Sensitivity by Signal DispersionNeutrino Mass Sensitivity by Signal Dispersion

Time-of-flight delayTime-of-flight delay of massive neutrinosof massive neutrinos

22

eV1m

EMeV10

kpc10D

ms1.5t

22

eV1m

EMeV10

kpc10D

ms1.5t

SN 1987ASN 1987A (50 kpc)(50 kpc) mm

≲≲ 20 eV 20 eV E E 20 MeV, 20 MeV, t t 10 s 10 s Simple estimate or detailed maximumSimple estimate or detailed maximum likelihood analysis give similar resultslikelihood analysis give similar results

Future Future Galactic SNGalactic SN at 10 kpcat 10 kpc (Super-K)(Super-K)

mm ~ 3 eV~ 3 eV

Rise-time of signal ~ 10 msRise-time of signal ~ 10 ms(Totani, PRL 80:2040, 1998)(Totani, PRL 80:2040, 1998)

mm ~ 1 eV~ 1 eV

Full signalFull signal(Nardi & Zuluaga, (Nardi & Zuluaga, NPB 731:140, 2005)NPB 731:140, 2005)

With lateWith late black-holeblack-hole formationformation

mm ~ 2 eV~ 2 eV

Cutoff “infinitely” fastCutoff “infinitely” fast (Beacom et al., PRD 63:073011, 2001)(Beacom et al., PRD 63:073011, 2001)

mm ~ 1~ 12 eV2 eV

D D 750 kpc, 750 kpc, t t 10 s 10 s few tens of eventsfew tens of events

Future SN inFuture SN in AndromedaAndromeda (Megatonne)(Megatonne)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Early Lightcurve of SN 1987AEarly Lightcurve of SN 1987A

Adapted fromAdapted fromArnett et al.,Arnett et al.,ARAA 27 (1989)ARAA 27 (1989)

ExpectedExpectedvisual visual brightnesbrightnesssevolutionevolution

ExpectedExpectedbolometribolometric c brightnesbrightnesssevolutionevolution

Neutrinos severalNeutrinos severalhours before hours before light light

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Do Neutrinos Gravitate?Do Neutrinos Gravitate?

Neutrinos arrive a few hours earlier than photons Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) Early warning (SNEWS)SN 1987A: Transit time for photons and neutrinos equal to within ~ 3hSN 1987A: Transit time for photons and neutrinos equal to within ~ 3h

Equal within ~ 1 Equal within ~ 1 4 4 101033

Shapiro time delay for particles moving in a Shapiro time delay for particles moving in a gravitational potential gravitational potential

Longo, PRL 60:173,1988Longo, PRL 60:173,1988Krauss & Tremaine, PRL 60:176,1988Krauss & Tremaine, PRL 60:176,1988

• Proves directly that neutrinos respond to gravity in the usual wayProves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this pointbecause for photons gravitational lensing already proves this point

• Cosmological limits Cosmological limits NN ≲≲ 1 much worse test of neutrino gravitation 1 much worse test of neutrino gravitation

• Provides limits on parameters of certain non-GR theories of gravitationProvides limits on parameters of certain non-GR theories of gravitation• Photons likely obscured for next galactic SN, so this result probablyPhotons likely obscured for next galactic SN, so this result probably unique to SN 1987A unique to SN 1987A

months51dt)]t(r[U2t BAShapiro months51dt)]t(r[U2t BAShapiro

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

The Energy-Loss ArgumentThe Energy-Loss Argument

NeutrinoNeutrinospheresphere

NeutrinoNeutrino diffusiondiffusion

Late-time signal most sensitive observableLate-time signal most sensitive observable

Emission of very weakly interactingEmission of very weakly interactingparticles would “steal” energy from theparticles would “steal” energy from theneutrino burst and shorten it.neutrino burst and shorten it.(Early neutrino burst powered by accretion,(Early neutrino burst powered by accretion, not sensitive to volume energy loss.)not sensitive to volume energy loss.)

Volume emissionVolume emission of novel particlesof novel particles

SN 1987A neutrino signalSN 1987A neutrino signal

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

DirectDirectsearchsearch

Too muchToo muchcold dark mattercold dark matter

TeleTelescopescopeExperimentsExperiments

Globular clustersGlobular clusters(a-(a--coupling)-coupling)

Too manyToo manyeventsevents

Too muchToo muchenergy lossenergy loss

SN 1987A (a-N-coupling)SN 1987A (a-N-coupling)

Axion BoundsAxion Bounds

101033 101066 101099 10101212 [GeV] f[GeV] faa

eVeVkeVkeV meVmeV eVeVmmaa

Too much hot dark matterToo much hot dark matter

CASTCAST ADMXADMX

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sterile NeutrinosSterile Neutrinos

To avoid complete energy loss in ~ 1 sTo avoid complete energy loss in ~ 1 s

sinsin22(2(2eses) ) ≲≲ 3 3 10 101010

Average scattering rate in SN coreAverage scattering rate in SN coreinvolving ordinary left-handed neutrinosinvolving ordinary left-handed neutrinos

110L s10 110L s10

Electron neutrino appears as sterile neutrinoElectron neutrino appears as sterile neutrino

in ½ sinin ½ sin22(2(2eses) of all cases) of all cases

Les2

21

s )2(sin Les2

21

s )2(sin

1110es

221 s1s10)2(sin 1110

es2

21 s1s10)2(sin

Active-sterileActive-sterilemixingmixing

ssee

ppWW

nn

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sterile Neutrino LimitsSterile Neutrino Limits

See also:See also:

