Forgotten impacts of European land‐use on riparian and savanna … · 2018. 1. 24. · Simon E. Connor, School of Geography, University of Melbourne, Melbourne, VIC, Australia.

Post on 26-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

J Veg Sci. 2017;1–11. wileyonlinelibrary.com/journal/jvs  | 1

Journal of Vegetation Science

© 2017 International Association for Vegetation Science

Received:5June2017  |  Accepted:29October2017DOI:10.1111/jvs.12591

S P E C I A L F E A T U R E : P A L A E O E C O L O G Y

Forgotten impacts of European land- use on riparian and savanna vegetation in northwest Australia

Simon E. Connor1,2  | Larissa Schneider3 | Jessica Trezise3 | Susan Rule3 |  Russell L. Barrett4,5 | Atun Zawadzki6 | Simon G. Haberle3

1SchoolofGeography,UniversityofMelbourne,Melbourne,VIC,Australia2CIMA-FCT,UniversityoftheAlgarve,Faro,Portugal3CentreofExcellenceinAustralianBiodiversityandHeritage,andDepartmentofArchaeologyandNaturalHistory,AustralianNationalUniversity,Canberra,ACT,Australia4NationalHerbariumofNewSouthWales,RoyalBotanicGardensandDomainTrust,Sydney,NSW,Australia5CollegeofMedicine,BiologyandEnvironment,ResearchSchoolofBiology,AustralianNationalUniversity,Canberra,ACT,Australia6InstituteforEnvironmentalResearch,AustralianNuclearScienceandTechnologyOrganisation,Menai,NSW,Australia

CorrespondenceSimonE.Connor,SchoolofGeography,UniversityofMelbourne,Melbourne,VIC,Australia.Email:simon.connor@unimelb.edu.au

Funding informationKimberleyFoundationAustralia;AustralianResearchCouncil,Grant/AwardNumber:CE170100015andDP140103591

Co-ordinatingEditor:PetrKuneš

AbstractQuestions:FireandlivestockgrazingareregardedascurrentthreatstobiodiversityandlandscapeintegrityinnorthernAustralia,yetitremainsunclearwhatbiodiversitylossesandhabitatchangesoccurredinthe19–20thcenturiesaslivestockandnovelfireregimeswereintroducedbyEuropeans.Whatbaselineisappropriateforassessingcurrentandfutureenvironmentalchange?Location:Australia’sKimberleyregionisinternationallyrecognizedforitsuniquebio-diversityandculturalheritage.Theregionishometosomeoftheworld’smostexten-siveandancientrockartgalleries,createdbyAboriginalpeoplessincetheirarrivalonthecontinent65,000yearsago.TheKimberleyisconsideredoneofAustralia’smostintactlandscapesanditsassumednaturalvegetationhasbeenmappedindetail.Methods:InterpretationsarebasedonacontinuoussedimentrecordobtainedfromawaterholeontheMitchellRiverfloodplain.Sedimentswereanalysedforgeochemicaland palynological proxies of environmental change and dated using 210Pb and 14Ctechniques.Results:Weshowthatthepresent-dayvegetationinandaroundthewaterholeisverydifferenttoitspre-Europeancounterpart.Pre-Europeanriparianvegetationwasdom-inatedbyAntidesma ghaesembilla and Banksia dentata,bothofwhichdeclinedrapidlyatthebeginningofthe20thcentury.Soonafter,savannadensityaroundthesitede-clinedandgrassesbecamemoreprevalent.Thesevegetationshiftswereaccompaniedbygeochemicalandbiologicalevidencefor increasedgrazing, localburning,erosionandeutrophication.Conclusions:WesuggestthattheKimberleyregion’svegetation,whilemaintaininga‘natural’appearance,hasbeenaltereddramaticallyduringthelast100yearsthroughgrazingandfireregimechanges.Landscapemanagementshouldconsiderwhetherthecurrent(impacted)vegetationisadesirableorrealisticbaselinetargetforbiodiversityconservation.

K E Y W O R D S

Australianmonsoontropics,fireregimes,geochemistry,grazing,humanimpact,palaeoecology,Potentialnaturalvegetation,riverinevegetation,savanna

Nomenclature:WesternAustralianHerbarium(2017);Mucina&Daniel(2013).

2  |    Journal of Vegetation Science

CONNOR et al.

1  | INTRODUCTION

Human impacts associatedwithEuropean colonizationbeginning inthe 15th century profoundly altered ecosystems around the globe.Impacts includedthe introductionofexoticspecies,manipulationoffireregimes,deforestation,major land-usechanges,displacementofindigenouslandmanagementpracticesandalterationstobiogeochem-icalcycles (Ireland&Booth,2012;Johnsonetal.,2017;Kirkpatrick,1999).Astheseimpactsprecededawidespreadunderstandingofeco-systemecologyandresearch,inmanypartsoftheworlditisdifficulttounderstandhowecosystemsfunctionedpriortoEuropeancoloniza-tion.Thisraisesquestionsabouthowtobestmanagealteredecologiesinaneraofrapidenvironmentalchange(Johnsonetal.,2017).

Acommonbaselineforlarge-scaleecosystemmanagementistheconceptofPotentialNaturalVegetation(PNV).PNVtakesinformationfromareasofassumednaturalvegetation(latesuccessional)andex-trapolatestoother (impacted)areaswithsimilarenvironmentalcon-ditions (Loidi&Fernández-González, 2012).ThePNVapproachhasbeen criticized because its predictions sometimes conflictwith thefossilrecord(Abrahametal.,2016;Carrión&Fernández,2009;Rull,2015).PNValsofailstoaccountforecosystemdynamics (Chiarucci,Araújo, Decocq, Beierkuhnlein, & Fernández-Palacios, 2010) and isunabletosimulateecologicalstructureinculturallandscapes(Stronaetal., 2016). Despite these constraints, PNV remains an accessiblebaselineforconservationandmanagementdecisions.

NorthernAustraliaisregardedasoneofthelargestareasofintacttropicalsavannaworldwide(Bowmanetal.,2010;Woinarski,Mackey,Nix,&Traill,2007;Ziembickietal.,2015). If this is true,PNVmapsfortheregionshouldconstituteavaluablebaseline(Beard,Beeston,Harvey,Hopkins,&Shepherd,2013;Mucina&Daniel,2013).Yettheecosystems of northern Australia have been extensively modifiedsinceEuropeancolonization through livestockgrazing,disruptionofIndigenous land curation and the introduction of invasive species,among other impacts (Douglas, Setterfield, McGuinness, & Lake,2015;Hnatiuk&Kenneally,1981;Lonsdale,1994;Radford,Gibson,Corey,Carnes,&Fairman,2015;Vigilante&Bowman,2004).Impactsarelinkedtoextinctions,decliningnativemammalpopulations,alteredstream ecology, eutrophication, erosion and catchment instability(Payne,Watson, &Novelly, 2004;Woinarski etal., 2007; Ziembickietal.,2015).

Taking a differentview, recent research links the recent declineoffire-sensitivespeciesacrossnorthernAustraliatointeractionsbe-tween fire and flammable grasses (Bowman,MacDermott, Nichols,&Murphy, 2014;Trauernicht,Murphy,Tangalin,&Bowman, 2013).Uncertaintiessurroundingthecausesofrecentspecieslossesremainobscure in the absence of reliable historical evidence for 19th andearly20th centuryenvironmental change in this sparselypopulatedregion.Suchevidencecouldprovideacriticaltestofecosysteminteg-rityandreveallong-termdriversofspeciesdecline.

NorthernAustraliaishometohighlevelsofbiodiversity,muchofwhichremainsundocumented(Barrett,2013,2015;Barrett&Barrett,2011,2015;Maslin,Barrett,&Barrett,2013;Moritz,Ens,Potter,&Catullo, 2013). Phylogenetic research reveals extraordinary levels

ofgeneticdiversityandendemism,perhapsequal totherecognizedbiodiversity hotspots of easternAustralia (Moritz etal., 2013). TheKimberleyregioninNWAustraliaisinternationallyrecognizedforitsextensiverockartgalleries,whicharesomeofthemostancientexam-plesofhumanartisticexpressionglobally(Aubert,2012)andaresitu-atedinanancientculturallandscapecreatedbyindigenousAustralians(Hiscock,O’Connor, Balme, &Maloney, 2016; Rangan etal., 2015).Thereisapressingneedtounderstandanddocumenttheregion’sbi-ologicalandculturalheritageaseconomicdevelopmentpressuresontheNorthernAustralianenvironmentintensify.

Inthispaper,weconfronttheassumednaturalvegetationoftheKimberley regionwith fossil evidence,aiming toassess theecologi-cal integrityof the region’s tropical savannaand riparianvegetationtypes.Ourdatapertaintothesavannawoodlandsandriparianthick-ets (Mucina&Daniel,2013)of theMitchellPlateau,oneof the lastareasoftheAustraliancontinenttoexperienceEuropeancolonization(McGonigal,1990).Wecomparepollendatawith independentgeo-chemicaldatatounderstandthetiming,directionanddriversoftwocenturiesofenvironmentalchange.

