Frequency Domain Coding of Speech

Post on 02-Jan-2016

35 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Frequency Domain Coding of Speech. 主講人:虞台文. Content. Introduction The Short-Time Fourier Transform The Short-Time Discrete Fourier Transform Wide-Band Analysis/Synthesis Sub-Band Coding. Frequency Domain Coding of Speech. Introduction. Speech Coders. Waveform Coders - PowerPoint PPT Presentation

Transcript

Frequency Domain Coding of Speech

主講人:虞台文

Content Introduction The Short-Time Fourier Transform The Short-Time Discrete Fourier Transform Wide-Band Analysis/Synthesis Sub-Band Coding

Frequency Domain Coding of Speech

Introduction

Speech Coders Waveform Coders

– Attempt to reproducing the original waveform according to some fidelity criteria

– Performance: successful at producing good quality, robust speech.

Vocoders– Correlated with speech production model.– Performance: more fragile and more model depend

ent.– Lower bit rate

Frequency-Domain Coders

Sub-band coder (SCB). Adaptive Transform Coding (ATC). Multi-band Excited Vocoder (MBEV). Noise Shaping in Speech Coders.

Classification of Speech Coders

Frequency Domain Coding of Speech

The Short-Time Fourier Transform

Definition of STFT

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

Interpretations:Filter Bank InterpretationBlock Transform Interpretation

Filter Bank Interpretation

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

is fixed at 0.

])([*)()( 00 njjn enxnheX

f (m)AnalysisFilter

Filter Bank Interpretation

...

nje 1

nje 2

nj Me 1

nj Me

)( 1jn eX

)( 2jn eX

)( 3jn eX

)( 4jn eX

h(n)h(n)

h(n)h(n)

h(n)h(n)

h(n)h(n)

x(n)

])([*)()( 00 njjn enxnheX

Filter Bank Interpretation

])([*)()( 00 njjn enxnheX

Modulation

)( 00)( jFTnj eXenx )( 00)( jFTnj eXenx

)( jeX )(nx

nje 0

)(nx

)( 0)( jj eXeX

0

])([*)()( 00 njjn enxnheX

Filter Bank Interpretation

)( jeX )(nx

nje 0

)(nx

)( 0)( jj eXeX

0

LowpassFilter

])([*)()( 00 njjn enxnheX

Modulation

Filter Bank Interpretation

])([*)()( 00 njjn enxnheX

...

nje 1

nje 2

nj Me 1

nj Me

)( 1jn eX

)( 2jn eX

)( 3jn eX

)( 4jn eX

h(n)h(n)

h(n)h(n)

h(n)h(n)

h(n)h(n)

x(n) Modulated Subband signals

Block Transform Interpretation

m

mjjn emxmnheX )()()( 00

m

mjjn emxmnheX )()()( 00

n is fixed at n0.

Windowed Data

AnalysisWindow

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

FT of Windowed Data

)]()([)( 00nxnnhFTeX j

n )]()([)( 00nxnnhFTeX j

n

Block Transform Interpretation

n is fixed at n0. )]()([)( 00nxnnhFTeX j

n )]()([)( 00nxnnhFTeX j

n

n1

n2

n3...nr

)(1

jn eX )(1

jn eX

)(2

jn eX )(2

jn eX

)(3

jn eX )(3

jn eX

)( jn eX

r

)( jn eX

r

Analysis/Synthesis Equations

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(Analysis

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆSynthesis

In what condition we will have ?)(ˆ)( nxnx

Analysis/Synthesis Equations

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(Analysis

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆSynthesis

deeXrnfnx njjr

r

)(2

1)()(ˆ )()()( nxnrhrnf

r

)()()( nrhrnfnxr

Replace r with n+r

)()()( rhrfnxr

Analysis/Synthesis Equations

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(Analysis

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆSynthesis

deeXrnfnx njjr

r

)(2

1)()(ˆ )()()( nxnrhrnf

r

)()()( nrhrnfnxr

Therefore, )(ˆ)( nxnx if 1)()(

nhnfn

1)()(

nhnfn

)()()( rhrfnxr

Analysis/Synthesis Equations

More general, 1)()(2

1)()(

deHeFnhnf jj

n

1)()(2

1)()(

deHeFnhnf jj

n

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(Analysis

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆSynthesis

Therefore, )(ˆ)( nxnx if 1)()(

nhnfn

1)()(

nhnfn

Examples1)()(

2

1)()(

deHeFnhnf jj

n

1)()(2

1)()(

deHeFnhnf jj

n

0)0( ,)0(

)()(

h

h

nnf 1)()(

nhnfn

neH

nfj

allfor ,)(

1)(

0

)(

)()(

0jj

eHeF

1( ) ( ) 1

2j jF e H e d

Examples

0)0( ,)0(

)()(

h

h

nnf

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆ

deeXh

nx njjn )(

2

1

)0(

1)(ˆ

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

h(0)x(n)

