Euclidean geometry and trigonometry

Post on 09-Feb-2016

120 Views

Category:

Documents

16 Downloads

Preview:

Click to see full reader

DESCRIPTION

Euclidean geometry and trigonometry. y. Euclidean geometry means flat space. sine and cosine. ACME. 1. q. x. Calculating. Trigonometric identities. Euclidean geometry. ( 1 ) Line segment. A. B. ( 2 ) Extend line segment into line. D. C. F. E. ( 5 ) Parallel postulate. - PowerPoint PPT Presentation

Transcript

Euclidean geometry and trigonometry

1

Euclidean geometry means flat space sine and cosine

Calculating Trigonometric identities

ACME

2πœ‹

1 𝛼

𝛽

q x

y

Euclidean geometry

2

BA

D

C

(1) Line segment

(2) Extend line segment into line

F

E

(3) Use line segment to define circle

(4) All right angles are equal

(5) Parallel postulate

Euclidean geometry: Flat space

3

(5) Parallel postulate

Flat

Curved

Non-embeddable spaces(Cannot be drawn as rippled surfaces in higher-dimensional flat spaces)

Euclidean geometry: Pythagorean theorem

4

a

bc

Euclidean geometry: Pythagorean theorem

5

a

bcc2

a2

b2

a2 + b2 = c2Want to show

Euclidean geometry: Pythagorean theorem

6

a

bc

b

a2 + b2 = c2Want to show

(a – b)2

ab/2

ab/2

ab/2

ab/2

(a - b)2 + 4ab/2 = c2

a2 -2ab + b2 + 2ab = c2

a2 + b2 = c2

𝑐=βˆšπ‘Ž2+𝑏2

a - b

Euclidean geometry and trigonometry

7

Euclidean geometry means flat space sine and cosine

Calculating Trigonometric identities

ACME

2πœ‹

1 𝛼

𝛽

q x

y

Trigonometry: sine and cosine

8

1

qx

y

q

Trigonometry: sine and cosine

9

1

x = cos(q)

qx

y

y = sin(q)

2πœ‹

ACME

10

2πœ‹πœƒ

0

-1

1

πœ‹πœ‹4

πœ‹2

3πœ‹2

12

βˆ’1 /2

√2/2√3 /2

βˆ’βˆš3 /2βˆ’βˆš2 /2

3πœ‹4

5πœ‹4

7πœ‹4

πœ‹6

πœ‹3

2πœ‹35πœ‹6

7πœ‹6

4πœ‹3

5πœ‹311πœ‹6

sin (πœƒ )

cos (πœƒ )

x

y

Trigonometry: sine and cosine

-1

1

12

βˆ’1 /2

√2/2√3 /2

βˆ’βˆš3 /2βˆ’βˆš2 /2

sin (πœƒ )

cos (πœƒ )

11

Trigonometry: sine and cosine

2πœ‹0

πœ‹πœ‹4

πœ‹2

3πœ‹2

3πœ‹4

5πœ‹4

7πœ‹4

πœ‹6

πœ‹3

2πœ‹35πœ‹6

7πœ‹6

4πœ‹3

5πœ‹311πœ‹6

πœƒ

Euclidean geometry and trigonometry

12

Euclidean geometry means flat space sine and cosine

Calculating Trigonometric identities

ACME

2πœ‹

1 𝛼

𝛽

q x

y

Trigonometry:

13

Want to approximate

πœ‹3

πœ‹3πœ‹

3

πœ‹3

πœ‹3

1 1

1

1 1

πœ‹3

πœ‹3

πœ‹3

πœ‹3

11

ACME

2πœ‹

1

Trigonometry:

14

Want to approximate

πœ‹3

πœ‹3

πœ‹3

1

1

1

πœ‹3

πœ‹3

πœ‹3

1

1

1

Trigonometry:

15

Want to approximate

πœ‹6πœ‹6

1/2 1/2

x

( 12 )2

+π‘₯2=12

π‘₯2=1βˆ’ 14

π‘₯=√ 34=√32

√32

πœ‹3

πœ‹3

1 1

Trigonometry:

16

Want to approximate

πœ‹6πœ‹6

1/2 1/2

x

( 12 )2

+π‘₯2=12

π‘₯2=1βˆ’ 14

π‘₯=√ 34=√32

√32

√32

1/2

1

πœ‹6

Trigonometry:

17

Want to approximate

( 12 )2

+π‘₯2=12

π‘₯2=1βˆ’ 14

π‘₯=√ 34=√32

√32

1/2

1

πœ‹6

Trigonometry:

18

Want to approximate

√32

1/2

1

πœ‹6

πœ‹6

1βˆ’ √32

1

y

( 12 )2

+(1βˆ’ √32 )

2

=𝑦2

14+( 2βˆ’βˆš3

2 )2

=𝑦2

2βˆ’βˆš3=𝑦2

𝑦=√2βˆ’βˆš3πœ‹6 ≳ √2βˆ’βˆš3

πœ‹β‰³6 √2βˆ’βˆš3πœ‹β‰³3.1058

STOP

Trigonometry:

19

πœ‹β‰³3.1058

Sine! Sine!Cosine,

Sine!

3 . 1415 9!

ACME

2πœ‹

1

-1

1

12

βˆ’1 /2

√2/2√3 /2

βˆ’βˆš3 /2βˆ’βˆš2 /2

sin (πœƒ )

cos (πœƒ )

20

Trigonometry: sine and cosine

1 °≔ πœ‹180

0.5240.785

1.0471.571

2.0942.356

2.6183.142

3.6653.927

4.1895.236

4.7125.498

5.7606.283

30Β°45Β°

60Β°90Β°

120Β°135Β°

150Β°180Β°

210Β°225Β°

240Β°300Β°

270Β°315Β°

330Β°360Β°

2πœ‹0

πœ‹πœ‹4

πœ‹2

3πœ‹2

3πœ‹4

5πœ‹4

7πœ‹4

πœ‹6

πœ‹3

2πœ‹35πœ‹6

7πœ‹6

4πœ‹3

5πœ‹311πœ‹6

πœƒ

Euclidean geometry and trigonometry

21

Euclidean geometry means flat space sine and cosine

Calculating Trigonometric identities

ACME

2πœ‹

1 𝛼

𝛽

q x

y

Trigonometry: sine and cosine in terms of right triangles

22

1

x = cos(q)

qx

y

y = sin(q)

q

q

Trigonometry: sine and cosine in terms of right triangles

23

1

q

sin(q

)

cos(q)

r

r cos(q)

r sin

(q)

R

R sin

(q)

R cos(q)

Proving identities: Pythagorean identity

24

STOP cos2 (πœƒ )+sin2 (πœƒ )=?

cos2 (πœƒ )+sin2 (πœƒ )=1Pythagorean identity

1

q

sin(q

)

cos(q)

Proving identities: Angle addition formula

25

𝛼

Want to show

sin (𝛼+𝛽 )=sin (𝛼 ) cos (𝛽 )+cos (𝛼 ) sin (𝛽 )𝛽

1

sin ( 𝛽)

cos(𝛽 )

πœ‹2 βˆ’ π›½πœ‹

2 βˆ’π›Ό 𝛼+𝛽

sin(𝛼

+𝛽

)

sin (𝛽 )π‘₯ =

h sin (𝛼 )hcos (𝛼 )

h

xsin( 𝛽)cos

(𝛼 )

sin(𝛼 )

Proving identities: Angle addition formula

26

𝛼

Want to show

sin (𝛼+𝛽 )=sin (𝛼 ) cos (𝛽 )+cos (𝛼 ) sin (𝛽 )𝛽

sin(𝛼

+𝛽

)

sin( 𝛽)cos

(𝛼 )

sin(𝛼 )

(sin (𝛽) cos (𝛼 )sin (𝛼 )

 +cos ( 𝛽))sin (𝛼 )=ΒΏ sin (𝛼+𝛽 )ΒΏ

cos(𝛽 )

top related