Maalampi & Peltoniemi:Maalampi & Peltoniemi: Effects of the 17-keVEffects of the 17-keV neutrino in supernovae neutrino in supernovae PLB 269:357,1991PLB 269:357,1991 Hidaka & Fuller:Hidaka & Fuller: Dark matter sterileDark matter sterile neutrinos in stellarneutrinos in stellar collapse: alteration ofcollapse: alteration of energy/lepton numberenergy/lepton number transport and atransport and a mechanism formechanism for supernova explosionsupernova explosion enhancementenhancement PRD 74:125015,2006 PRD 74:125015,2006

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova 1987A Limit on Large Extra Supernova 1987A Limit on Large Extra DimensionsDimensions

Cullen & Perelstein, hep-ph/9904422Cullen & Perelstein, hep-ph/9904422 Hanhart et al., nucl-th/0007016Hanhart et al., nucl-th/0007016

SN 1987A energy-loss argument:SN 1987A energy-loss argument:

R R 1 1 mmm, M m, M 9 TeV 9 TeV (n (n = = 2)2)

R R 1 nm, M 1 nm, M 0.7 TeV (n 0.7 TeV (n == 3) 3)

Originally the most restrictiveOriginally the most restrictive limit on such theories, exceptlimit on such theories, except for cosmological argumentsfor cosmological arguments

SN core emits large flux of SN core emits large flux of KK gravity modes byKK gravity modes bynucleon-nucleon bremsstrahlungnucleon-nucleon bremsstrahlung

Large multiplicity of modesLarge multiplicity of modes

RT ~ 10RT ~ 101111

for R ~ 1 mm, T ~ 30 MeVfor R ~ 1 mm, T ~ 30 MeV

2PlMRate 2PlMRate

n2Pl

n

2Pl

n

M

T

M

)RT(Rate n2

Pl

n

2Pl

n

M

T

M

)RT(Rate

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987ANeutrinos from the

Next Galactic Supernova

Neutrinos from theNext Galactic

Supernova

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Local Group of GalaxiesLocal Group of Galaxies

250250

6060

3030

Events in a detector withEvents in a detector with 30 x Super-K fiducial volume,30 x Super-K fiducial volume, e.g. Hyper-Kamiokandee.g. Hyper-Kamiokande

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Core-Collapse SN Rate in the Milky WayCore-Collapse SN Rate in the Milky Way

Gamma rays fromGamma rays from2626Al (Milky Way)Al (Milky Way)

Historical galacticHistorical galacticSNe (all types)SNe (all types)

SN statistics inSN statistics inexternal galaxiesexternal galaxies

No galacticNo galacticneutrino burstneutrino burst

Core-collapse SNe per centuryCore-collapse SNe per century00 11 22 33 44 55 66 77 88 99 1010

van den Bergh & McClure (1994)van den Bergh & McClure (1994)

Cappellaro & Turatto (2000)Cappellaro & Turatto (2000)

Diehl et al. (2006)Diehl et al. (2006)

Tammann et al. (1994)Tammann et al. (1994)Strom (1994)Strom (1994)

90 90 %% CL (25 y obserservation) CL (25 y obserservation) Alekseev et al. (1993)Alekseev et al. (1993)

References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.JETP 77 (1993) 339 and my update.

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Nearby Galaxies with Many Observed Nearby Galaxies with Many Observed SupernovaeSupernovae

M83 (NGC 5236, Southern Pinwheel)M83 (NGC 5236, Southern Pinwheel)D = 4.5 MpcD = 4.5 Mpc

Observed Supernovae: Observed Supernovae: 1923A,1923A, 1945B,1945B, 1950B,1950B, 1957D,1957D, 1968L,1968L,1983N 1983N

NGC 6946 NGC 6946 D = (5.5 ± 1) MpcD = (5.5 ± 1) Mpc

Observed Supernovae:Observed Supernovae:1917A,1917A, 1939C,1939C, 1948B,1948B, 1968D,1968D, 1969P,1969P,1980K,1980K, 2002hh,2002hh, 2004et,2004et, 2008S2008S

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Large Detectors for Supernova NeutrinosLarge Detectors for Supernova Neutrinos

Super-Kamiokande (10Super-Kamiokande (1044))KamLAND (400)KamLAND (400)

MiniBooNEMiniBooNE(200)(200)

In brackets eventsIn brackets eventsfor a “fiducial SN”for a “fiducial SN”at distance 10 kpcat distance 10 kpc

LVD (400)LVD (400)Borexino (100)Borexino (100)

IceCube (10IceCube (1066))

BaksanBaksan (100)(100)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

SSuperuperNNova ova EEarly arly WWarning arning SSystem (SNEWS)ystem (SNEWS)

Neutrino observation can alert astronomersNeutrino observation can alert astronomersseveral hours in advance to a supernova.several hours in advance to a supernova.To avoid false alarms, require alarm from atTo avoid false alarms, require alarm from atleast two experiments.least two experiments.

CoincidenceCoincidenceServer Server @ BNL@ BNL

Super-KSuper-K

AlertAlert

Others ?Others ?