)(nx

Examples

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjrj

deeXeH

nx )(2

1

)(

1)(ˆ

0

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

neH

nfj

allfor ,)(

1)(

0

j

n

j enheH )()(

n

j nheH )()( 0

r

jr

r

eXFTrh

)]([)(

1 1

r

r

nxnrhrh

)()()(

1

r

r

nxrhrh

)()()(

1)(nx

Frequency Domain Coding of Speech

The Short-Time Discrete Fourier Transform

Definition of STDFT

m

kmM

Mkmjnn WmxmnheXkX )()(][)( )/2(

m

kmM

Mkmjnn WmxmnheXkX )()(][)( )/2(

Analysis:

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

Synthesis: In what condition we will have?)(ˆ)( nxnx

r

njjr deeXrnfnx )()(

2

1)(ˆ

r

njjr deeXrnfnx )()(

2

1)(ˆ

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

)/2( MjM eW

)/2( MjM eW

Synthesis

1

0

)(1

)()(ˆM

k

knMr

r

WkXM

rnfnx

m

kmMn WmxmnhkX )()()(

m

kmMn WmxmnhkX )()()(

)()()()(ˆ nxnrhrnfnxr

)()()( nrhrnfnxr

1)(nx

1)()(

nrhrnfr

1)()(

nrhrnfr

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

Synthesis

1

0

)(1

)()(ˆM

k

knMr

r

WkXM

rnfnx

)()()()(ˆ nxnrhrnfnxr

)()()( nrhrnfnxr

)(nx

1)()(

nrhrnfr

1)()(

nrhrnfr

periodic. are )()(ˆBoth nxnx periodic. are )()(ˆBoth nxnx

)()(

)(ˆ)(ˆ

Mnxnx

Mnxnx

)()(

)(ˆ)(ˆ

Mnxnx

Mnxnx

We need only one period.

Therefore, the condition is respecified as:

)()]([)( ppMnrhrnfr

)()]([)( ppMnrhrnfr

Implementation Consideration

n

Fre

quen

cyk

0Spectrogram

Sampling

n

Fre

quen

cyk

0Spectrogram

R 2R 3R 4R

)(0 kX R)(0 kX R )(kX R

)(kX R )(2 kX R)(2 kX R )(3 kX R

)(3 kX R )(4 kX R)(4 kX R

Sampled STDFT

m

kmMn WmxmnhkX )()()(

m

kmMn WmxmnhkX )()()(

Analysis:

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

Synthesis: In what condition we will have?)(ˆ)( nxnx

m

kmMsR WmxmsRhkX )()()(

m

kmMsR WmxmsRhkX )()()(

1

0

)()(1

)(ˆM

k s

knMsR WkXsRnf

Mnx

1

0

)()(1

)(ˆM

k s

knMsR WkXsRnf

Mnx

Sampled STDFT

m

kmMn WmxmnhkX )()()(

m

kmMn WmxmnhkX )()()(

Analysis:

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

1

0

)()(1

)(ˆM

k r

knMr WkXrnf

Mnx

Synthesis: In what condition we will have?)(ˆ)( nxnx

m

kmMsR WmxmsRhkX )()()(

m

kmMsR WmxmsRhkX )()()(

1

0

)()(1

)(ˆM

k s

knMsR WkXsRnf

Mnx

1

0

)()(1

)(ˆM

k s

knMsR WkXsRnf

Mnx

)()]([)( ppMnrhrnfr

)()]([)( ppMnrhrnfr

)()]([)( ppMnsRhsRnfs

)()]([)( ppMnsRhsRnfs

Frequency Domain Coding of Speech

Wide-Band

Analysis/Synthesis

Short-Time Synthesis --- Filter Bank Summation

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

m

mjjn

kk emxmnheX )()()(

STFT

h(n)h(n)x(n)