2  | METHODS

2.1 | Study area

TheKimberleyRegion issituated inNWAustraliaandconstitutesabiogeographicallyandgeologicallydistinctentitywithintheAustralianMonsoonalTropics(Pepper&Keogh,2014).Theregionischaracter-izedbycomplexandancientgeology,whichhascombinedwithlongperiodsofsub-aerialexposureandweatheringtocreateuniqueland-forms and topography (Pillans, 2007; Tyler, 2016). The Kimberleyregion isbroadlydivided into threegeologicalbasins: theextensiveKimberleyBasininthenorth,theOrdBasintothesouthandeast,andtheCanningBasintothesouthandwest(AppendixS1).Thesebasinsareseparatedbytwoorogenicbeltsofmetamorphosedandintrusiverocks.Thewesternportionof theKimberleyBasin isdominatedbytheKingLeopoldSandstone (erosion-resistant arenites) andCarsonVolcanics (weathered basalts), while the Warton and PentecostSandstonesdominatetheeasternportion.Theserockshavebeensub-jectedtoonlyminorfaultinganddeformationsincetheirdepositionsome1840–1800millionyearsagoandthick,erosion-resistantlater-itesdevelopedoverthebasalts70–50millionyearsago(Tyler,2016).Geologyhasadefininginfluenceonthedistributionofsoiltypesandvegetationunits,aswellasbiogeographicandphylogeneticpatterns(Barrett,2015;Barrett&Barrett,2015;Hnatiuk&Kenneally,1981;Moritzetal.,2013;Mucina&Daniel,2013;Pepper&Keogh,2014).

On theMitchell Plateau, savannawoodlands on basalt tend tohave a ground layer of Allopteropsis semialata, Chrysopogon fallax,Heteropogon contortus, Sehima nervosum, Sorghum plumosum and manyothergrasses,withatreelayerofeucalypts(Eucalyptus bigaler-ita, E. tectifera, Corymbia greeniana, C. bella, C. disjuncta), ironwoodtrees (Erythrophloemum aff. chlorostachys) and terminalia (Terminalia canescens, T. fitzgeraldii),dependingontopography(Mucina&Daniel,2013).Savannawoodlandsonsandstone-derivedsoilshavedominant

     |  3Journal of Vegetation Science

CONNOR et al.

Sorghum and Triodia grasses andadominant tree layerof eucalypts(Eucalyptus tetradonta, E. miniata, E. apodophylla, E. houseana, Corymbia latifolia, C. nesophila, C. torta)andpalms(Livistona eastonii;Hnatiuk&Kenneally,1981;Mucina&Daniel,2013).Sandstoneoutcropshaveanaltogetherdifferentflora,havingahighproportionofspeciesconsid-eredtohaveGondwananheritage,aswellasmanyendemics(Dunlop&Webb,1991).Keyspeciesofthesescrubs/heathsincludeAcacia gono-carpa, A. kelleri, A. arida, A. tumida, Bossiaea arenitensis, Calytrix brownii, C. exstipulata, C. achaeta, Corymbia polycarpa, Gardenia pyriformis and Grevillea agrifolia(Mucina&Daniel,2013).Rainforestremnants(vinethickets)occurinfire-protectedlocationswheremoistureisavailableallyear(Hnatiuk&Kenneally,1981;Ondei,Prior,Williamson,Vigilante,& Bowman, 2017). Albizia lebbeck, Atalaya variifolia, Cochlospermum fraseri, Sersalisia sericea and Wrightia pubescens are important can-opyspeciesintheserainforests(Beard,1976).WetlandsandriparianzonesaredominatedbyPandanus and Melaleucaspecies(P. aquaticus, P. spiralis, M. leucadendron, M. nervosa, M. viridiflora).Nauclea orientalis, Timonius timon and thedeciduous shrubAntidesma ghaesembilla are alsocommonintheseareas.

TheKimberley regionhasadry tropicalmonsoonal climate,withrainfall seasonality driven by the Indo-Australian SummerMonsoon.DoonganStation,nearourstudysite,receivesanaverageof1,205mmannualprecipitation,95%ofwhichfallsfromNovembertoApril(BureauofMeteorology,http://www.bom.gov.au/climate/data/accessed5Jun2017).Rainfalleventsusuallyoccurintheformofprolongedtropicalstorms and/or cyclones during the humid ‘wet’ season, flooding theregion’swatercourses (Mucina&Daniel,2013).Asteep rainfallgra-dientexistsacrosstheKimberleyregion–onaverage,over1,400mmof precipitation falls annually on the seaward slopes of theMitchellPlateau,whilethesouthernpartsoftheKimberleyadjoiningtheGreatSandyDesertreceivelessthan400mm.Maximumdailytemperaturesaverageover30°CinmostpartsoftheKimberleyRegionthroughouttheyear(BureauofMeteorology).

2.2 | Sample collection and dating

A sediment core was collected from a small (~100m2) ellipticalwaterhole on the floodplain of the Mitchell River (15°10′30.5″S,125°53′29.3″E;Figure1,AppendixS1)usingamud–waterinterfacecoreroperatedfromafloatingplatform.Thesite (MP11A) is150mfrom themain river channel and forms part of a complex of lakesand swampswhere the floodplainwidensas it follows thegeologi-calcontactbetweenbasaltandsandstone.Thewaterhole is fringedby Melaleuca leucadendron to thesouthandsurroundedbysavannawoodland on all sides. Nymphaea violacea and Eleocharisgrowinthewater,whichwas~50-cmdeepatthetimeofcorecollection.

Thecorewasdatedusingacombinationof210Pb and 14Ctech-niques(Wrightetal.,2017).Eight210Pbsampleswereselectedfromthe upper 35cm of the core. Macroscopic plant remains were re-moved before the sampleswere freeze-dried, ground andweighed.Subsamples of >1g were dated at the Australian Nuclear Scienceand Technology Organisation (ANSTO) using alpha spectrometry.Radiocarbon(14C)datingwasperformedonthreesamples>5gusing

AcceleratorMass Spectrometry atDirectAMS Laboratories (Seattle,OR,USA).Macroscopicplantmaterialwas removedprior to furtherpre-treatment. An age–depth model was constructed using cubicsplineregressioninClam2.2(Blaauw,2010).

Surface sediment samples are routinely collected in palaeoeco-logical research to calibrate pollen–vegetation relationships (Morris,Higuera,Haberle,&Whitlock,2017).IntheKimberleyRegion,surfacesampleshavebeenanalysedtoaidtheinterpretationofpollenrecords(Field,McGowan,Moss, &Marx, 2017; Proske, Heslop, &Haberle,2014),butmulti-sitecalibrationhasnotbeenattempted.Wecollectedsurface sediment samples from ten small lakesandwetlandsacrosstheregion(Figure1).Multiplerepresentativestandsofthesurround-ingvegetationweresurveyedusingaHaglöfHEC-Relectronicclinom-eter (Haglöf,Avesta, Sweden) and aGRS densitometer (GeographicResourceSolutions,Arcata,CA,USA)toestimatecanopyheight,treevolumeanddensity.CompositionwasmeasuredontheDAFORscale(Kent,2012).Satelliteimagerywasusedtoestimatetheproportionofeachvegetationtypewithina100-mradiusofthecoringsite.Stand-basedestimateswereweightedusingtheseproportionstoobtainveg-etationestimatesforcomparisonwithpollenassemblages.

2.3 | Pollen and charcoal analysis

Seasonally variable environments often have less suitable condi-tionsforpollenpreservationthanmorestableenvironments(Head&Fullager,1992),requiringrelativelylargesedimentsamples.Samples

F IGURE  1 Locationofthemainstudysite(MP11A-triangle)andsurfacesamplingsites(circles)inrelationtoregionalvegetationstructure,NWKimberleyRegion,WesternAustralia.VegetationunitsafterMucinaandDaniel(2013)

4  |    Journal of Vegetation Science

CONNOR et al.

of 5ml sedimentwere treated according to standard palynologicaltechniques(Jones&Rowe,1999),includingremovalofclaysthroughsettlinganddecantation,sievingtoremovelargeparticles(>120μm),treatmentwith10%KOHat90°Cfor20mintoremovehumicmate-rial,heavyliquidseparation(s.g.2.0)toremoveminerogenicmaterial,acetolysis(9:1mixtureofC4H6O3toH2SO4),carbonateremovalwith10%HCl,HF(50%)toremovefinesilica,dehydrationin100%etha-nol,andmountinginglycerolonglassslides.Lycopodiumsporetabletswereaddedearlyinpre-treatmenttoenablecalculationofpollencon-centrationsandaccumulationrates.Pollen,sporesandselectedfun-galandalgalremainswereidentifiedat400×magnification,usingtheextensiveKimberleycollection in theAustralasianPollenandSporeAtlas(Rowe,2006)andpublishedguides(vanGeel&Aptroot,2006;Macphail & Stevenson, 2004). Identificationswere agreed upon bythreeanalysts(JT,SRandSH).