LVDLVD

IceCubeIceCube

http://snews.bnl.govhttp://snews.bnl.govastro-ph/0406214astro-ph/0406214

Supernova 1987ASupernova 1987AEarly Light CurveEarly Light Curve

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Simulated Supernova Signal at Super-Simulated Supernova Signal at Super-KamiokandeKamiokande

Simulation for Super-Kamiokande SN signal at 10 kpc,Simulation for Super-Kamiokande SN signal at 10 kpc,based on a numerical Livermore modelbased on a numerical Livermore model

[Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216][Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216]

AccretioAccretionn

PhasePhase

Kelvin-Kelvin-HelmholtzHelmholtz

Cooling PhaseCooling Phase

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Pointing with NeutrinosSupernova Pointing with Neutrinos

• Beacom & Vogel: Can a supernova be located by its neutrinos?Beacom & Vogel: Can a supernova be located by its neutrinos? [astro-ph/9811350] [astro-ph/9811350] • Tomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing withTomàs, Semikoz, Raffelt, Kachelriess & Dighe: Supernova pointing with low- and high-energy neutrino detectors [hep-ph/0307050]low- and high-energy neutrino detectors [hep-ph/0307050]

ee ee

nepe nepe

SKSK

SK SK 30 30

Neutron tagging efficiencyNeutron tagging efficiency

90 90 %%NoneNone

7.8º7.8º 3.2º3.2º

1.4º1.4º 0.6º0.6º

9595%% CL half-cone opening angle CL half-cone opening angle

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

IceCube as a Supernova Neutrino DetectorIceCube as a Supernova Neutrino Detector

Each optical module (OM) picks upEach optical module (OM) picks upCherenkov light from its neighborhood.Cherenkov light from its neighborhood.SN appears as “correlated noise”.SN appears as “correlated noise”.

• About 300About 300 CherenkovCherenkov photons photons per OMper OM from a SNfrom a SN at 10 kpcat 10 kpc

• NoiseNoise per OMper OM < 500 Hz< 500 Hz

• Total ofTotal of 4800 OMs4800 OMs in IceCubein IceCube

IceCube SN signal at 10 kpc, basedIceCube SN signal at 10 kpc, basedon a numerical Livermore modelon a numerical Livermore model[Dighe, Keil & Raffelt, hep-ph/0303210][Dighe, Keil & Raffelt, hep-ph/0303210]

Method first discussed byMethod first discussed byHalzen, Jacobsen & ZasHalzen, Jacobsen & Zasastro-ph/9512080astro-ph/9512080

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

LAGUNA - Approved FP7 Design StudyLAGUNA - Approved FP7 Design Study

LLarge arge AApparati for pparati for GGrand rand UUnification and nification and NNeutrino eutrino AAstrophysicsstrophysics(see also arXiv:0705.0116)(see also arXiv:0705.0116)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987A

Neutrinos FromAll Cosmic Supernovae

Neutrinos FromAll Cosmic Supernovae

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Diffuse Background Flux of SN NeutrinosDiffuse Background Flux of SN Neutrinos

1 SNu ~ 4 L1 SNu ~ 4 L / L / L,B,B

Average neutrinoAverage neutrinoluminosity of galaxiesluminosity of galaxies~ photon luminosity~ photon luminosity

1 SNu 1 SNu == 1 SN / 10 1 SN / 101010 L Lsun,Bsun,B / 100 years / 100 years

LLsun,Bsun,B == 0.54 L 0.54 Lsunsun == 2 2 10103333 erg/serg/s

EE ~ 3 ~ 3 10105353 erg per core-collapse SN erg per core-collapse SN

For galaxies, averageFor galaxies, averagenuclear & gravitationalnuclear & gravitationalenergy release comparableenergy release comparable

• Photons come from nuclear energyPhotons come from nuclear energy

• Neutrinos from gravitational energyNeutrinos from gravitational energy

Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe,Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe,

corresponds to corresponds to ee flux of ~ 1 cm flux of ~ 1 cm22 s s11

Realistic flux is dominated by much larger early star-formation rateRealistic flux is dominated by much larger early star-formation rate Upper limit ~ 54 cmUpper limit ~ 54 cm22 s s11

[Kaplinghat et al., astro-ph/9912391][Kaplinghat et al., astro-ph/9912391] “ “Realistic estimate” ~ 10 cmRealistic estimate” ~ 10 cm22 s s11

[Hartmann & Woosley, Astropart. Phys. 7 (1997) 137][Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] Measurement would tell us about early history of star formation Measurement would tell us about early history of star formation

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Experimental Limits on Relic Supernova Experimental Limits on Relic Supernova NeutrinosNeutrinos

Cline, astro-ph/0103138Cline, astro-ph/0103138

Upper-limit flux ofUpper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/9912391astro-ph/9912391 Integrated 54 cmIntegrated 54 cm-2-2 s s-1-1

Super-K upper limitSuper-K upper limit 29 cm29 cm-2-2 s s-1 -1 for for Kaplinghat et al. Kaplinghat et al. spectrumspectrum [hep-ex/0209028][hep-ex/0209028]

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

DSNB Measurement with Neutron TaggingDSNB Measurement with Neutron Tagging

Beacom & Vagins, hep-ph/0309300 Beacom & Vagins, hep-ph/0309300 [Phys. Rev. Lett., 93:171101, 2004] [Phys. Rev. Lett., 93:171101, 2004]

Pushing the boundaries of neutrinoPushing the boundaries of neutrinoastronomy to cosmological distancesastronomy to cosmological distances

Future large-scale scintillatorFuture large-scale scintillatordetectors (e.g. LENA with 50 kt)detectors (e.g. LENA with 50 kt)

• Inverse beta decay reaction taggedInverse beta decay reaction tagged• Location with smaller reactor fluxLocation with smaller reactor flux (e.g. Pyh(e.g. Pyhääsalmi in Finland) couldsalmi in Finland) could allow for lower thresholdallow for lower threshold

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987A

Oscillations of Supernova Neutrinos

Oscillations of Supernova Neutrinos

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure of Supernova Neutrino SignalStructure of Supernova Neutrino Signal

1. Collapse (infall phase)1. Collapse (infall phase)2. Shock break out2. Shock break out3. Matter accretion3. Matter accretion4. Kelvin-Helmholtz cooling4. Kelvin-Helmholtz cooling