nj ke

)( kjn eX

nj kenxnh )(*)(

LowpassFilter

Short-Time Synthesis --- Filter Bank Summation

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

m

nmjjn

kk emhmnxeX )()()()(

STFT

m

mjnj kk emhmnxe )()(

m

knjj

n mhmnxeeX kk )()()(

m

knjj

n mhmnxeeX kk )()()(nj

kkenhnh )()(nj

kkenhnh )()(

Short-Time Synthesis --- Filter Bank Summation

|H(ej)|

|Hk(ej)|

k

Lowpass filter Bandpass filter

( )( ) kjjkH e H e ( )( ) kjj

kH e H e

m

knjj

n mhmnxeeX kk )()()(

m

knjj

n mhmnxeeX kk )()()(nj

kkenhnh )()(nj

kkenhnh )()(

Short-Time Synthesis --- Filter Bank Summation

hk(n)hk(n)x(n))( kj

n eX

BandpassFilter nj ke

m

mjjn emxmnheX )()()(

m

mjjn emxmnheX )()()(

h(n)h(n)x(n)

nj ke

)( kjn eX

LowpassFilter

Lowpass representation of for the signal in a band centered at k.

m

knjj

n mhmnxeeX kk )()()(

m

knjj

n mhmnxeeX kk )()()(nj

kkenhnh )()(nj

kkenhnh )()(

Short-Time Synthesis --- Filter Bank Summation

hk(n)hk(n)x(n))( kj

n eX

BandpassFilter nj ke

h(n)h(n)x(n)

nj ke

)( kjn eX

LowpassFilter

nj ke

)(nyk

nj ke

)(nyk

Encoding one band Decoding one band

)(*)()()( nhnxeeXny knjj

nkkk )(*)()()( nhnxeeXny knjj

nkkk

Short-Time Synthesis --- Filter Bank Summation

)(*)()()( nhnxeeXny knjj

nkkk )(*)()()( nhnxeeXny knjj

nkkk

h1(n)h1(n))( 1j

n eX

)(1 ny

nje 1 nje 1x(n)

nje 0

h0(n)h0(n))( 0j

n eX )(0 nynje 0

hN1(n)hN1(n))( 1Nj

n eX

)(1 nyN

nj Ne 1 nj Ne 1

.

.

.

)(ny

AnalysisAnalysis SynthesisSynthesis

Short-Time Synthesis --- Filter Bank Summation

h1(n)h1(n))( 1j

n eX

)(1 ny

nje 1 nje 1x(n)

nje 0

h0(n)h0(n))( 0j

n eX )(0 nynje 0

hN1(n)hN1(n))( 1Nj

n eX

)(1 nyN

nj Ne 1 nj Ne 1

.

.

.

)(ny

AnalysisAnalysis SynthesisSynthesis

Short-Time Synthesis --- Filter Bank Summation

h1(n)h1(n))( 1j

n eXnje 1 nje 1

x(n)

nje 0

h0(n)h0(n))( 0j

n eX )(0 nynje 0

hN1(n)hN1(n))( 1Nj

n eX

)(1 nyN

nj Ne 1 nj Ne 1

.

.

.

)(ny

AnalysisAnalysis SynthesisSynthesis

)(1 ny

)()( )( kjjk eHeH )()( )( kjj

k eHeH

Equal Spaced Ideal Filters

N2

N2

N2

N2

N2

N2

N2

1 2 3 4 5 21 0

N = 6

)()( )( kjjk eHeH )()( )( kjj

k eHeH N

kk

2N

kk

2

Equal Spaced Ideal Filters

)(0 ny

)(1 nyN

)(ny)(1 nyh1(n)

x(n)

h0(n)

hN1(n)

.

.

.

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

What condition should be satisfied so that y(n)=x(n)?

)()( )( kjjk eHeH )()( )( kjj

k eHeH N

kk

2N

kk

2

Equal Spaced Ideal Filters

)()( )( kjjk eHeH )()( )( kjj

k eHeH N

kk

2N

kk

2

1

0

)(1 N

k

njj kk eeHN

r

rNnh )(

Equal spaced sampling of

H(ej )

Inverse discrete FT of H(ej )

Time-Aliasedversion of h(n)

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

Equal Spaced Ideal Filters

)()( )( kjjk eHeH )()( )( kjj

k eHeH N

kk

2N

kk

2

1

0

)(1 N

k

njj kk eeHN

r

rNnh )(

Consider FIR, i.e., h(n) is of duration of L samples.