Charcoalparticles arean indicatorof fireoccurrence,withmac-roscopicparticlesconsideredindicativeoflocalfiresandmicroscopicparticles indicative of regional burning (Whitlock & Larsen, 2001).Microscopic charcoal was quantified on pollen slides by countingopaqueblackparticles10–120μm.Macroscopiccharcoalwassievedfromaknownvolumeofsedimentusinga120-μmmeshandparticlesidentifiedusingabinocularmicroscope(Stevenson&Haberle,2005).Resultswere converted to accumulation rates for comparisonwithpollendata.

The pollen sequence was divided into relatively homogenoustime spansusing zonation (CONISS), implemented inTilia (v2.0.41,EricGrimm, http://www.TiliaIT.com). Pollen–vegetation relationshipswere assessedby comparing the abundanceof eachpollen type totheabundanceofpollen-producingplantswithina100-mradius(themostcommonlyusedsamplingradiusincomparablestudies:Buntingetal.,2013).

2.4 | Geochemical analysis

Toexaminetherelationshipbetweenpastvegetationandchangesinthe floodplain environment, we analysed elemental concentrationsof34geochemicalelements.Weusedthealkalineelementssodium(Na),potassium(K),magnesium(Mg),calcium(Ca)andbarium(Ba)totrackerosion.Theseelementsare relativelywater-solubleand theirmobilityduringerosionprocessesresults inelevatedconcentrationsinwater-bodysediments(Davies,Lamb,&Roberts,2015).Thelitho-genicelementtitanium(Ti)wasusedasacontrolforthemobileele-mentsas it isgeochemicallystableandhostedbyresistantminerals(Daviesetal.,2015).Theelementphosphorus (P)wasusedtotracklivestockgrazing.CattledirectlyaffectthelocalPcyclebecausethephosphorus they consume is returned to the environment as dung(Parham,Deng,Raun,&Johnson,2002).ThisincreasesPconcentra-tionsinthesoilandultimatelycontributestoPenrichmentinwaterbodiesandsediments.

Sedimentsamples(33fromthecoreandtensurfacesamples)of0.2geachweredigestedusing1mlHNO3(Aristar,BDH,AU)and2mlHCl (MerckSuprapur,Darmstadt,Germany)andanalysedformetalsusing an inductively coupled plasma mass spectrometer (ICP-MS;

Perkin-Elmer,Waltham,MA,US;modelDRC-e)withanAS-90auto-sampler(Telford,Maher,Krikowa,&Foster,2008).Certifiedreferencematerials (NRC-BCSS1, NRC-Mess1, NIST-1646, NRC-PCAS1) andblankswereusedas tocheck thequalityand traceabilityofmetals.PCAwasusedtolinkgeochemicalvariablestopollenassemblages.

3  | RESULTS

Figure2showstheadoptedage–depthmodel for theMP11Asedi-mentrecordwithdatedlevelsandassociatederrors.Two14Cdateswereexcludedfromthemodel(30.5-and40.5-cmdepth).Thesesam-ples yielded ages thatwere the same or older than the lowermost14Cageinthecore.Re-depositionofolderCbyfloodsisacommonproblemwhendatingrecentfloodplaindeposits(Ely,Webb,&Enzel,1992).Thechronologyestablishedby210Pb has low errors and indi-catesrelativelyconstantsedimentationrates.Theapparentincreasein sedimentation toward the top of the core is likely to reflect therelativelyuncompactednatureofthemorerecentsediments.

Figure3showskeychangesinthevegetationoftheMP11Asiteanditssurroundingsthroughthelast200years(seeAppendixS2forcompletepollenrecord).Fourmainphasesweredefinedbyzonation,describedbelowinrelationtochangesincharcoalandgeochemistry:

1. Phase 1 (AD 1823–1907) is characterized by relatively highproportions of Corymbia, other Myrtaceae, Callitris, Terminalia,Banksia and Antidesma ghaesembilla pollen. Phase 1 pollen as-semblagesareverydifferenttothoseofsurfacesamplescollectedin modern waterholes (see PCA, Appendix S3). Microscopic

F IGURE  2 Age-depthmodelfortheMP11Asedimentcore,showingcalibratedagesandassociatederrorsfrom210Pb and 14Cisotopicdating,withsmoothsplineinterpolation

210Pb210Pb

210Pb

210Pb210Pb

210Pb

210Pb

210Pb

14C (rejected)

14C (rejected)

14C (accepted)

500 400 300 200 100 0

cal BP

60

50

40

30

20

10

0

Dep

th (c

m)

     |  5Journal of Vegetation Science

CONNOR et al.

charcoal accumulation rates were relatively high in Phase 1compared with later phases, whilst macroscopic charcoal accu-mulationrateswerelow(average4%totalcharcoal).Geochemicalindicators show a dip in concentrations of weathering resistantTi later in this phase and an increase in silicon (Si).

2. Phase 2 (AD 1907–1948) exhibits a steep decline in Antidesma ghaesembilla and Banksia pollen.Pollenof the canopydominantsfluctuated,withCorymbia and Callitrisattainingtheirhighestpro-portions intheentiresequencebeforerapidlydecreasingtowardtheendofthephase.Botryococcusdecreasedsubstantiallyatthesame time and Sordaria fungal spores increased in abundance.Charcoaldeclinedsubstantiallytowardtheendofthisphase,reach-ingitslowestconcentrationsintheentirerecord.Incontrast,themobileelements(Na,KandBa)increasedwhileTiconcentrationsdeclined.TheendofthisphaseismarkedbyasharpincreaseinP,reachinglevelsovertentimesbackgroundconcentrations.

3. Phase3(AD1948–1993)beginswithmajorincreasesinPoaceaeand Pandanuspollen.Thesechangeswerefollowedbyamajorin-creaseinbothmacroscopicandmicroscopiccharcoal,reachingthehighestconcentrationsintherecord.Treepollendecreasedtoan

averageof34%(comparedto50%inthepreviouszone).Phase3pollen assemblages are similar to those of surface samples frommodern waterholes (see PCA, Appendix S3). Geochemical datashowatemporarydeclineinconcentrationsofNa,KandBaandanincreaseinTi,MgandCa.

4. Phase4(AD1993–2016)isdifferentiatedfromthepreviousphasebyafurtherdeclineintreepollen(average:30%)andthehighestlevelsofPoaceae,Acacia and Dodonaeapollenfortheentirerecord.Macroscopiccharcoalisabundantcomparedtomicroscopicchar-coal (average 30% total charcoal). Sordaria remained abundantthrough this phase. Geochemical indicators show relatively highconcentrationsforallelementsexceptP,whichdecreased.

Figure4 shows the relationships betweenmajor pollen taxa andvegetationparametersforsurfacesamples(AppendixS4).Corymbiapol-lencorrelatesstronglywitharea-weightedplantabundance (r2=.87),savanna basal area (r2=.74) and savanna canopy cover (r2=.48).Pandanuspollenwas lessstronglyrelatedtoabundance (r2=.37)andhadno relationship tosavannabasalarea (i.e., treedensity).Poaceaeproduced a short abundance gradient (being dominant in vegetationsurveys), but displayed an inverse relationship with savanna density(r2=.42) and canopy cover (r2=.27). Corymbia:Poaceae ratios cor-relatedpositivelywithbothCorymbiaabundance(r2=.64)andsavannadensity(r2=.67).

4  | DISCUSSION

Ourmulti-proxyresultsprovideaglimpseofhistoricalchangesthatoccurred in the savannas and inland floodplains of the KimberleyRegion. A longer record of palaeovegetation change comes fromBlack Springs, 75km SW of site MP11A (15°38′S, 126°23′23″E),showing PandanusexpansionduringHolocenewetphasesandaridi-ficationcycleslinkedtoweakeningmonsoons(Fieldetal.,2017).Thisrecord,however,has lowtemporal resolution (centennial scale)anduncertain dating for recent centuries. TheMP11A record providesdecadalresolution,revealingasequenceofenvironmentalchangesintheupperMitchellRiverareasinceEuropeancolonization.The210Pb chronologyshowsnosignsofflooddisturbance(Arnaudetal.,2002).Nevertheless,theassignedagesshouldbeviewedasapproximate.

The sequence of events is summarized in Figure3. An ini-tial decline of the riparian shrub Antidesma ghaesembilla began around1900(Phase1),followedbyBanksiadeclineadecadelater.Corymbia,indicativeofsavannadensity(Figure4),increasedaround1912andCallitrisfollowedinthe1920s(Phase2).Atthesametime,regional fires decreased (indicated by lower levels ofmicroscopiccharcoal)andgrazingintensified(indicatedarapidincreaseindungfungalspores,suchasSordaria).The1930sbroughthighergrazingintensity,increasingerosion(indicatedbyrisingBaandNaconcen-trations)andamajordeclineinsavannatrees(Corymbia and Callitris)and regional burning. Eutrophication followed in the 1940s,witha pronounced peak in P lasting until the 1970s (Phase 3).Duringthis interval,grassabundance increasedandPandanus replacedA.