Traps Traps neutrinosneutrinosand and leptonleptonnumbernumberof outerof outercore core layerslayers

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutronization Burst as a Standard CandleNeutronization Burst as a Standard Candle

Different MassDifferent Mass Neutrino TransportNeutrino Transport Nuclear EoSNuclear EoS

Kachelriess,Kachelriess,Tomàs, Buras,Tomàs, Buras,Janka, MarekJanka, Marek& Rampp,& Rampp,astro-phastro-ph/0412082/0412082

If mixingIf mixingscenario isscenario isknown,known,perhaps bestperhaps bestmethod tomethod todeterminedetermineSN distance,SN distance,especially ifespecially ifobscuredobscured

(better than(better than 5-10%)5-10%)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Flavor-Dependent Fluxes and SpectraFlavor-Dependent Fluxes and Spectra

Broad characteristicsBroad characteristics• Duration a few secondsDuration a few seconds

• EE ~ ~ 101020 MeV20 MeV

• EE increases with timeincreases with time

• Hierarchy of energiesHierarchy of energies

• Approximate equipartitionApproximate equipartition

of energy between flavorsof energy between flavors

xeeEEE xeeEEE

Livermore numerical modelLivermore numerical modelApJ 496 (1998) 216ApJ 496 (1998) 216

Prompt Prompt ee

deleptonizationdeleptonizationburstburst

ee

ee

xx__ However, in traditionalHowever, in traditional

simulations transport simulations transport

of of and and schematic schematic

• Incomplete microphysicsIncomplete microphysics

• Crude numerics to coupleCrude numerics to couple neutrino transport withneutrino transport with hydro codehydro code

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Flavor-Dependent Neutrino Fluxes vs. Equation Flavor-Dependent Neutrino Fluxes vs. Equation of Stateof State

Kitaura, Janka & Hillebrandt, “Explosions of O-Ne-Mg cores, the CrabKitaura, Janka & Hillebrandt, “Explosions of O-Ne-Mg cores, the Crabsupernova, and subluminous Type II-P supernovae”, astro-ph/0512065supernova, and subluminous Type II-P supernovae”, astro-ph/0512065

Wolff & Hillebrandt nuclear EoS (stiff)Lattimer & Swesty nuclear EoS (soft)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Level-Crossing Diagram in a SN EnvelopeLevel-Crossing Diagram in a SN Envelope

Dighe & Smirnov, Identifying the neutrino mass spectrum from a supernovaDighe & Smirnov, Identifying the neutrino mass spectrum from a supernovaneutrino burst, astro-ph/9907423neutrino burst, astro-ph/9907423

Normal mass hierarchyNormal mass hierarchy Inverted mass hierarchyInverted mass hierarchy

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Spectra Emerging from SupernovaeSpectra Emerging from Supernovae

Primary fluxesPrimary fluxes

for for

for for

for for

0eF0eF0eF0eF0xF0xF

ee

ee

,,, ,,,

After leaving theAfter leaving the supernova envelope,supernova envelope, the fluxes arethe fluxes are partially swappedpartially swapped

0x

0e

0e F)p1(FpF 0

x0e

0e F)p1(FpF

0x

0e

0e F)p1(FpF 0

x0e

0e F)p1(FpF

0e

0e

0xx4

1 F4p1

F4p1

F4

pp2F

0

e0e

0xx4

1 F4p1

F4p1

F4

pp2F

NormalNormal

InvertedInverted

sinsin22(2(21313))

≲≲ 101055

≳≳ 101033

AnyAny

Mass orderingMass ordering

sinsin22((1212)) 0.30.3

00 coscos22((1212)) 0.70.7

sinsin22((1212)) 0.30.3coscos22((1212)) 0.70.7

00

CaseCase

AA

BB

CC

Survival probabilitySurvival probability

)for(p e )for(p e )for(p e )for(p e

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Oscillation of Supernova Anti-NeutrinosOscillation of Supernova Anti-Neutrinos

Measured Measured spectrum at a detector like spectrum at a detector like Super-Kamiokande Super-Kamiokande

ee Assumed flux parametersAssumed flux parameters

Flux ratioFlux ratio 1:8.0:e 1:8.0:e

MeV15)(E e MeV15)(E e

MeV18)(E x MeV18)(E x

Mixing parametersMixing parameters

22sun meV60m 22sun meV60m

9.0)2(sin2 9.0)2(sin2

(Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs),(Dighe, Kachelriess, Keil, Raffelt, Semikoz, Tomàs), hep-ph/0303210, hep-ph/0304150, hep-ph/0307050, hep-ph/0311172 hep-ph/0303210, hep-ph/0304150, hep-ph/0307050, hep-ph/0311172

No oscillationsNo oscillations

Oscillations in SN envelopeOscillations in SN envelope

Earth effects includedEarth effects included

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

One detector observes SN shadowed by EarthOne detector observes SN shadowed by Earth

Model-Independent Strategies for Observing Model-Independent Strategies for Observing Earth EffectsEarth Effects

Case 1:Case 1:• Another detectorAnother detector observes SN directlyobserves SN directly• Identify Earth effectsIdentify Earth effects by comparing signalsby comparing signals

Dighe, Keil & Raffelt, “Identifying Earth matterDighe, Keil & Raffelt, “Identifying Earth mattereffects on supernova neutrinos at a single detector”effects on supernova neutrinos at a single detector”[hep-ph/0304150][hep-ph/0304150]

Case2: Identify “wiggles” in signal of single detectorCase2: Identify “wiggles” in signal of single detector Problem: Smearing by limited energy resolutionProblem: Smearing by limited energy resolution