0 L1 n

h(n)

In case that N L,

1

0

)0()(1 N

k

j heHN

k

1

0

)0()(1 N

k

j heHN

k

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

Equal Spaced Ideal Filters

)()( )( kjjk eHeH )()( )( kjj

k eHeH N

kk

2N

kk

2

1( )

0

( ) ( )k

Njj

k

H e H e

1

0

( )k

Nj

k

H e

)0(Nh

1

0

)0()(1 N

k

j heHN

k

1

0

)0()(1 N

k

j heHN

k

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

Equal Spaced Ideal Filters

)0()(~

NheH j )0()(~

NheH j

)(0 ny

)(1 nyN

)(ny)(1 nyh1(n)h1(n)

x(n)

h0(n)h0(n)

hN1(n)hN1(n)

.

.

.

)()0()( nxNhny )()0()( nxNhny

0 L1 n

h(n)

x(n) can always beReconstructed if N L,

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

Equal Spaced Ideal Filters

)0()(~

NheH j )0()(~

NheH j

)(0 ny

)(1 nyN

)(ny)(1 nyh1(n)h1(n)

x(n)

h0(n)h0(n)

hN1(n)hN1(n)

.

.

.

0 L1 n

h(n)

x(n) can always beReconstructed if N L,

Does x(n) can still be reconstructed if N<L?Does x(n) can still be reconstructed if N<L?

If affirmative, what condition should be satisfied?If affirmative, what condition should be satisfied?

)()0()( nxNhny )()0()( nxNhny

1

0

)()(~ N

k

jk

j eHeH

1

0

)()(~ N

k

jk

j eHeH

Equal Spaced Ideal Filters

)(0 ny

)(1 nyN

)(ny)(1 nyh1(n)h1(n)

x(n)

h0(n)h0(n)

hN1(n)hN1(n)

.

.

.

njk

kenhnh )()(nj

kkenhnh )()(

njN

k

kenhnh

1

0

)()(~

N

kk

2N

kk

2

1

0

)(N

k

nj kenh

p(n)

r

rNnNnp )()(

r

rNnNnp )()(

Equal Spaced Ideal Filters

njN

k

kenhnh

1

0

)()(~

1

0

)(N

k

nj kenh

p(n)

r

rNnNnp )()(

r

rNnNnp )()(

)()()(~

npnhnh

r

rNnrNhN )()(

Signal can be reconstructedIf it equals to (n m).

)()()(~

npnhnh )()()(~

npnhnh

r

rNnnNh )()(

Typical Sequences of h(n)

)()()(~

npnhnh )()()(~

npnhnh

Ideal lowpass filter with cutoff at /N.

n

nnh N

sin)(

n

nnh N

sin)(

0N2N N 2N 3N 4N

p(n)N

)()(~

nnh )()(~

nnh

0N2N N 2N 3N 4N

h(n)

1/N

Typical Sequences of h(n)

)()()(~

npnhnh )()()(~

npnhnh

0N2N N 2N 3N 4N

p(n)N

0N2N N 2N 3N 4N

h(n)

h(0)

)()0()(~

nNhnh )()0()(~

nNhnh

L2L L 2L 3L 4L

N L

Typical Sequences of h(n)

)()()(~

npnhnh )()()(~

npnhnh

0N2N N 2N 3N 4N

p(n)N

)2()(~

Nnnh )2()(~

Nnnh

0N2N N 2N 3N 4N

h(n)

h(0)

1/N A causalFIR lowpass filter

Typical Sequences of h(n)

)()()(~

npnhnh )()()(~

npnhnh

0N2N N 2N 3N 4N

p(n)N

)()(~

Nnnh )()(~

Nnnh

0N2N N 2N 3N 4N

h(n)

h(0)

1/N A causalIIR lowpass filter

Filter Back Implementation for a Single Channel

hk(n)x(n))( kj

n eX

nj ke nj ke

)(nyk

h(n)x(n)

nj ke

)( kjn eX

nj ke

)(nyk

AnalysisAnalysis SynthesisSynthesis

hk(n)x(n))( kj

n eX

nj ke nj ke

)(nyk

h(n)x(n)

nj ke

)( kjn eX

nj ke

)(nyk

Filter Back Implementation for a Single Channel

R:1

R:1

1:R

1:R)( kj

n eX

)( kjn eX

AnalysisAnalysis SynthesisSynthesis

DecimatorDecimator InterpolatorInterpolator

hk(n)x(n))( kj

n eX

nj ke nj ke

)(nyk

h(n)x(n)

nj ke

)( kjn eX

nj ke

)(nyk

Filter Back Implementation for a Single Channel

R:1

R:1

1:R

1:R)( kj

n eX

)( kjn eX

AnalysisAnalysis SynthesisSynthesis

DecimatorDecimator InterpolatorInterpolator

Depends on the bandwidth of h(n).Depends on the bandwidth of h(n).