F IGURE  3 SummaryofmajorchangesinenvironmentalproxiesatsiteMP11A,MitchellPlateau,WesternAustralia(seeAppendixS2forcompletepalynologicalandgeochemicalproxydiagrams)

1850 1900 1950 2000 AD

Micro-charcoalMacro-charcoalNeurospora

Dung fungiBarium

Phosphorus

Grass pollen

Corymbia pollen:PoaceaeCorymbia

Callitris:Poaceae

Banksia

Antidesma

Pandanus

Fire indicators

Grazing indicators

Savanna zone

Riparian zone

02

020

020

0 m

g/kg

200

00

1020

%0

24

%0

24

%

2 3 4 esahpnoitategeV1

400

part

·cm

–3·y

ear–1

40 %

gra

ss4

% Ban

ksia

6 ra

tio/ %

4

20

6  |    Journal of Vegetation Science

CONNOR et al.

ghaesembillaasthedominantriparianelement.Fireoccurrencerosesubstantiallyinthelate1970s,particularlythelocalfiresindicatedby macroscopic charcoal andNeurospora fungal spores (van Geel&Aptroot,2006;Whitlock&Larsen,2001).This increase in localburningwasaccompaniedbyevidenceofincreasedgrazingintensity(dungfungi),peakingaround1990.Thelasttwodecadeshaveseenfurther expansion of grasses and a decline in savanna density, aswellasthedisappearanceofPandanusfromthewaterholemargins(Phase4).

Observed changes in savanna fire regime, savanna vegetationstructureandriparianzonevegetationarediscussedinthefollowingsectionsinrelationtomajordriversofenvironmentalchange.

4.1 | Changes in savanna fire regime

On a global scale, savannas are thought to exist as an alterna-tive stable state to forests, maintained by frequent fire (Bond,Woodward, & Midgley, 2005). Changing fire regimes are impli-cated in major vegetation shifts across the Northern Australiansavanna zone (Bowman, 2003; O’Neill, Head, &Marthick, 1993;Russell-Smithetal.,2003), including thesimplificationofvegeta-tionstructure(Craig,1997),compositionalchange(Bowmanetal.,2014;Trauernichtetal.,2013),shiftingforest–savannaboundaries(Banfai&Bowman,2005;Hnatiuk&Kenneally,1981) andnega-tive impacts on nativemammals (Radford etal., 2015; Ziembickietal.,2015).TheeffectsoffireregimechangeinAustraliaarenotcompletely understood, given a lack of information on historicalfireregimesandfireecology(Silcock,Witt,&Fensham,2016).Fireregime change is often linked to the dispossession of Aboriginalpeoples of their land and consequent loss of traditional burningpractices,followedbythedifferentburningpracticesofEuropeancolonists (Ritchie,2009;Russell-Smithetal.,2003).Alternatively,fire regime change may stem from the invasion of fire promot-ing grass species, creating a grass–fire positive feedback cycle(Bowmanetal.,2014).

Our data demonstrate profound changes in fire regime aroundtheMP11Asiteover200years.Phase1samplesaredominatedbymicroscopiccharcoal.Thissuggeststhatregionalsavannafireswerecommon,whilelocalfiresintheriparianzonewereapparentlyrare.Thisagreeswithethnographicevidence(Russell-Smithetal.,1997;Vigilante, 2001). The major reduction in regional burning in the1930sand1940s(Phase2)coincideswiththedeclineofcontinuousAboriginaloccupationoftheMitchellPlateau,ending inthe1950s(Wilson, 1981). Data from the 1960s onwards (Phases 3–4) showthatlocalfiresbecamemoreprevalent,impactingbothsavannaandriparian zones (Figure3). Historically, Aboriginal fire managementisassociatedwith light/early season firescompared tounmanagedareas,whereseveredryseasonfiresaremorefrequent(O’Neilletal.,1993).

ThenatureoftheMP11Asitelimitstheconclusionsthatmaybedrawn fromcharcoal analysis. Fluvial transport is amajor sourceofprimarycharcoal(directproductsoffire)andsecondarycharcoal(re-depositedbyerosion:Patterson,Edwards,&Maguire,1987;Whitlock&Larsen,2001).Overlappingradiocarbondatesatdifferentsedimentdepths could indicate contamination by older (secondary) charcoal(Figure2).However,themacroscopiccharcoalrecordisvalidatedbyasimilartrendinNeurospora,abiologicalproxyforlocalfire(vanGeel&Aptroot,2006).Charcoalabundanceisnotclearlyrelatedtoerosionproxies(Figure3)andthereisnoindicationofamajorshiftinsedimentsource that explains the dramatic increase inmacroscopic charcoalsincethe1960s.Hence,theMP11Acharcoalrecordiscautiouslyin-terpretedasareflectionoffireoccurrenceintheriparianzone(macro-scopiccharcoal)andsurroundingsavanna(microscopiccharcoal).ThechangesareconsistentwithatransitionfromAboriginaltoEuropeanfire management (Haberle, Tibby, Dimitriadis, & Heijnis, 2006), butremaintobecorroboratedatothersites.

F IGURE  4 Scatterplotsofplantabundanceandsavannadensityparametersversuspollenabundancesinsurfacesamples

aib

myro

Csu

nadn

aPea

ecao

Pai

bmy

roC

eaec

aoP:

Savanna density4 5 6 71 2 3 4 5

0

10

20

30

0

10

20

0

25

50

75

100

0

1

Plant abundance

Pol

len

(%)

r2: .64

(basal area: m2/ha)(weighted DAFOR)

Pol

len

ratio

r2: .67

r2: .00 r2: .42

r2: .07r2: .37

r2: .87 r2: .74

     |  7Journal of Vegetation Science

CONNOR et al.

4.2 | Changes in savanna structure

Acriticalquestion inunderstandingsavannavegetationdynamics ishow global-scale factors interact with the local environment (Case& Staver, 2017). Previous research has debated the role of fire vslocaledaphicfactorsindeterminingvegetationstructureinnorthernAustralia (Bowman, 1988; Craig, 1997;Douglas etal., 2015;Ondeietal., 2017). These studies often used space-for-time substitutionor repeataerialphotography toanalysevegetationchanges.Space-for-timesubstitutionislimitedbyconfoundingvariablessuchasdif-ferencesinsoiltype,climate,speciespoolsandlanduseatdifferentsamplinglocations.Aerialphotographyprovideslong-termdataonabroadgeographicscale,buthas limitedtemporalscope (usually late20th century) and provides little detail on changes in understoreyvegetationbeneaththecanopywheretheimpactsofsavannafirearepresumablygreatest.Palaeoecologicaldatafromsmallbasins,suchastheMP11Arecord,revealvegetationchangesatasmallspatialscaleoverlongtimescalesandareideallyplacedtoinformdebatesonveg-etationstructure(Marianietal.,2017;Morrisetal.,2017).

Ourresultspointtoa long-termdecline insavannatreedensity.Thedecline is registered in decreasingCorymbia pollen abundancesand Corymbia:Poaceaeratios,proxiesstronglyassociatedwithsavannabasalarea(Figure4).Treedensitydeclinewasparticularlyacuteinthe1930s.Thisevidence,albeitfromasinglesite,contrastswithobser-vationsof20thcentury‘woodythickening’acrossnorthernAustralia(Bowmanetal.,2010;Tngetal.,2011;cf.Murphy,Lehmann,Russell-Smith,&Lawes,2014).Observedchanges invegetationdensityaredependentonthebaselineused.Theearliestaerialphotographyformost of northernAustralia dates to the1940s and1950s. Savannadensity change at MP11A since the 1940s has been negligible(Figure3).Comparedtoabaselineofthe19thorearly20thcentury,however,losshasbeensubstantial.

AroundMP11A,grasscoverincreasedassavannadensitydeclined(Figure3).Historically,livestockhavecausedmajorchangesingrass-land species composition in the Kimberley Region (Petheram, Kok,&Bartlett-Torr,1986).Cattle, sheep,pigs,horsesanddonkeyswereintroducedbyEuropeangraziersfromthe1880s(McGonigal,1990).Livestocknumbersincreasedrapidlyfromlessthan100,000cattleinthe1890s tomore than600,000 in1914 (Bolton,1953), andwerelinked to environmental degradation from the 1930s (Payne etal.,2004).Cattlegrazingcantriggeratransitionfromperennialtoannualgrasses inAustraliansavannas (Ash,McIvor,Mott,&Andrew,1997;Fensham&Skull,1999).Thesametypeof transition is linkedto in-creasingfirefrequency(Bowmanetal.,2014).ThehistoriesofgrazingandfireatMP11Aaresolongandintertwinedthatasinglecauseofrecentsavannastructuralchangeisunlikelytoemerge.

Perennial Triodiagrasses,ifleftunburnedforlongperiods,cangainsignificantsizeanddensity,providinghabitattoarangeofvertebratesand invertebrates.Old tussocks, often exceeding2m in height and5m inbreadth,werefrequentalongtheFitzroyCrossingRoaduntilthemid-1980s.Recent changes in fire regimehavegreatly reducedtheextentofunburnedTriodiatussocks,achangethatmaybelinkedtothedeclineofsmallmammalsintheregion.Pollendatacannotbe

usedtointerrogatethehistoryofspecificgrassspeciesbecausediffer-entspeciesproducepollenthat ismorphologically indistinguishable.AnalysesofphytolithsorancientDNAmayhelpaddressthisshortfall.

