EN315-07 Euler Layout

Post on 12-Nov-2014

733 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

EN 315 Euler Path Design/gbbarte 1

Complex Logic Gates LayoutEuler Path Method

EN 315 VLSI DesignDr. Gil B. Barte, Ph.D.

EN 315 Euler Path Design/gbbarte 2

Inverter layouts

EN 315 Euler Path Design/gbbarte 3

EN 315 Euler Path Design/gbbarte 4

EN 315 Euler Path Design/gbbarte 5

EN 315 Euler Path Design/gbbarte 6

EN 315 Euler Path Design/gbbarte 7

EN 315 Euler Path Design/gbbarte 8

EN 315 Euler Path Design/gbbarte 9

g = a. (b + c)

EN 315 Euler Path Design/gbbarte 10

EN 315 Euler Path Design/gbbarte 11

EULER PATH LAYOUT

• Design the layout of function F

• F = /(A.B.C)• Design the Static

CMOS transistor circuit of F

A B C

C

B

A

Gnd

F

Vdd

EN 315 Euler Path Design/gbbarte 12

Euler Paths

A B C

C

B

A

Gnd

F

Vdd

I1

I2

The P GraphA B C

Vdd

F

The N Graph F

I2

BI1

C

A

Gnd

Edge representing a transistor

Vertex / Node

EN 315 Euler Path Design/gbbarte 13

Dual Graphs

AB C

Vdd

F

F A I2 B I1 C Gnd

A B C

Vdd

F

F

AI2

BI1

CGnd

N-Graph

P-Graph

EN 315 Euler Path Design/gbbarte 14

Arrange n & p Euler paths with identical labelling

• The N-Euler Path

• The Identical P-Euler Path

F

B

C

AI2

I1

Gnd

F A I2 B I1 C Gnd

A B C

Vdd

F

F A Vdd B F C Vdd

EN 315 Euler Path Design/gbbarte 15

Implement in Layout

F A I2 B I1 C GndF A Vdd B F C Vdd

P-Euler Path N-Euler Path

A B C

F I2 I1 Gnd

F Vdd F Vdd

EN 315 Euler Path Design/gbbarte 16

Single Row Transistors

• Use of a single row of n-transistors and a single row of p-transistors

• The transistor rows are put in top of one another

Or

P-Trs

N-Trs

EN 315 Euler Path Design/gbbarte 17A B C

EN 315 Euler Path Design/gbbarte 18

Vdd

A B C

GND

Out=/(A.B.C)

EN 315 Euler Path Design/gbbarte 19

Metal Layout

A B C

F I2 I1 Gnd

F F VddVdd

EN 315 Euler Path Design/gbbarte 20

Euler Path (line of Diffusion Technique)

EN 315 Euler Path Design/gbbarte 21

Z = a + b + c.d

EN 315 Euler Path Design/gbbarte 22

EN 315 Euler Path Design/gbbarte 23

EN 315 Euler Path Design/gbbarte 24

EN 315 Euler Path Design/gbbarte 25

XNOR

EN 315 Euler Path Design/gbbarte 26

Exercise

)(. EDCBAF ++=

EN 315 Euler Path Design/gbbarte 27

XNOR Implementation Example

)()( baMbaabbaabf +=+=+=

Vdd

A B

B

A

Gnd

M

Vdd

M

M

A B

A

B

f

Gnd

EN 315 Euler Path Design/gbbarte 28

A B

B

A

Gnd

M

Vdd

Euler Path for P circuit

Vdd A M B Vdd

Euler Path for N circuit

M A B Gnd

M

Vss

Vdd

a b

EN 315 Euler Path Design/gbbarte 29

)( BAMf +=Vdd

M

M

A B

A

B

f

Gndf

Vss

Vdd

M A B

EN 315 Euler Path Design/gbbarte 30

XNOR Implementation Example

)()( baMbaabbaabf +=+=+=

A single row of n-and p-transistors

with break

a b

M

Vss

Vdd

f

Vss

Vdd

M A B

EN 315 Euler Path Design/gbbarte 31

XNOR Other Implementation

ab

M

Vss

Vdd

f

Vss

Vdd

MA

B

EN 315 Euler Path Design/gbbarte 32Turn 180 degrees to use one Vdd

M

Vss Vdd

ab

M

Vdd

f

Vss

Vdd

MA

B

EN 315 Euler Path Design/gbbarte 33

M

Vss Vdd

ab

M

Vdd

f

Vss

Vdd

MA

B

Remove one of the Vdd lines and connect a & b

gates

EN 315 Euler Path Design/gbbarte 34

M

Vss Vdd

a

b

f

Vss

M

A

B

N-Well

Can also be moved to n area to reduce size

EN 315 Euler Path Design/gbbarte 35

M

Vss Vdd

a

b

f

N-Well

Vss

M

A

B

f

EN 315 Euler Path Design/gbbarte 36

M

Vss Vdd

a

b

f

N-Well

M

f

EN 315 Euler Path Design/gbbarte 37

Additional Exercises

EN 315 Euler Path Design/gbbarte 38

Stick Diagrams

C

A B

X = C • (A + B)

B

AC

i

j

j

VDDX

X

i

GND

AB

C

PUN

PDNABC

Logic Graph

EN 315 Euler Path Design/gbbarte 39

Two Versions of C • (A + B)

X

CA B A B C

X

VDD

GND

VDD

GND

EN 315 Euler Path Design/gbbarte 40

Consistent Euler Path

j

VDDX

X

i

AB

C

GND A B C

EN 315 Euler Path Design/gbbarte 41

OAI22 Logic Graph

C

A B

X = (A+B)•(C+D)

B

A

D

VDDX

X

AB

GND

C

PUN

PDN

C

D

D

ABCD

EN 315 Euler Path Design/gbbarte 42

Example: x = ab+cd

GND

x

a

b c

d

VDDx

GND

x

a

b c

d

VDDx

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

a c d

x

VDD

GND

(c) stick diagram for ordering {a b c d}b

EN 315 Euler Path Design/gbbarte 43

Advantages

• Can be automated• Group transistors in strips allow maximum

source/drain connection by abutment • Manhattan (vertical & horizontal) metal

routing (eg a maze router) • Smaller size cell layout• Less complex masks/less cost

top related