Water CherenkovWater Cherenkov Need megaton detectorNeed megaton detector

with ~ 10with ~ 105 5 eventsevents

Scintillator detectorScintillator detector ~ 2000 events~ 2000 events may be enoughmay be enough

If 13-mixing angle isIf 13-mixing angle isknown to be “large”,known to be “large”,e.g.e.g. fromfrom DoubleDouble Chooz,Chooz,observed “wiggles” inobserved “wiggles” inenergy spectrum signifyenergy spectrum signifynormal mass hierarchynormal mass hierarchy

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Shock Propagation and Neutrino Supernova Shock Propagation and Neutrino OscillationsOscillations

Schirato & Fuller:Schirato & Fuller:Connection betweenConnection betweensupernova shocks,supernova shocks,flavor transformation,flavor transformation,and the neutrino signaland the neutrino signal[astro-ph/0205390][astro-ph/0205390]

R. Tomàs, M. Kachelriess,R. Tomàs, M. Kachelriess,G. Raffelt, A. Dighe,G. Raffelt, A. Dighe,H.-T. Janka & L. Scheck: H.-T. Janka & L. Scheck: Neutrino signatures ofNeutrino signatures ofsupernova forward andsupernova forward andreverse shock propagationreverse shock propagation[astro-ph/0407132] [astro-ph/0407132]

ResonancResonanceedensity density forfor

2atmm 2atmm

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Shock-Wave Propagation in IceCubeShock-Wave Propagation in IceCube

Choubey, Harries & Ross, “Probing neutrino oscillations from supernovae shockChoubey, Harries & Ross, “Probing neutrino oscillations from supernovae shockwaves via the IceCube detector”, astro-ph/0604300waves via the IceCube detector”, astro-ph/0604300

Normal HierarchyNormal Hierarchy

Inverted HierarchyInverted HierarchyNo shockwaveNo shockwave

Inverted HierarchyInverted HierarchyForward shockForward shock

Inverted HierarchyInverted HierarchyForward & reverse shockForward & reverse shock

,8.0)(Flux)(Flux

x

e

,8.0)(Flux)(Flux

x

e

MeV18E,MeV15Exe MeV18E,MeV15E

xe

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrinos 20 Jahre nach SN 1987ASupernova Neutrinos 20 Jahre nach SN 1987A

Collective Supernova Neutrino OscillationsCollective Supernova Neutrino Oscillations

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Density Streaming off a Supernova Neutrino Density Streaming off a Supernova CoreCore

Typical luminosity in oneTypical luminosity in oneneutrino speciesneutrino species

Corresponds to a neutrinoCorresponds to a neutrinonumber density ofnumber density of

Current-current structureCurrent-current structureof weak interactionof weak interactioncauses suppression ofcauses suppression ofeffective potential foreffective potential forcollinear-moving particlescollinear-moving particles

Nu-nu refractive effectNu-nu refractive effectdecreases asdecreases as

Appears to be negligibleAppears to be negligible

serg52103L serg52103L

2335

Rkm

cm103n

2

335R

kmcm103n

Equivalent Neutrino density ∝ R

Nu-nu refraction ∝ R

)cos1(GV Fweak )cos1(GV Fweak

4RV 4RV

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Collective Effects in Neutrino Flavor Collective Effects in Neutrino Flavor OscillationsOscillationsCollapsed supernova core or accretion torus ofCollapsed supernova core or accretion torus ofmerging neutron stars:merging neutron stars:

• Neutrino flux very dense: Up to 10Neutrino flux very dense: Up to 103535 cm cm3 3

• Neutrino-neutrino interaction energy Neutrino-neutrino interaction energy much larger than vacuum oscillation frequencymuch larger than vacuum oscillation frequency• Large “matter effect” of neutrinos on eachLarge “matter effect” of neutrinos on each otherother• Non-linear oscillation effectsNon-linear oscillation effects

• Assume 80% anti-neutrinosAssume 80% anti-neutrinos• Vacuum oscillation frequencyVacuum oscillation frequency

= 0.3 km= 0.3 km11

• Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km)energy at nu sphere (r = 10 km)

= 0.3= 0.3101055 km km11

• Falls off approximately as Falls off approximately as rr44

(geometric flux dilution and nus(geometric flux dilution and nus become more co-linear)become more co-linear)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Survival probability Survival probability eeSurvival probability Survival probability ee

NormalNormalHierarchyHierarchy

atm atm mm22

1313closeclose

to Choozto Choozlimitlimit

InvertedInvertedHierarchyHierarchy

NoNonu-nu effectnu-nu effect

NoNonu-nu effectnu-nu effect

Self-Induced Flavor Oscillations of SN Self-Induced Flavor Oscillations of SN NeutrinosNeutrinos

RealisticRealisticnu-nu effectnu-nu effect

BipolarBipolarcollectivecollectiveoscillationsoscillations(single-angle(single-angle approximation)approximation)

MSWMSW

RealisticRealisticnu-nu effectnu-nu effect

MSWMSWeffecteffect

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Mass Hierarchy at Extremely Small Theta-13Mass Hierarchy at Extremely Small Theta-13

Dasgupta, Dighe & Mirizzi, arXiv:0802.1481Dasgupta, Dighe & Mirizzi, arXiv:0802.1481

Ratio of spectra inRatio of spectra intwo water Cherenkovtwo water Cherenkovdetectors (0.4 Mton),detectors (0.4 Mton),one shadowed by theone shadowed by theEarth, the other notEarth, the other not

Using Earth matter effects to diagnose transformationsUsing Earth matter effects to diagnose transformations

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Collective SN neutrino oscillations 2006-2008 Collective SN neutrino oscillations 2006-2008 (I)(I)