Callitris intratropicahasbeen the targetofconsiderable researchintofireimpactsinnorthernAustraliansavannas(Bowman&Panton,1993;Bowmanetal.,2014).Callitrispollenismorphologicallydistinct,andtheMP11Apollenrecordprovidesinsightintotherecenthistoryof this fire-sensitiveconifer.Callitrisapparentlyexperiencedamajordecline inthe1930sandhassincerecoveredslightly.C. intratropica treeswerenotsufficientlyabundantinourvegetationsurveystoper-mit a quantitative test of the grass–fire cycle hypothesis (Bowmanetal., 2014). Theoretically, if the expansion of grasses is linked toCallitrisdecline, the ratioofCallitris:Poaceaepollenshoulddecreaseovertime.Instead,thereisanincreasesincethemid-20thcenturyatMP11A (Figure3).Thepurported linkbetween fire andgrass coverfindslittlesupportinourdata,withcharcoalandPoaceaepollenfol-lowingdifferenttrajectories.Ourdatacannotanswerquestionsaboutgrazing–fire–grassinteractionsonaregionalscale,butpointtoapro-foundlegacyof20thcenturygrazingandfireimpactsintheMitchellPlateausavannas.

4.3 | Changes in the riparian zone

DatafromtheMP11Awaterholeprovidestrongevidenceforthe20thcenturydeteriorationofariparianshrublayercomprisingBanksia and Antidesma. BanksiapollenrepresentsB. dentata,theonlyBanksiaspe-ciesextant intheKimberleyregion.Thisnon-serotinousspeciesoc-cursinseasonallyinundatedareasandswampmarginsonsandstonebedrock, where it grows alongside Eucalyptus apodophylla (Hnatiuk& Kenneally, 1981). Extensive aerial surveys across the Kimberleyconfirm this almost exclusive habitat restriction (R. Barrett, per-sonalobservation).OurdatasuggestthatBanksia dentata also occu-pied riparian zones in the past (i.e.,Melaleuca leucadendron alliance ofHnatiuk&Kenneally,1981;RiparianThicketsgroupofMucina&Daniel,2013).

Antidesma ghaesembillaisafire-sensitiveriparianshrubthatbearsedible fruits and is known to expand rapidly in areas of unburnedwoodland (Bowman, Wilson, & Hooper, 1988; Russell-Smith etal.,2003).ItoccursfrequentlyalongtheMitchellRiverfloodplaintoday.The MP11A pollen record suggests A. ghaesembilla was dominantaroundthissiteuntiltheearly20thcentury.Itsdeclinefollowsapeakinmacroscopiccharcoal,implicatinglocalfiresasthecause.Accordingtoethnographic sources,Aboriginalpeopleavoidedburning riparianvegetation (Russell-Smith etal., 1997;Vigilante, 2001). Post-fire re-coverymayhavebeenimpededbygrazing,asAntidesmaspeciesaremorepalatabletocattlethanbrowse-andburning-resistantPandanus.

Riparianandwetlandzonesarewherecattleandferalanimalim-pacts in theKimberley aremost acute (Legge,Murphy,Kingswood,Maher,&Swan,2011).Grazingandtramplinghavehadsignificantdet-rimentalimpactsonriparian‘bamboo’(Phragmites karka),oncecommonintheKimberley,butnowlistedasaspeciesofconservationconcerninwesternAustralia.Enhancederosion isattestedgeochemicallybyincreased concentrations of mobile vs immobile elements (Bierman

8  |    Journal of Vegetation Science

CONNOR et al.

etal.,1998).AtMP11A,mobileNa,KandBaincreasedasrelativelyimmobile Ti decreased during the 20th century. Erosion is furtherindicated byPseudoschizaea palynomorphs (López-Marino,MartínezCortizas,&LópezSáez,2010),whichpeakinPhases3–4.GrazingmaycausePenrichmentfromfaecesandlossesofCaandMgfromurinepatches(Early,Cameron,&Fraser,1998;Parhametal.,2002).IntheMP11Arecord,theearly–mid20thcenturyischaracterizedbyanin-creaseinP(Figure3)andadecreaseinCaandMg(AppendixS5).Withtheadditionalsupportofproxiesfor livestockdung(Figure3),thesegeochemicalchangesmaybelinkedtograzingimpacts.

SomeofthechangeswitnessedintheMP11Arecordcouldbeex-plainedbyotherenvironmentalshiftsoccurringintheMitchellRivercatchment.Larsen,May,Moss,andHacker(2016)demonstratedhowthegeomorphicprocessofknick-pointmigrationcausedriparianfor-est loss inAustralia’sNorthernTerritory.Sandslugs releasedbyup-streamerosioncauselong-lastingimpactsondownstreamecosystemsin many Australian rivers (Prosser etal., 2001). These explanationsseem inadequate in thecaseofMP11A–aerialphotographsof thestudy area in 1949 and 2017 show no obvious change in riparianforestandfloodplaingeomorphology(AppendixS6).

Therearenomajor floodingevents corresponding to the timeofpeakimpactatMP11A(Gillieson,Smith,Greenaway,&Ellaway,1991; Wohl, Fuertsch, & Baker, 1994). Meteorological recordsindicate some higher-than-average rainfall years in the 1940sand 1950s, butmuch higher values in recent decades (Bureau ofMeteorology), part of a wetting trend across northern Australia(Bowmanetal.,2010).Thedecades-longenvironmentaltransforma-tionevidentatMP11Acannotbeexplainedbyasingledisturbanceevent.Agreementbetweengeochemicalandbiologicalproxies forgrazing and fire, alongside clear evidence for the loss of savannatreedensityandtheshrubstratumwithintheriparianzone,suggestgeomorphicprocessesareanunlikely causeofhistoricvegetationchangesinthestudyarea.

4.4 | Implications for conservation and vegetation mapping

Our evidence casts doubt on the notion that northern Australia’slandscapesandecosystemsareintactandunmodified(Bowmanetal.,2010;Woinarskietal.,2007;Ziembickietal.,2015).Justastheintactcanopyof‘Australian’eucalyptsdisguisesasavannaflorawithstrongSEAsianaffinities(Haynes,Ridpath,&Williams,1991),thesamecan-opymaydisguisethepervasiveecologicaltransformationsthathaveoccurredoverthelast100years.Theforgottenimpactsofearly20thcenturyfireandgrazinghaveprofoundlyalteredsavannaandriparianecosystemsontheMitchellPlateau,andperhapsmorewidely.

Ourdatacallforcautioninadoptingmid-20thcenturybaselinesforassessingecologicalchange,giventhattheimpactsofEuropeancolonization often manifested themselves much earlier. PotentialNatural Vegetation (PNV) maps have similar limitations. BecausePNVmaps are populated from data collected in the current (im-pacted)environment,therearelikelytobeknowledgeshortfallsinreconstructingpre-Europeanvegetation(Beardetal.,2013).Given

thedurationandmagnitudeofhistorical impact, itcouldbeaskedwhether restoration to pre-European conditions is desirable orrealistic.

Thereisaclearneedforreplicationbeyondthesinglepalaeoeco-logicalrecordpresentedheretobetterunderstandspatialandtempo-ralvariationintheKimberleyregion’secosystems.Itisacknowledgedthat obtaining palaeoecological data for vegetation types existingundermorearidconditionsmaybedifficult(Head&Fullager,1992).HencePNVprovidesauseful‘nullmodel’(Somodi,Molnar,&Ewald,2012)thatcanonlybe improvedasbetterdataandnewsourcesofinformationcometohand.

Failure to recognize the Kimberley Region’s historically alteredecologicalstatecouldplacetheremainingbiodiversityandecosystemsatgreaterriskthancouldbeexpectedundertruly ‘intact’ecologicalconditions.

ACKNOWLEDGEMENTS

We acknowledge the traditional owners of the land on which ourresearch was conducted. Sincere thanks to Cecelia Myers, SusanBradleyandDoonganStationstaffforfacilitatingandsupportingourresearch.ThankstoJanelleStevenson,PeterKershawandananony-mous reviewer for constructive reviews. Funding was provided bytheKimberleyFoundationofAustraliaandtheARC(DP140103591)project ‘Environmental Transformations linked to Early HumanOccupationinNorthernAustralia’.ResearchisalsosupportedbytheARC Centre of Excellence for Australian Biodiversity and Heritage(CE170100015).SECledthewritingandconductedfieldwork;LSledthegeochemicalandstatisticalanalysesandcontributedtothemanu-script;JTanalysedthepalynologicaldataandledtheliteraturereview;SRanalysedadditionalpalynologicaldataandoversawpollentaxon-omy;RLBcontributedtothemanuscript,particularlyits“Introduction”and “Discussion” sections; AZ provided 210Pb dating and expertise;SGHcoordinatedtheresearch,conductedfieldworkandcontributedtothemanuscript.