R=?R=?

Frequency Domain Coding of Speech

Sub-Band Coding

AnalysisAnalysis SynthesisSynthesis

Filter Bank Implementation(Direct Implementation)

...

0NW

h(n)h(n)

h(n)h(n)

h(n)h(n)

h(n)h(n)

x(n)n

NW

knNW

nNNW )1(

...

)0(sRXR:1R:1

R:1R:1

R:1R:1

R:1R:1

)1(sRX

)(kX sR

)1( NX sR

1:R1:R

1:R1:R

1:R1:R

1:R1:R

...

...

f(n)f(n)

f(n)f(n)

f(n)f(n)

f(n)f(n)

0NW

nNW

knNW

nNNW )1(

x(n)

Complex ChannelsComplex Channels R=2BR=2B

Bandwidth B/2

Filter Bank Implementation(Practical Implementation)

0

B

k0

B

k

0 B/2B/2 0 B/2B/2

0B 0 B

0B B

knNW kn

NW knNWkn

NW

2/jBne2/jBne 2/jBne

2/jBne

Filter Bank Implementation(Practical Implementation)

)()()( njbnaeX kkj

nk

)()()( njbnaeX kkj

nk

...

...

h(n)h(n)

h(n)h(n)

x(n)

knNW

knNW

...2/jBne

2/jBne

)(nyk

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

Filter Bank Implementation(Practical Implementation)

)2/cos(Bn

)(21 nyk

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

)2/sin(Bn

)(nak

)(nbk

nkcos

nksin

...

h(n)h(n)

x(n)

...

h(n)h(n)

)(21 sDyk

)2/cos(BsD

)2/sin(BsD

)(nak

)(nbk

nkcos

nksin

...

h(n)h(n)

x(n)

...

h(n)h(n)

Filter Bank Implementation(Practical Implementation)

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

D:1D:1

D:1D:1

BD / BD /

Why?

)(sDak

)(sDbk

Filter Bank Implementation(Practical Implementation)

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

)(21 sDyk

)2/cos(BsD

)2/sin(BsD

)(nak

)(nbk

nkcos

nksin

...

h(n)h(n)

x(n)

...

h(n)h(n)

D:1D:1

D:1D:1

BD / BD /)(sDak

)(sDbk

)2/cos( s )2/cos( s

)2/sin( s )2/sin( s

)(21 sDyk

)(sDak

)(sDbk

)(nak

)(nbk

nkcos

nksin

...

h(n)h(n)

x(n)

...

h(n)h(n)

)2/cos( s )2/cos( s

)2/sin( s )2/sin( s

D:1D:1

D:1D:1

Filter Bank Implementation(Practical Implementation)

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

,0,1,0,1,0,1 ,0,1,0,1,0,1

,1,0,1,0,1,0 ,1,0,1,0,1,0

s)1(

Filter Bank Implementation(Practical Implementation)

)2/sin()(2)2/cos()(2)( BnnbBnnany kkk )2/sin()(2)2/cos()(2)( BnnbBnnany kkk

s)1(

)2( Dsak

)2( Dsbk

x(n)

)(nak

)(nbk

nkcos

nksin

...

h(n)h(n)

...

h(n)h(n)

)(21 sDyk

D:1D:1

D:1D:1

2D:12D:1

2D:12D:1

Filter Bank Implementation(Practical Implementation)

ADPCMCODEC

s)1(

s)1(

)2( Dsak

)2( Dsbk

nkcos

nksin...

h(n)h(n)

...

h(n)h(n)

2D:12D:1

2D:12D:1

)(nx

f(n)f(n)

...

f(n)f(n)

2D:12D:1

2D:12D:1

s)1(

s)1(

nkcos

nksin...

)2(ˆ Dsak

)2(ˆ Dsbk

)(ˆ nxk

Filter BankAnalysis

Filter BankAnalysis Sub-Band Coder

ModificationSub-Band Coder

Modification Filter BankSynthesis

Filter BankSynthesis

top related