““Bipolar” collective transformationsBipolar” collective transformationsimportant, even for dense matterimportant, even for dense matter

• Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/0511275astro-ph/0511275

Numerical simulationsNumerical simulations• Including multi-angle effectsIncluding multi-angle effects• Discovery of “spectral splits”Discovery of “spectral splits”

• Duan, Fuller, Carlson & QianDuan, Fuller, Carlson & Qian astro-ph/0606616, 0608050astro-ph/0606616, 0608050

• Pendulum in flavor spacePendulum in flavor space• Collective pair annihilationCollective pair annihilation• Pure precession modePure precession mode

• Hannestad, Raffelt, Sigl & WongHannestad, Raffelt, Sigl & Wong astro-ph/0608695astro-ph/0608695• Duan, Fuller, Carlson & QianDuan, Fuller, Carlson & Qian astro-ph/0703776astro-ph/0703776

Self-maintained coherenceSelf-maintained coherencevs. self-induced decoherencevs. self-induced decoherencecaused by multi-angle effectscaused by multi-angle effects

• Sawyer, hep-ph/0408265, 0503013 Sawyer, hep-ph/0408265, 0503013 • Raffelt & Sigl, hep-ph/0701182Raffelt & Sigl, hep-ph/0701182• Esteban-Pretel, Pastor, Tomàs,Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv:0706.2498Raffelt & Sigl, arXiv:0706.2498

Theory of “spectral splits”Theory of “spectral splits”in terms of adiabatic evolution inin terms of adiabatic evolution inrotating framerotating frame

• Raffelt & Smirnov,Raffelt & Smirnov, arXiv:0705.1830, 0709.4641 arXiv:0705.1830, 0709.4641 • Duan, Fuller, Carlson & QianDuan, Fuller, Carlson & Qian arXiv:0706.4293, 0707.0290 arXiv:0706.4293, 0707.0290

Independent numerical simulationsIndependent numerical simulations • Fogli, Lisi, Marrone & MirizziFogli, Lisi, Marrone & Mirizzi arXiv:0707.1998 arXiv:0707.1998

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Collective SN neutrino oscillations 2006-2008 Collective SN neutrino oscillations 2006-2008 (II)(II)

Second-order mu-tau refractive effectSecond-order mu-tau refractive effectimportant in three-flavor contextimportant in three-flavor context

• Esteban-Pretel, Pastor, Tomàs,Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl, arXiv:0712.1137Raffelt & Sigl, arXiv:0712.1137

Three-flavor effects in O-Ne-Mg SNeThree-flavor effects in O-Ne-Mg SNeon neutronization burston neutronization burst(MSW-prepared spectral double split)(MSW-prepared spectral double split)

• Duan, Fuller, Carlson & Qian,Duan, Fuller, Carlson & Qian, arXiv:0710.1271arXiv:0710.1271• Dasgupta, Dighe, Mirrizzi & Raffelt,Dasgupta, Dighe, Mirrizzi & Raffelt, arXiv:0801.1660arXiv:0801.1660

Theory of three-flavor collectiveTheory of three-flavor collectiveoscillationsoscillations

• Dasgupta & Dighe,Dasgupta & Dighe, arXiv:0712.3798arXiv:0712.3798

Identifying the neutrino mass hierarchyIdentifying the neutrino mass hierarchyat extremely small Theta-13at extremely small Theta-13

• Dasgupta, Dighe & Mirizzi,Dasgupta, Dighe & Mirizzi, arXiv:0802.1481 arXiv:0802.1481

But for high density, conversionsBut for high density, conversionssuppressed by geometric effectsuppressed by geometric effect

• Esteban-Pretel, Mirizzi, Pastor,Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl,Tomàs, Raffelt, Serpico & Sigl, arXiv:0807.0659arXiv:0807.0659

Collective oscillations along flux linesCollective oscillations along flux linesfor non-spherical geometryfor non-spherical geometry

• Dasgupta, Dighe, Mirizzi & Raffelt,Dasgupta, Dighe, Mirizzi & Raffelt, arXiv:0805.3300arXiv:0805.3300

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Oscillations in a Neutrino Background Neutrino Oscillations in a Neutrino Background

ff

ZZ

W, ZW, Z

ff

e

n21

n21

eF

2e

n0

0nnG2

E2M

ti

e

n21

n21

eF

2e

n0

0nnG2

E2M

ti

Neutrinos in a mediumNeutrinos in a mediumsuffer flavor-dependentsuffer flavor-dependentrefractionrefraction(Wolfenstein,(Wolfenstein, PRD 17:2369, 1978) PRD 17:2369, 1978)

ZZ

eF

2en2nn

nnn2G2

E2M

ti

ee

ee

eF

2en2nn

nnn2G2

E2M

ti

ee

ee

If neutrinos form theIf neutrinos form thebackground, thebackground, therefractive index hasrefractive index has““offdiagonal elements”offdiagonal elements”(Pantaleone,(Pantaleone, PLB 287:128, 1992)PLB 287:128, 1992)

• One can not operationally distinguish betweenOne can not operationally distinguish between “ “beam” and “background”beam” and “background”• Problem is fundamentally nonlinearProblem is fundamentally nonlinear

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Matrices of Density in Flavor SpaceMatrices of Density in Flavor Space

Neutrino quantum fieldNeutrino quantum field

Spinors in flavor spaceSpinors in flavor space

Quantum states (amplitudes)Quantum states (amplitudes)

Variables for discussing neutrino flavor oscillationsVariables for discussing neutrino flavor oscillations

““Matrices of densities” Matrices of densities” (analogous to occupation numbers)(analogous to occupation numbers)

““Quadratic” quantities, required forQuadratic” quantities, required fordealing with decoherence, collisions,dealing with decoherence, collisions,Pauli-blocking, nu-nu-refraction, etc.Pauli-blocking, nu-nu-refraction, etc.