ORCID

Simon E. Connor http://orcid.org/0000-0001-5685-2390

REFERENCES

Abraham,V.,Kuneš,P.,Petr, L., Svitavská-Svobodová,H.,Jamrichová,E.,Švarcová, M. G., & Pokorný, P. (2016). A pollen-based quantitativereconstructionof theHolocenevegetationupdatesaperspectiveonthenaturalvegetationintheCzechRepublicandSlovakia.Preslia,88,409–434.

Arnaud, F., Lignier,V., Revel,M., Desmet,M., Beck, C., Pourchet,M., …Tribovillard,N.(2002).Floodandearthquakedisturbanceof210Pb geo-chronology(LakeAnterne,NWAlps).Terra Nova,14,225–232.https://doi.org/10.1046/j.1365-3121.2002.00413.x

Ash,A.J.,McIvor,J.G.,Mott,J.J.,&Andrew,M.H.(1997).Buildinggrasscastles: Integrating ecology and management of Australia’s tropicaltallgrass rangelands.The Rangeland Journal,19,123–144.https://doi.org/10.1071/RJ9970123

     |  9Journal of Vegetation Science

CONNOR et al.

Aubert,M.(2012).AreviewofrockartdatingintheKimberley,WesternAustralia. Journal of Archaeological Science, 39, 573–577. https://doi.org/10.1016/j.jas.2011.11.009

Banfai,D.S.,&Bowman,D.M.J.S.(2005).Dynamicsofasavanna–forestmosaic in theAustralianmonsoon tropics inferred fromstand struc-turesandhistoricalaerialphotography.Australian Journal of Botany,53,185–194.https://doi.org/10.1071/BT04141

Barrett,R.L.(2013).Solanum zoeae(Solanaceae),anewspeciesofbushto-matofromtheNorthKimberley,WesternAustralia.Nuytsia,23,5–21.

Barrett, R. L. (2015). Fifty new species of vascular plants fromWesternAustralia—celebrating fifty years of theWestern Australian BotanicGardenatKingsPark.Nuytsia,26,3–20.

Barrett,R.L.,&Barrett,M.D.(2011).TwonewspeciesofTriodia(Poaceae:Triodieae)fromtheKimberleyregionofWesternAustralia.Telopea,13,57–67.https://doi.org/10.7751/telopea20116004

Barrett,R.L.,&Barrett,M.D.(2015).Twenty-sevennewspeciesofvascu-larplantsfromWesternAustralia.Nuytsia,26,21–87.

Beard,J.S. (1976).Themonsoon forestsof theAdmiraltyGulf,WesternAustralia. Vegetatio, 31, 177–192. https://doi.org/10.1007/BF00114864

Beard,J.S.,Beeston,G.R.,Harvey,J.M.,Hopkins,A.J.M.,&Shepherd,D.P. (2013).ThevegetationofWesternAustraliaatthe1:3,000,000scale.Explanatorymemoir.2ndedition.Conservation Science Western Australia,9,1–152.

Bierman,P.R.,Albretch,A.,Bothner,M.H.,Brown,E.T.,Bullen,T.D.,Gray,L.,&Turpin, L. (1998). Erosion,weathering and sedimentation. InC.Kendall, &J. J.McDonnell (Eds.), Isotope tracers in catchment hydrol-ogy(pp.647–678).Amsterdam,TheNetherlands:Elsevier.https://doi.org/10.1016/B978-0-444-81546-0.50026-4

Blaauw,M.(2010).Methodsandcodefor‘classical’age-modellingofradio-carbonsequences.Quaternary Geochronology,5,512–518.https://doi.org/10.1016/j.quageo.2010.01.002

Bolton,G.C.(1953).A survey of the Kimberley pastoral industry from 1885 to the present.Perth,WA:UniversityofWesternAustralia.

Bond,W. J.,Woodward, F. I., &Midgley,G. F. (2005).The global distri-bution of ecosystems in aworldwithout fire.New Phytologist, 165, 525–538.

Bowman,D.M.J.S.(1988).Stabilityamidturmoil?:TowardsanecologyofnorthAustralianeucalyptforests.Proceedings of the Ecological Society of Australia,15,149–158.

Bowman,D.M.J. S. (2003).Australian landscapeburning:A continentalandevolutionaryperspective.InI.Abbott,&N.Burrows(Eds.),Fire in ecosystems of south-west Western Australia: Impacts and management (pp.107–118).Leiden,TheNetherlands:Backhuys.

Bowman,D.M.J.S.,Brown,G.K.,Braby,M.F.,Brown,J.R.,Cook,L.G.,Crisp,M.D.,…Ladiges,P.Y. (2010).Biogeographyof theAustralianmonsoon tropics. Journal of Biogeography, 37, 201–216. https://doi.org/10.1111/j.1365-2699.2009.02210.x

Bowman,D.M.J. S.,MacDermott,H.J.,Nichols, S.C.,&Murphy,B.P.(2014). A grass–fire cycle eliminates an obligate-seeding tree in atropical savanna. Ecology and Evolution, 4, 4185–4194. https://doi.org/10.1002/ece3.1285

Bowman,D.M.J.S.,&Panton,W.J.(1993).DeclineofCallitris intratropica Baker,R.T.andSmith,H.G.intheNorthernTerritory:Implicationsforpre-Europeanandpost-Europeancolonizationfireregimes.Journal of Biogeography,20,373–381.https://doi.org/10.2307/2845586

Bowman,D.M.J. S.,Wilson,B.A.,&Hooper,R.J. (1988).ResponseofEucalyptus forest andwoodland to four fire regimes atMunmarlaryNorthernTerritoryAustralia.Journal of Ecology,76,215–232.https://doi.org/10.2307/2260465

Bunting,M.J.,Farrell,M.,Brostrom,A.,Hjelle,K.L.,Mazier,F.,Middleton,R.,…Twiddle,C. L. (2013).Palynological perspectivesonvegetationsurvey:Acritical step formodel-based reconstructionofQuaternaryland cover. Quaternary Science Reviews, 82, 41–55. https://doi.org/10.1016/j.quascirev.2013.10.006

Carrión,J.S.,&Fernández,S.(2009).Thesurvivalofthe‘naturalpotentialvegetation’concept(orthepoweroftradition).Journal of Biogeography,36,2202–2203.https://doi.org/10.1111/j.1365-2699.2009.02209.x

Case, M. F., & Staver, A. C. (2017). Fire prevents woody encroach-ment only at higher-than-historical frequencies in a South Africansavanna. Journal of Applied Ecology, 54, 955–962. https://doi.org/10.1111/1365-2664.12805

Chiarucci,A.,Araújo,M.B.,Decocq,G.,Beierkuhnlein,C.,&Fernández-Palacios, J. M. (2010). The concept of potential natural vegetation:Anepitaph?Journal of Vegetation Science,21,1172–1178.https://doi.org/10.1111/j.1654-1103.2010.01218.x

Craig,A.B.(1997).AreviewofinformationontheeffectsoffireinrelationtothemanagementofrangelandsintheKimberleyhigh-rainfallzone.Tropical Grasslands,31,161–187.

Davies, S., Lamb, H., & Roberts, S. J. (2015). Micro-XRF core scan-ning in palaeolimnology: Recent developments. In I. Croudace, & R.Rothwell (Eds.),Micro-XRF studies of sediment cores. Developments in Paleoenvironmental Research, Vol. 17 (pp. 189–226). Dordrecht, TheNetherlands:Springer.https://doi.org/10.1007/978-94-017-9849-5

Douglas,M.M.,Setterfield,S.A.,McGuinness,K.,&Lake,P.S.(2015).Theimpact of fire on riparian vegetation in Australia’s tropical savanna.Freshwater Science,34,1351–1365.https://doi.org/10.1086/684074

Dunlop,C.R.,&Webb,L.R.(1991).Floraandvegetation.InC.D.Haynes,M.G.Ridpath,&M.A.J.Williams(Eds.),Monsoonal Australia: Landscape, ecology and man in the northern lowlands (pp.41–60).Rotterdam,TheNetherlands:A.A.Balkema.

Early,M.S.B.,Cameron,K.C.,&Fraser,P.M.(1998).Thefateofpotassium,calcium,andmagnesiuminsimulatedurinepatchesonirrigateddairypasturesoil.New Zealand Journal of Agricultural Research,41,117–124.https://doi.org/10.1080/00288233.1998.9513294

Ely, L. L.,Webb,R.H.,&Enzel,Y. (1992).Accuracy of post-bomb 137Csand 14Cindatingfluvialdeposits.Quaternary Research,38,196–204.https://doi.org/10.1016/0033-5894(92)90056-O

Fensham,R.J.,&Skull,S.D.(1999).Beforecattle:AcomparativefloristicstudyofEucalyptussavannagrazedbymacropodsandcattleinNorthQueensland,Australia.Biotropica,31,37–47.

Field,E.,McGowan,H.A.,Moss,P.T.,&Marx,S.K.(2017).AlateQuaternaryrecord ofmonsoonvariability in the northwest Kimberley,Australia.Quaternary International, 449, 119–135. https://doi.org/10.1016/ j.quaint.2017.02.019

Gillieson, D., Smith, D. I., Greenaway, M., & Ellaway, M. (1991).Flood history of the limestone ranges in the Kimberley region,Western Australia. Applied Geography, 11, 105–123. https://doi.org/10.1016/0143-6228(91)90038-B

Haberle,S.G.,Tibby,J.,Dimitriadis,S.,&Heijnis,H.(2006).TheimpactofEuropeanoccupationon terrestrial and aquatic ecosystemdynamicsinanAustraliantropicalrainforest.Journal of Ecology,94,987–1004.https://doi.org/10.1111/j.1365-2745.2006.01140.x

Haynes,C.D.,Ridpath,M.G.,&Williams,M.A.J.(Eds.)(1991).Monsoonal Australia: Landscape, ecology and man in the northern lowlands. Rotterdam,TheNetherlands:A.A.Balkema.

Head,L.,&Fullager,R.(1992).PalaeoecologyandarchaeologyintheEastKimberley. Quaternary Australasia,10,27–31.

Henderson,M.K.,&Keith,D.A.(2002).Correlationofburningandgrazingindicatorswithcompositionofwoodyunderstorey floraofdells inatemperate eucalypt forest.Austral Ecology,27, 121–131. https://doi.org/10.1046/j.1442-9993.2002.01162.x

Hiscock, P.,O’Connor, S., Balme, J.,&Maloney,T. (2016).World’s earli-estground-edgeaxeproductioncoincideswithhumancolonisationofAustralia.Australian Archaeology,82,2–11.https://doi.org/10.1080/03122417.2016.1164379

Hnatiuk,R.J.,&Kenneally,K. F. (1981).A surveyof thevegetation andfloraofMitchellPlateau,Kimberley,WesternAustralia.Biological survey of Mitchell Plateau and Admiralty Gulf, Kimberley, Western Australia(pp.13–94).Perth,WA:WesternAustralianMuseum.

10  |    Journal of Vegetation Science

CONNOR et al.

Ireland,A.W.,&Booth, R.K. (2012).Upland deforestation triggered anecosystemstate-shiftinakettlepeatland.Journal of Ecology,100,586–596.https://doi.org/10.1111/j.1365-2745.2012.01961.x

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galeti, M.,Guangchun, L., &Wilmshurst, J. M. (2017). Biodiversity losses andconservationresponsesintheAnthropocene.Science,356,270–275.https://doi.org/10.1126/science.aam9317

Jones,T.P.,&Rowe,N.P. (Eds.) (1999).Fossil plants and spores: Modern techniques.London,UK:GeologicalSociety.

Kent,M. (2012).Vegetation description and analysis: A practical approach,2nded..Chichester,UK:Wiley-Blackwell.

Kirkpatrick, J. (1999).A continent transformed: Human impact on the nat-ural vegetation of Australia, 2nd ed.. South Melbourne, VIC: OxfordUniversityPress.

Larsen,A.,May,J.-H.,Moss,P.,&Hacker,J. (2016).Couldalluvialknick-pointretreatratherthanfiredrivethelossofalluvialwetmonsoonfor-est,tropicalnorthernAustralia?Earth Surface Processes and Landforms,41,1583–1594.https://doi.org/10.1002/esp.3933

Legge,S.,Murphy,S.,Kingswood,R.,Maher,B.,&Swan,D.(2011).EcoFire:Restoring thebiodiversityvaluesof theKimberley regionbymanag-ing fire. Ecological Management and Restoration,12,84–92.https://doi.org/10.1111/j.1442-8903.2011.00595.x

Loidi, J., & Fernández-González, F. (2012). Potential natural vegetation:Reburying or reboring? Journal of Vegetation Science, 23, 596–604.https://doi.org/10.1111/j.1654-1103.2012.01387.x

Lonsdale,W. M. (1994). Inviting trouble: Introduced pasture species innorthernAustralia.Australian Journal of Ecology,19,345–354.https://doi.org/10.1111/j.1442-9993.1994.tb00498.x

López-Marino,L.,MartínezCortizas,A.,&LópezSáez,J.A. (2010).EarlyagricultureandpalaeoenvironmentalhistoryintheNorthoftheIberianPeninsula:Amulti-proxy analysis of theMonteAreomire (Asturias,Spain). Journal of Archaeological Science, 37, 1978–1988. https://doi.org/10.1016/j.jas.2010.03.003

Macphail,M.,&Stevenson,J. (2004).Fungal spores in archaeological con-text.PalaeoWorksTechnicalReport3.Canberra,ACT:DepartmentofArchaeologyandNaturalHistory,AustralianNationalUniversity.

Mariani, M., Connor, S. E., Fletcher, M.-S., Theuerkauf, M., Kuneš, P.,Jacobsen,G.,…Zawadzki,A.(2017).HowoldistheTasmanianculturallandscape?Atestoflandscapeopennessusingquantitativeland-coverreconstructions. Journal of Biogeography,44, 2410–2420. https://doi.org/10.1111/jbi.13040

Maslin,B.R.,Barrett,M.D.,&Barrett,R.L.(2013).Abaker’sdozenofnewwattles highlights significant Acacia (Fabaceae: Mimosoideae) diver-sity and endemism in the north-west Kimberley region ofWesternAustralia.Nuytsia,23,543–587.

McGonigal, D. (1990). The Australian geographic book of the Kimberley. TerreyHills,NSW:AustralianGeographic.

Moritz,C.,Ens,E.J.,Potter,S.,&Catullo,R.A.(2013).TheAustralianmon-soonaltropics:Anopportunitytoprotectuniquebiodiversityandse-curebenefitsforAboriginalcommunities.Pacific Conservation Biology,19,343–355.https://doi.org/10.1071/PC130343

Morris, J. L., Higuera, P. E., Haberle, S. G., & Whitlock, C. (2017).Modern pollen from small hollows reflects Athrotaxis cupressoi-des density across a wildfire gradient in subalpine forests of theCentral Plateau, Tasmania, Australia. The Holocene. https://doi.org/10.1177/0959683617702228

Mucina, L., & Daniel, G. (Eds.) (2013). Vegetation mapping in Northern Kimberley, Western Australia.Bentley,WA:CurtinUniversity.

Murphy,B.P.,Lehmann,C.E.R.,Russell-Smith,J.,&Lawes,M.J.(2014).FireregimesandwoodybiomassdynamicsinAustraliansavannas.Journal of Biogeography,41,133–144.https://doi.org/10.1111/jbi.12204

Ondei,S.,Prior,L.D.,Williamson,G.J.,Vigilante,T.,&Bowman,D.M.J.S. (2017).Water, land, fire, and forest: Multi-scale determinants ofrainforestsintheAustralianmonsoontropics.Ecology and Evolution,7,1592–1604.https://doi.org/10.1002/ece3.2734

O’Neill,A.L.,Head,L.M.,&Marthick,J.K.(1993).Integratingremotesens-ingandspatialanalysistechniquestocompareAboriginalandpastoralfire patterns in theEastKimberley,Australia.Applied Geography,13,67–85.https://doi.org/10.1016/0143-6228(93)90081-B

Parham,J.,Deng,S.,Raun,W.,&Johnson,G.(2002).Long-termcattlema-nure application in soil I. Effect on soil phosphorus levels,microbialbiomassC,anddehydrogenaseandphosphataseactivities.Biology and Fertility of Soils,35,328–337.

Patterson,W.A.,Edwards,K.J.,&Maguire,D.J.(1987).Microscopicchar-coalasa fossil indicatorof fire.Quaternary Science Reviews,6,3–23.https://doi.org/10.1016/0277-3791(87)90012-6

Payne,A.L.,Watson,I.W.,&Novelly,P.E.(2004).Spectacular recovery in the Ord River catchment. Perth,WA: Department ofAgriculture andFoodWesternAustralia.Report17/2004.

Pepper,M.,&Keogh,J.S.(2014).BiogeographyoftheKimberley,WesternAustralia:A reviewof landscapeevolutionandbiotic response in anancientrefugium.Journal of Biogeography,41,1443–1455.https://doi.org/10.1111/jbi.12324

Petheram,R.J.,Kok,B.,&Bartlett-Torr,E. (1986).Plants of the Kimberley region of Western Australia, Revised ed. South Perth, WA: WesternAustralianDepartmentofAgriculture.