Sufficient for “beam experiments”Sufficient for “beam experiments”

xpi

p†

p3

3evp,tbup,ta

2

pd)x,t(

xpi

p†

p3

3evp,tbup,ta

2

pd)x,t(

3

2

1

3

2

1

3

2

1

a

a

a

a

3

2

1

a

a

a

a

3

2

1

b

b

b

b

3

2

1

b

b

b

bDestructionDestructionoperators foroperators for(anti)neutrinos(anti)neutrinos

0

a

p,ta

p,ta

p,t

p,t

p,t†

p,t3

2

1

3

2

1

0

a

p,ta

p,ta

p,t

p,t

p,t†

p,t3

2

1

3

2

1

NeutrinosNeutrinos

Anti-Anti-neutrinosneutrinos

p,tap,tap,t i†jij

p,tap,tap,t i

†jij

p,tbp,tbp,t j†iij

p,tbp,tbp,t j

†iij

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

General Equations of MotionGeneral Equations of Motion

]),)[(cos1(

2

qdG2],L[G2,

p2M

i pqqqp3

3

FpFp

2

pt

]),)[(cos1(

2

qdG2],L[G2,

p2M

i pqqqp3

3

FpFp

2

pt

]),)[(cos1(

2

qdG2],L[G2,

p2M

i pqqqp3

3

FpFp

2

pt

]),)[(cos1(

2

qdG2],L[G2,

p2M

i pqqqp3

3

FpFp

2

pt

Usual matter effect withUsual matter effect with

nn00

0nn0

00nn

Lee

nn00

0nn0

00nn

Lee

• Vacuum oscillationsVacuum oscillations M is neutrino mass M is neutrino mass matrixmatrix

• Note opposite sign Note opposite sign betweenbetween neutrinos and neutrinos and antineutrinosantineutrinosNonlinear nu-nu effects are importantNonlinear nu-nu effects are importantwhen nu-nu interaction energy exceedswhen nu-nu interaction energy exceedstypical vacuum oscillation frequencytypical vacuum oscillation frequency(Do not compare with matter effect!)(Do not compare with matter effect!)

cos1nG2E2

mF

2

osc

cos1nG2E2

mF

2

osc

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Oscillations of Neutrinos plus Antineutrinos in Oscillations of Neutrinos plus Antineutrinos in a Boxa Box

Equal and densities, single energy E, withEqual and densities, single energy E, withee ee E2m

nG22

F e

E2m

nG22

F e ≫≫

P)PP(PBPt P)PP(PBPt

EqualEqualself termsself terms

P)PP(PBPt P)PP(PBPt

)()(

)()(

Opposite vacuumOpposite vacuumoscillationsoscillations

PPPP

BB

PP

PP

BB

““Pendulum in flavor space”Pendulum in flavor space”• Inverted mass hierarchyInverted mass hierarchy Inverted pendulumInverted pendulum UnstableUnstable eveneven forfor smallsmall mixingmixing angleangle• Normal mass hierarchyNormal mass hierarchy Small-amplitude oscillationsSmall-amplitude oscillations

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Flavor Conversion Without Flavor Mixing?Flavor Conversion Without Flavor Mixing?

• This is no real “flavor conversion”,This is no real “flavor conversion”, rather a “coherent pair conversion”rather a “coherent pair conversion”

• Occurs anyway at second order GOccurs anyway at second order GFF

• Coherent “speed-up effect” (Sawyer)Coherent “speed-up effect” (Sawyer)

Equal Equal ee and and ee densities in a box densities in a box

(inverted hierarchy)(inverted hierarchy)

Inverted pendulum:Inverted pendulum:• Time to fall dependsTime to fall depends logarithmically onlogarithmically on small initial angle small initial angle • Stays up forever onlyStays up forever only for for = 0 = 0• Unstable by quantumUnstable by quantum uncertainty relationuncertainty relation (“How long can a pencil(“How long can a pencil stand on its tip?”)stand on its tip?”)

ee ee

Not clear (to me) if coherentNot clear (to me) if coherenttransformations can be triggeredtransformations can be triggeredby quantum fluctuations aloneby quantum fluctuations alone(mixing angle (mixing angle = 0) = 0)

__

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Supernova Neutrino ConversionSupernova Neutrino Conversion

NeutrinosNeutrinosin a boxin a box

NeutrinosNeutrinosstreamingstreamingoff a off a supernovasupernovacorecore

Permanent pendularPermanent pendularoscillationsoscillations

Complete conversionComplete conversion• Nu-nu interaction energyNu-nu interaction energy decreasesdecreases• Pendulum’s moment ofPendulum’s moment of inertia inertia 11 increases increases

• Conservation of angular Conservation of angular momentummomentum kinetic energy decreaseskinetic energy decreases amplitude decreases amplitude decreases ∝∝ 1/21/2

nG2 F nG2 F

Envelope Envelope declinesdeclinesas as ∝∝ 1/21/2 ∝∝ rr

22

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Flavor Conversion in Toy SupernovaFlavor Conversion in Toy Supernova

PendularOscillations

• Assume 80% anti-neutrinosAssume 80% anti-neutrinos• Vacuum oscillation frequencyVacuum oscillation frequency

= 0.3 km= 0.3 km11

• Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km)energy at nu sphere (r = 10 km)

= 0.3= 0.3101055 km km11

• Falls off approximately as Falls off approximately as rr44

(geometric flux dilution and nus(geometric flux dilution and nus become more co-linear)become more co-linear)