Pillans, B. (2007). Pre-Quaternary landscape inheritance in Australia.Journal of Quaternary Science,22,439–447.https://doi.org/10.1002/(ISSN)1099-1417

Proske,U.,Heslop,D.,&Haberle,S.(2014).AHolocenerecordofcoastallandscapedynamicsintheeasternKimberleyregion,Australia.Journal of Quaternary Science,29,163–174.https://doi.org/10.1002/jqs.2691

Prosser, I. P., Rutherfurd, I.D.,Olley, J.M.,Young,W. J.,Wallbrink, P.J.,&Moran,C.J. (2001). Large-scalepatternsof erosion and sed-iment transport in river networks, with examples from Australia.Marine and Freshwater Research,52,81–99.https://doi.org/10.1071/ MF00033

Radford, I. J., Gibson, L.A., Corey, B., Carnes, K., & Fairman, R. (2015).Influence of fire mosaics, habitat characteristics and cattle distur-banceonmammals infire-pronesavannalandscapesofthenorthernKimberley. PLoS ONE,10(6),e0130721.https://doi.org/10.1371/jour-nal.pone.0130721

Rangan,H., Bell, K. L., Baum,D.A., Fowler, R.,McConvell, P., Saunders,T.,…Murphy,D.J. (2015).Newgeneticand linguisticanalysesshowancient human influence on baobab evolution and distribution inAustralia. PLoS ONE, 10(4), e0127582. https://doi.org/10.1371/jour-nal.pone.0127582

Ritchie, D. (2009). Things fall apart: The end of an era of systematicIndigenous firemanagement. In J. Russell-Smith, P. J.Whitehead, &P.M.Cooke(Eds.),Culture, ecology and economy of fire management in north Australian savannas: Rekindling the Wurrk tradition (pp. 23–40).Collingwood,VIC:CSIROPublishing.

Rowe, C. (2006). The Australasian pollen and spore Atlas user document. PalaeoWorks Technical Report 8. Canberra, ACT: Department ofArchaeologyandNaturalHistory,AustralianNationalUniversity.

Rull,V.(2015).Long-termvegetationstabilityandtheconceptofpotentialnaturalvegetationintheNeotropics.Journal of Vegetation Science,26,603–607.https://doi.org/10.1111/jvs.12278

Russell-Smith, J., Lucas, D., Gapindi, M., Gunbunuka, B., Kapirigi, N.,Namingum,G.,…Chaloupka,G.(1997).Aboriginalresourceutilizationand firemanagement practice inWesternArnhemLand,MonsoonalNorthernAustralia:Notesforprehistory,lessonsforthefuture.Human Ecology,25,159–195.https://doi.org/10.1023/A:1021970021670

Russell-Smith,J.,Yates,C.,Edwards,A.,Allan,G.E.,Cook,G.D.,Cooke,P.,…Smith,R. (2003).ContemporaryfireregimesofnorthernAustralia,1997–2001:Change sinceAboriginal occupancy, challenges for sus-tainablemanagement. International Journal of Wildland Fire,12,283–297.https://doi.org/10.1071/WF03015

Silcock,J.L.,Witt,G.B.,&Fensham,R.J. (2016).A150-yearfirehistoryofmulga (Acacia aneuraF.Muell.exBenth.)dominatedvegetation in

     |  11Journal of Vegetation Science

CONNOR et al.

semiaridQueensland,Australia.The Rangeland Journal,38, 391–415.https://doi.org/10.1071/RJ15109

Skroblin, A., & Legge, S. (2012). Influence of fine-scale habitat re-quirements and riparian degradation on the distribution of thepurple-crowned fairy-wren (Malurus coronatus coronatus) innorthern Australia. Austral Ecology, 37, 874–884. https://doi.org/10.1111/j.1442-9993.2011.02331.x

Somodi, I., Molnar, Z., & Ewald, J. (2012). Towards a more transpar-ent use of the potential natural vegetation concept – an answer toChiaruccietal..Journal of Vegetation Science,23,590–595.https://doi.org/10.1111/j.1654-1103.2011.01378.x

Stevenson,J.,&Haberle,S.G. (2005).Macro charcoal analysis: A modified technique used by the Department of Archaeology and Natural History. PalaeoWorks Technical Report 5. Canberra, ACT: Department ofArchaeologyandNaturalHistory,AustralianNationalUniversity.

Strona, G., Mauri, A., Veech, J. A., Seufert, G., San Miguel-Ayanz, J.,& Fattorini, S. (2016). Far from naturalness: How much does spa-tial ecological structure of European tree assemblages depart fromPotentialNaturalVegetation?PLoS ONE,11(12),e0165178.https://doi.org/10.1371/journal.pone.0165178

Telford,K.,Maher,W.,Krikowa, F.,&Foster, S. (2008).Measurementoftotal antimony and antimony species inmine-contaminated soils byICPMS and HPLC-ICPMS. Journal of Environmental Monitoring, 10,136–140.https://doi.org/10.1039/B715465H

Tng,D.Y.P.,Murphy,B.P.,Weber,E.,Sanders,G.,Williamson,G.J.,Kemp,J.,&Bowman,D.J.M. S. (2011).Humid tropical rain forest has ex-pandedintoeucalyptforestandsavannaoverthelast50years.Ecology and Evolution,2,34–45.

Trauernicht,C.,Murphy,B.P.,Tangalin,N.,&Bowman,D.M.J.S.(2013).Culturallegacies,fireecology,andenvironmentalchangeintheStoneCountryofArnhemLandandKakaduNationalPark,Australia.Ecology and Evolution,3,286–297.https://doi.org/10.1002/ece3.460

Tyler, I. (2016).Geology and landforms of the Kimberley. Kensington,WA:DepartmentofParksandWildlife,BushBooks.

van Geel, B., & Aptroot, A. (2006). Fossil ascomycetes inQuaternary deposits. Nova Hedwigia, 82, 313–329. https://doi.org/10.1127/0029-5035/2006/0082-0313

Vigilante, T. (2001). Analysis of explorers’ records of Aboriginal land-scape burning in the Kimberley Region of Western Australia.Australian Geographical Studies, 39, 135–155. https://doi.org/10.1111/1467-8470.00136

Vigilante,T.,&Bowman,D.M.J.S. (2004).Effectsoffirehistoryonthestructure and floristic composition of woody vegetation aroundKalumburu, north Kimberley, Australia: A landscape-scale naturalexperiment. Australian Journal of Botany, 52, 381–404. https://doi.org/10.1071/BT03156

Warren,S.D.,Thurow,T.L.,Blackburn,W.H.,&Garza,N.E.(1986).Theinfluenceoflivestocktramplingunderintensiverotationgrazingonsoilhydrologiccharacteristics.Journal of Range Management,39,491–495.https://doi.org/10.2307/3898755

WesternAustralianHerbarium.(2017).FloraBase – The Western Australian Flora.DepartmentofParksandWildlife.http://florabase.dpaw.wa.gov.au/.Accessed31May2017.

Whitlock,C.,&Larsen,C.(2001).Charcoalasafireproxy.InJ.P.Smol,H.J.B.Birks,&W.M.Last(Eds.),Tracking environmental change using lake sediments, volume 3: Terrestrial, algal and siliceous indicators(pp.75–97).Dordrecht,TheNetherlands:Kluwer.

Wilson, B. R. (1981). General introduction. Biological survey of Mitchell Plateau and Admiralty Gulf, Kimberley, Western Australia (pp. 1–11).Perth,WA:WesternAustralianMuseum.

Wohl,E.E.,Fuertsch,S.J.,&Baker,V.R. (1994).SedimentaryrecordsoflateHolocenefloodsalongtheFitzroyandMargaretRivers,WesternAustralia.Australian Journal of Earth Sciences,41,273–280.https://doi.org/10.1080/08120099408728136

Woinarski,J.C.Z.,Mackey,B.,Nix,H.A.,&Traill,B.J.(2007).The nature of northern Australia – natural values, ecological processes and future pros-pects.Canberra,ACT:ANUPress.

Wright,A.J.,Edwards,R.J.,vandePlasschea,O.,Blaauw,M.,Parnell,A.C.,vanderBorge,K.,…Blackg,K.(2017).Reconstructingtheaccumu-lationhistoryofasaltmarshsedimentcore:Whichage-depthmodelisbest?Quaternary Geochronology,39,35–67.https://doi.org/10.1016/ j.quageo.2017.02.004

Yibarbuk,D.,Whitehead,P.J.,Russell-Smith,J.,Jackson,D.,Godjuwa,C.,Fisher,A.,…Bowman,D.M.J.S.(2001).FireecologyandAboriginalland management in central Arnhem Land, northern Australia: Atradition of ecosystem management. Journal of Biogeography, 28,325–343.

Ziembicki,M.R.,Woinarski,J.C.Z.,Webb,J.K.,Vanderduys,E.,Tuft,K.,Smith, J., …Burbidge,A.A. (2015). Stemming the tide: Progress to-wardsresolvingthecausesofdeclineandimplementingmanagementresponses for thedisappearingmammal faunaofnorthernAustralia.Therya,6,169–225.https://doi.org/10.12933/therya

SUPPORTING INFORMATION

Additional Supporting Information may be found online in thesupportinginformationtabforthisarticle.

Appendix S1.Mapofsamplinglocations,NWKimberleyRegionAppendix S2. Complete pollen and geochemical diagrams, MP11ArecordAppendix S3.PrincipalComponentsAnalysisresultAppendix S4.PollenandvegetationdatafromsurfacesamplesAppendix S5.GeochemicaldatafromsurfacesamplesAppendix S6.Aerialphotographsofstudyareain1949and2017

How to cite this article:ConnorSE,SchneiderL,TreziseJ,etal.ForgottenimpactsofEuropeanland-useonriparianandsavannavegetationinnorthwestAustralia.J Veg Sci. 2017;00:1–11. https://doi.org/10.1111/jvs.12591

top related