Decline of oscillation amplitudeDecline of oscillation amplitudeexplained in pendulum analogyexplained in pendulum analogyby inreasing moment of inertiaby inreasing moment of inertia(Hannestad, Raffelt, Sigl & Wong(Hannestad, Raffelt, Sigl & Wong astro-ph/0608695)astro-ph/0608695)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Synchronized vs. Pendular OscillationsSynchronized vs. Pendular Oscillations

• Ensemble of unequal densities (antineutrino fraction Ensemble of unequal densities (antineutrino fraction < 1< 1) ) • Equal energies (equal oscillation frequency Equal energies (equal oscillation frequency mm22/2E/2E))• Interaction energy Interaction energy

eenn eenn

enG2 F enG2 F

Free oscillationsFree oscillations

≪≪

PP

PP

BB

Pendular oscillationsPendular oscillations

2)1(

1

2)1(

1≪≪ ≪≪

PP

PP

)1( )1(

BB

Synchronized oscillationsSynchronized oscillations

2)1(

1

2)1(

1≪≪

PP

PP

11

synch

11

synch

BB

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Synchronized vs. Pendular OscillationsSynchronized vs. Pendular Oscillations

Free oscillationsFree oscillations

≪≪

PP

PP

BB

Pendular oscillationsPendular oscillations

2)1(

1

2)1(

1≪≪ ≪≪

PP

PP

)1( )1(

BB

Synchronized oscillationsSynchronized oscillations

2)1(

1

2)1(

1≪≪

PP

PP

11

synch

11

synch

BB

SupernovaSupernovaCoreCore R = 40R = 4060 km60 km R R 200 km 200 km

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Pendulum in Flavor SpacePendulum in Flavor Space

Mass directionMass directionin flavor spacein flavor space

PrecessionPrecession(synchronized oscillation)(synchronized oscillation)

NutationNutation(pendular(pendular oscillation)oscillation)

SpinSpin(Lepton Asymmetry)(Lepton Asymmetry)

• Very asymmetric systemVery asymmetric system - Large spin - Large spin - Almost pure precession - Almost pure precession - Fully synchronized oscillations- Fully synchronized oscillations

• Perfectly symmetric systemPerfectly symmetric system - No spin- No spin - Simple spherical pendulum- Simple spherical pendulum - Fully pendular oscillation- Fully pendular oscillation

[Hannestad, Raffelt, Sigl, Wong:[Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695]astro-ph/0608695]

nn nn

Polarization vectorPolarization vectorfor neutrinos plusfor neutrinos plusantineutrinos antineutrinos

nn nn

≫≫

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Multi-Energy and Multi-Angle EffectsMulti-Energy and Multi-Angle Effects

pqqpq3

3

Fpp

2

pt P)PP)(cos1(2

qdG2PLPB

p2m

P

pqqpq3

3

Fpp

2

pt P)PP)(cos1(2

qdG2PLPB

p2m

P

pqqpq3

3

Fpp

2

pt P)PP)(cos1(2

qdG2PLPB

p2m

P

pqqpq3

3

Fpp

2

pt P)PP)(cos1(2

qdG2PLPB

p2m

P

)()(

)()(

• Different modes oscillateDifferent modes oscillate with different frequencieswith different frequencies kinematical decoherencekinematical decoherence

• Self-maintained coherenceSelf-maintained coherence by nu-nu interactionsby nu-nu interactions

• Can lead to “spectral split”Can lead to “spectral split”

Isotropic matter backgroundIsotropic matter backgroundaffects all modes the sameaffects all modes the same

Multi-angle effects for non-isotropicMulti-angle effects for non-isotropicnu distribution (streaming from SN):nu distribution (streaming from SN):Different modes should oscillateDifferent modes should oscillatedifferently differently kinematical decoherence kinematical decoherenceHowever, nu-nu interaction can lead toHowever, nu-nu interaction can lead to

• “ “Angular synchronization”Angular synchronization” (quasi-single angle behavior)(quasi-single angle behavior)

• Self-accelerated multi-angleSelf-accelerated multi-angle decoherencedecoherence

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Spectral Split (Stepwise Spectral Swapping)Spectral Split (Stepwise Spectral Swapping)

Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998Fogli, Lisi, Marrone & Mirizzi, arXiv:0707.1998

Initial fluxesInitial fluxesat nu sphereat nu sphere

AfterAftercollectivecollectivetrans-trans-formationformation

For explanation seeFor explanation see

Raffelt & SmirnovRaffelt & SmirnovarXiv:0705.1830arXiv:0705.1830 0709.46410709.4641

Duan, Fuller,Duan, Fuller,Carlson & QianCarlson & QianarXiv:0706.4293arXiv:0706.4293 0707.02900707.0290

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Spectral split in terms of the Spectral split in terms of the variable variable

initial

initial

final

final

Collective conversion of thermal spectra of Collective conversion of thermal spectra of ee and and ee as in a supernova as in a supernova__

Energy spectrumEnergy spectrum Spectrum in terms of Spectrum in terms of mm22/2E/2E

Flavor lepton number conservation:Flavor lepton number conservation:Equal integralsEqual integrals

Raffelt & Smirnov, arXiv:0709.4641Raffelt & Smirnov, arXiv:0709.4641

initialinitial

final final

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

SN 1006SN 1006

Looking forward to the next galactic supernovaLooking forward to the next galactic supernova

http://antwrp.gsfc.nasa.gov/apod/ap060430.htmlhttp://antwrp.gsfc.nasa.gov/apod/ap060430.html

May take a long timeMay take a long timeNo problemNo problemLots of theoretical work to do!Lots of theoretical work to do!

top related